纳米二氧化钛粒子的可控制备、表征及其对甲醛降解反应的光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛的附加值高,在环境、信息、材料、能源、医疗与卫生等领域有着广阔的应用前景,在近20年来引起极大关注,并得到了蓬勃发展,其生产地区主要集中在西欧和北美,亚洲的日本与韩国也有较大的生产量,我国也进行了大规模的研究。
     本文以制备出质量好、成本低、效率高、光催化性能好的纳米二氧化钛为目标,研究内容涉及到二氧化钛纳米粒子制备过程的各影响因素分析、最佳制备工艺条件的确定、二氧化钛纳米粒子的主要物化性能表征、在静态和动态条件下光催化降解甲醛的光催化性能。
     采用控制水解法制备纳米二氧化钛,并通过分析四氯化钛浓度、反应温度、滴加速度、加水量、碳酸铵用量、锻烧温度等因素对制备过程及最终产物粒径的影响,确定了最佳制备工艺条件。即:四氯化钛对正辛醇的质量浓度为20%,反应温度为50℃,反应物的滴加速度为3s/滴,溶液加水量为80mL,碳酸铵用量为30g,煅烧温度为350℃。
     表征结果显示,所得二氧化钛粒子的粒径在30nm左右,晶型为纯锐钛矿结构,纯度在98.7%以上,比表面积为229.77m~2/g,水溶性盐含量在1.6%以下,灼烧失重为0.61%左右,水浸pH值为6,表观密度在0.46 g/mL以下。
     在静态和动态条件下,测定了所得纳米二氧化钛和购买的P25对光催化降解甲醛的效果。结果表明,两者均有很好的降解效果,而且静态条件下的降解率要高于动态条件下的,所得纳米二氧化钛对甲醛的降解效果与P25的降解效果比较接近,但还是P25对甲醛的降解效果更好一些。
Because of highly increased value, nanosized TiO_2 particles have been extensively applied in environment, information, materials, energy sources, medical treatments and hygiene, etc. Great concern and striking development have been made in the world in the past 20 years. Their production focuses in Western Europeand the northern America, and another bigger output in Japan and Korea. A wide range of research has been carried out in our country.
     The purpose of this disquisition is to produce Nanometer TiO_2 particles with good qulity,low cost,high efficiency.The contents of research include the study of the optimal reaction condition, the test and analysis of the major property of the self-producted nanometer TiO_2, the study of formaldehyde photocatalyze in the static experiment system and the continuous flow system.
     Nanometer TiO_2 particles were prepared by controled liquid phase methods The effect of reaction temperature, the dipping speed, the water dosage and the calcining temperature have been studied systematically. From the results of experiments, we draw the conclusions that the optimal reaction temperature is 50℃,the ration of tetrachloride is 20%, the dipping speed is 3s/drop, the water dosage is 80mL, the weight of salvolatile is 30g, the optimal calcining temperature is 350℃
     By choosing and analyzing the major property of self-producted nanometer TiO_2, the particle size is about 30nm, the crystal form is anatase, the purity is above 98.7%, the specific surface area is 229.77m~2/g, the impurity content is below 1.6%, the water content is about 0.61%, the pH value is about 6, the apparent density is about 0.46 g/mL.
     The self-producted nanometer TiO_2 and P25 were used for the experiment of formaldehyde photocatalyze in the static experiment system and the continuous flow system, By choosing and analyzing, the photocatalyze decomposition effect of two catalyzers is good and the photo-catalytic efficiency of the static experiment system is higher than the continuous flow system. the photo-catalytic efficiency of two catalyzers is very close,but the effect of P25 is better than the self-producted nanometer TiO_2.
引文
1 魏绍东. 纳米 TiO_2 的现状与发展. 行业动态, 2005, 12(2):25~31.
    2 陶宁, 康斌, 王兰武. 纳米 TiO_2 制备及应用技术开发. 四川冶金, 2002, 14(2):17~19.
    3 姚超, 朱毅青, 成庆堂, 顾力新. 纳米 TiO_2 粉体的制备方法和发展趋势. 现代化工, 2000, 17(10):126~132.
    4 张立德, 牟秀美. 纳米材料科学. 辽宁科技出版社, 1994:378~429.
    5 金寿日, 赵新洛译. 金属烟粒子结晶学. 西南师范大学出版社, 1993:23~35.
    6 Halperin W P. Quantum size effects in metal particles. Modern. Phys, 1986, 58 (3):533~605.
    7 张立德, 牟秀美. 纳米材料和纳米结构. 科技出版社, 2001:101~131.
    8 Birringer R, Gleiten H, Klein HP. Synthesis of n-metals. Phys.Lett, 1984,102(8):365~369.
    9 苏品书. 超微粒子材料技术. 复汉出版社, 1989:460~478.
    10 梅滨, 王晓兰. 纳米材料的应用和进展, 煤炭技术, 2002, 12(5):3~7.
    11 Abram T. Advanceded ceramic powder arid nano-sized ceramic powder:An Industry and market overiew. Ceramic Trans, 1996, 62(2):3~13.
    12 Linsebiger A. L, Lu G. Q. Photo-catalysis is on TiO_2 Surface: Principles, Mechanism and Selected Results. Chem Rev, 1995(3):735.
    13 Keichi T., Mario C., Teruaki H. Effect of Crystallinity of TiO_2 on its Photocatalytic Action. Chemical Physical Letters, 1991, 187(2):73~76.
    14 霍爱群, 谭欣, 丛培君. 纳米 TiO_2 光催化膜中的缺陷结构与性能关系初探. 化学通报, 1998,11(3):31~32.
    15 Kumar K. N., Keizer P. K. Densification of Nanostructured Titania Assisted by a Phase Transformation. Nature, 1992, 358(2):48~51.
    16 逗俊峰, 邹振扬, 郑泽根. 纳米 TiO_2 的光催化特性及其在环境科学中的应用. 材料导报, 2000, 14(6):35~37.
    17 曾维勇, 李秋珍. 纳米 TiO_2 的应用. 矿冶工程, 2000, 20 (2):5.
    18 Feng D. Metal Physics. Vol 2 Structure and Defect. Science Press, 1987:408.
    19 Goswami D. Y. A Review of Engineering Developments of Aqueouos Phase Solar Photocatalytic Detoxification and Disinfection Processes. Journal of Solar Energy Engineering, 1997:119~107.
    20 罗菊仙, 赵中一. 半导体多相光催化技术在环境保护中的应用研究进展. 中国地质大学学报, 2000, 25(5):526-541.
    21 高铁, 钱朝勇. TiO_2 表面超亲水性.材料导报, 2000, 14 (7):29.
    22 周铭. 纳米 TiO_2 研究进展. 涂料工业, 1996, 23(4):36~42.
    23 边蕴静. 纳米材料在涂料中的应用. 化工新材料, 2001, 29 (7):31~35.
    24 李泉等. 纳米粒子. 化学通报,1995, 31(6):29~35.
    25 赵华侨. 离子体化学与工艺. 中国科技大学出版社, 1993:17~54.
    26 刘敬肖等. 离子束合成纳米 TiO2 薄膜对医用 NiTi 合金表面改性. 材料研究学报, 2001, 15(4):41~46.
    27 王颜平, 汪浩, 朱鹤孙. 直流电弧等离子体法制备 TiO2 纳米超细粉. 高技术通讯, 1998 13(2):42~44.
    28 李晓娥, 祖庸. 纳米 TiO2 的制备. 现代化工, 1999, 19 (11):42~44.
    29 Akhtar M. K., Pratsinis S. E. Dopants in Vapor-phase Synthesis of Titania Powders. J Mat. Res, 1994, 99(50):1241~1249.
    30 Akhtar M. K., Pratsinis S. E. Vapor Synthesis of Titanium Dioxide. AICHE Journal, 1991, 37(10):1561~1570.
    31 李春忠, 朱以华, 陈爱平等. TiC14-O2 体系高温反应制备超细 TiO2 光催化材料的研究. 无机材料学报, 1999, 14(5): 717~725.
    32 Casey J D, Haggerty J. S. Laser-induced Vapour-phase Synthesis of Titanium Dioxide. J Mat. Sci, 1987, 22(12):4307~7312.
    33 Okuyama K., Kousaka Y., Wu J. et al. Production of Ultra-fine Metal Oxide Aerosol Particles by Thermal Decom-position of Metal Alkoxide Vapors. AICHE Journal, 1986, 32 (12) : 2010 ~2019.
    34 姚超, 朱毅青, 成庆堂等. 纳米 Ti02 粉体的制备方法和发展趋势. 现代化工, 2000, 20 (7):20~23.
    35 王小慧, 李熙等. 胶溶法合成 TiO2 超微粒子. 材料科学进展, 1992, 6(6):533~537.
    36 尹荔松, 周歧发, 唐新桂等. 溶胶-凝胶法制备纳米 TiO2 的胶凝过程机理究. 功能材料, 1999, 30 (4):379~381.
    37 罗菊, 丁星兆, 程黎放等. 用溶胶-凝胶法制备的纳米 TiO2:粉体的结构. 材料科学讲展. 1993, 8(1):52~56.
    38 刘双怀, 周根陶, 彭定坤等. 二氧化钛超细粉末的热分析及结构转变. 化学物理学报, 1994, 7 (3) :227~231.
    39 Doulgas C., Merrilea M. J. Controlling Crystallinity During Processing of Nanocrystalline Titania[J]. Journal of the American Ceramic Society, 1994, 77(171):1954-1960.
    40 Haro P. E., Rodrigueez T. R. Cruz H. M. etal. Crystallization of Nanosized Titanina Particles Prepared by the Sol-gel Press. 1994, 9(8):2101~2108.
    41 周歧发, 伍尚华, 林光明等. 纳米 TiO2 材料的合成与特征. 中山大学学报(自然科学版), 1996, 35 (2):32~36.
    42 孙康, 王永刚. 溶胶-凝胶法制取超细 TiO2. 无机盐工业, 1997, 26(3):9~10.
    43 Bokhimi M., A. Novaro O. Effect of Hydrolysis Catalyst on the Tideficiency and Crystallite Size of Sol-gel TiO2 Crystalline Phases. J. Mat. Res. Soc, 1995, 9(8):2788~2796.
    44 Chen J., Y. Gao L., Huang J. H. Preparation of Nanosized Titania Powder Via the Controlled Hydrolysis of Titanium Alkoxide. Journal of Materials Science, 1996, 31(5):3497~3500.
    45 万海保, 曹立新, 曾广赋等. TiO2 纳米粉的热处理过程研究. 化学物理学报, 1999, 12 (4):469~472.
    46 尹荔松,周歧发,唐新桂等. 纳米晶 TiO2 超细粉的研制. 中山大学学报(自然科学版), 1997, 36 (4):121~122.
    47 Ptail A. J, Shinde M. H, Potdar H. S, etal. Chemical Synthesis of Titania(TiO2) Powder Via Mixed Precursor Route for Membrane Applications. Materials Chemistry and Physics, 2001, 68(7):7~16.
    48 Liu X. H. Yang J. Wang L. etal. An Improvement on Sol-gel Method for Preparing Ultrafine and Crystallized Titania Powder. Materials Science and Engineering, 2002, 298(2)241~245.
    49 Zhu Y. F. Zhang L. Gao C., etal. The Synthesis of Nanosized TiO2 Powder Using Sol-gel Method with TiCl4 as a Precursor. Journal of Materials Science, 2000, 35(8):4049~4054.
    50 Claudius K. Detlef B. W. Micheal H. etal Characterization of Quantum Size Titamium Dioxide. The Journal of Physical Chemistry, 1998, 92(18):5196~5201.
    51 于网林, 杨平, 徐秋云等. 均分散氧化钛粒子的制备研究. 高等学校化学学报, 1994, 15 (1):1686~1689.
    52 Hirai T. Sato H. Komasawa I. Mechanism of Formation of Titanium Dioxide Ultrafine Particales in Reverse Micelles by Hydrolysisi of Titanium Tetrabutoxide. Ind Eng Chem Res, 1993, 32(12):3014~3019.
    53 李燕, 陈祖耀. 水热晶化法制备 TiO2 纳米粉体. 中国陶瓷, 1997, 33 (3):14~15.
    54 黄晖, 罗宏杰, 杨明等. 水热沉淀法制备 TiO2 纳米粉体的研究. 硅酸盐通报, 2000, 13(4):8~12.
    55 Aruna S. T., Tirosh S. Z. A Nanosize Rutile Titania Particle Synthesis Via a Hydrothermal Method without Minerallizers. 2000, 10(5):2388~2391.
    56 Zheng Y. Q. Shi E. W., Chen Z. Z., etal. Influence of Solution Concentration on the Hydrothermal Preparation of Titannia Crystalites. The Journal of Materials Chemistry, 2001, 11(2):1547~1551.
    57 Zheng Y. Q. Shi E. W., Cui S. X, et al. Hydrothermal Preparation of Nanosized Brookite Powder. J. Am. Cerama. Soc. 2000, 83(10):2634~2638.
    58 Revathi B. R. Micheal G. Rutile Formation in Hydrothermal Crystallized Nanosized Titania. J. Am. Cerama. Soc, 1996, 79(8):2185~2188.
    59 Juan Y., Sen M., Jose F. Hydrothermal Synthesis of Nanosized Titania Powders: Influence of Peptization and Peptizing Agents on the Crystalline Phase and Phase Transitions. J. Am. Cerama. Soc, 2000, 83(6):1361~1368.
    60 陈代荣, 孟永德, 樊悦朋. 由工业硫酸钛制备 TiO2 纳米粉体. 无机化学学报, 1995, 11 (3):228~231.
    61 任莉, 祖庸. 均匀沉淀法制备纳米 TiO2. 96 中国材料研讨会论文集. 化学工业出版社, 1997:45~52.
    62 李燕. 醇溶液加热法制备纳米级二氧化钛超细粉. 陶瓷学报, 2000, 21(1):52~59.
    63 杨海堃. 气相氢氧焰水解法生产超细二氧化钛. 中国粉体技术, 2000, 6(1)30~34.
    64 段明华, 蒋祉刚, 谢兵. 超细二氧化钛的开发研究现状. 钢铁钒钛, 1998, 19(2):47~51.
    65 Peral J., Ollis D.F., J.Catal., 2000, 83(6):554~565.
    66 尚静, 杜尧国. TiO2 纳米粒子气-固复相光催化氧化 VOCs 作用的研究进展. 环境污染技术与设备, 2000, 4(3):30~34.
    67 于向阳. 提高二氧化钛光催化性能的途径. 硅酸盐通报, 2000, 4(3):10~16.
    68 曹亚安, 陈咏梅. TiO2 纳米粒子膜的表面态性质及其光催化活性的研究. 感光材料与光化学, 1999, 17(2):100~103.
    69 Bickley.R.I.J, Solid State Chem, Rev, 1991, 95(8):554~565.
    70 陶跃武等. 催化学报, 1997, 18(84):345~352.
    71 Zaharescu.M, Crisan.M. J.Sol-Gel.Sci, 1997, 14(8):249~252.
    72 Sanchez L, Poral J, Domenech X, Aniline degradation by combined photocatalysis and ozonation, Appl catal:BV19, No1, 1998, 31(1)59~65.
    73 Cao L X, Gao Z, Suib S L, Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts:studies of deactivation and regeneration. J Catal, 2000, 96(2):253~261.
    74 Martra G,etal. The role of H2O in the photocatalytic oxidation of toluene in vapor phase on anatase TiO2 catalyst: A FTIR study, Catal Today, 1999,53(4):695~702.
    75 Yamazake-Nishida,S., Nagano, K.J., Phillips, L.A.. Photochem.Photobiol.A:chem., 1993, 70 (1):95~99.
    76 杨建军, 李东旭等. 甲醛光催化氧化的反应机理. 物理化学学报, 2001, 17(3):278~281.
    77 张宜恒, 陈琦等. 甲醛光催化氧化的ESR研究. 化学物理学报, 1998, 11(5):461~464.
    78 常梦媛. 评价光催化剂性能的动态实验系统的研究. 北京工业大学研究生硕士论文, 2005:56~68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700