中尺度WRF模式在风电功率预测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低层风场具有随机变化的特征,导致风电场输出功率具有波动性、间歇性、随机性的特点,故对风电场输出功率进行预测是增加电网调峰容量、提高电网接纳风电能力、改善电力系统运行安全性与经济性最有效、最经济的手段之一。风电功率预测以数值天气预报(Numerical Weather Prediction, NWP)的风速、风向等要素为输入数据,通过预测算法将NWP的气象要素转换为风电场的输出功率。由于数值天气预报存在着诸多不确定性,因此NWP数据的准确性显著影响并制约着风电功率预测的精度。
     本文以提高NWP数据的准确性和可靠性为总体研究目标,基于WRF(Weather Research and Forecasting model)模式,选择北方干旱区4个地点的风电场,开展了一系列模拟分析研究:分析得到模式的最佳参数配置;分析了模式模拟误差在季、月、日、时尺度上以及不同天气背景下的分布特征,探讨了造成模拟误差的可能原因;尝试应用四维数据同化、快速更新循环以及集合概率预报等技术来提高NWP数据的精度,采用类比卡曼滤波误差订正技术对预报序列进行误差订正,均取得了较好的效果,并以研究结果建设了实时运行的业务平台。
     通过对WRF模式不同边界层方案在我国西北地区复杂地形条件下四季低层风场的模拟性能的分析研究,得到以下结论:(1)不同季节模拟效果最优的边界层方案有所不同。就新疆地区而言,春季YSU方案最优:夏季MYNN2.5方案最优;秋冬两季QNSE方案最优。(2)风场的模拟性能具有季节性特点。总体来说,在所有季节,基本都可以成功地再现风向:春夏两季模拟的风速平均值及标准差都偏小,秋季均显著高于观测值,冬季平均风速偏高而标准差偏低。(3)四个季节都存在观测风速及模拟风速的“赶超”现象——风速大时低估风速小时高估。春、秋、冬观测值分别为<4m/s、<6m/s、<8m/s时模拟高估,春、夏、秋、冬观测值分别为>4m/s、>4m/s、6-10m/s、8-12m/s时模拟低估。
     利用实测风场数据(新疆和内蒙)检验了西北地区复杂地形条件下WRF模式不同空间分辨率对风速的模拟能力,并分析得到不同等级风速下的模拟误差特征。得到以下结论:(1)不同空间分辨率下,风速和风向的验证结果一致表明,模式分辨率为3km×3km时模拟效果优于分辨率更高的1km×lkm,表明我们对较小尺度上大气物理过程尚不清楚,另外地形数据分辨率不足也影响着低层风场模拟的精度。(2)不同等级风速检验结果:低风速区(0-3m/s)的模拟效果最差,次之为高风速区(≥25m/s)。对有效风速区(3-12m/s)及满发风速区(12-25m/s)模拟效果较为理想,不同地区略有差异。在新疆地区,对满发风速区的模拟效果最好,而内蒙地区模拟效果最好的为有效风速区。这是由新疆和内蒙在地形上的差异造成的,新疆风电场处于两山之间的山谷地带,“狭管”效应显著;而内蒙风电场地形恰好与新疆相反,地处山脉海拔最高,南北为平原海拔较低。
     基于最佳的模式参数配置,利用WRF模式分析了中国西北典型干旱地区某风电场低层风场的模拟误差及其发生的条件和可能原因。得到以下结论:(1)观测风速和模拟误差之间存在“赶超”现象——当风速较小时模拟误差大,当风速较大时模拟误差较小。(2)日、时尺度以及不同天气背景下的误差特征。在日尺度上,当平均风速小于2.5m/s或者风速的变化幅度超过15m/s时,模式模拟效果较差;每日在12-17h模拟效果最好,在7-9h模拟效果最差,原因为在12-17h大气多处于不稳定层结,在7-9h多为中性层结,而模式对大气不稳定层结的模拟较中性层结准确;对阴天的模拟效果好于晴天的。(3)风速模拟误差与稳定度参数模拟不准确密切相关。WRF模式的QNSE方案对大气稳定度参数的模拟偏低,模式对稳定度参数模拟偏小的主要原因为模式中的M-O (Monin-Obukhov)长度大于真实值。
     利用四维数据同化、快速更新循环技术和类比卡曼滤波误差订正技术改进了风场的预报误差,在此基础上利用集合概率预报方法建成了实时业务运行平台。得到以下结论:(1)基于WRF模式,将实时四维数据同化、快速更新循环模拟技术应用于风电功率预测的数值天气预报业务平台,采用类比卡曼滤波误差订正技术对预报序列进行误差订正。对2012年甘肃某风电场低层风场进行回算,四维数据同化技术的应用使得均方根误差(RMSE)降低了17%,平均绝对误差(MAE)降低了20%,误差也降低了11%;模式热启动后使得RMSE由3.63减小为3.03,MAE由2.86减小为2.23,相关系数从0.65增至0.78;误差订正后预报序列RMSE由2.93减小为2.42,MAE由2.28减至1.82,相关系由0.80增大为0.84.表明四维数据同化、快速更新循环和类比卡曼滤波误差订正技术可有效提高风电场的预报精度。(2)在模式预报性能检验的基础上,采用多种背景场数据和多种物理过程参数化方案组合的方法,建立了含有26个预报成员的集合概率预报系统,将其成功应用于风电场预报中,并得到初步的概率预报产品,为电力调度和决策提供更丰富的气象信息。
Due to random of wind speed and direction, the wind farm output power has the characteristics of volatility, intermittent and randomness. And forecast of wind power output is considered to be one of the most effective and economic ways to increase in power grid peak shaving capacity, improve the ability of acceptance of wind power, improve power system security and economy. Wind power prediction uses numerical weather prediction (NWP) and input variables of wind speed, wind direction. Then with prediction algorithm NWP variables are transformed into wind farm output power. Since there are many uncertainty in numerical weather perdiction, the accuracy of the NWP data significantly influences and restricts the wind power prediction accuracy.
     In this paper, we focus on to improve the accuracy and reliability of the NWP data, based on the WRF model, selected four areas in northern arid zone, a series of research is carried out:the optimum parameter configuration of the WRF model is got; based on this, got the distribution characteristics of model prediction error on the seasonal, monthly, daily and hourly time scales as well as under different weather background, the possible causes is also investigated; Finally, we try to apply the four dimension data assimilation, rapid update cycle and ensemble probability forecast technology to improve the accuracy of NWP data, and use the analog-based Kalman filter bias correction to correct the prediction error. We achieved good results in these works, and these techniques become the foundation of a real-time running business platform.
     Firstly, by using different boundary layer scheme of WRF model, we predicted the low level wind field in the four seasons over northwest China. The results show that:(1) the optimal solution of boundary layer in different seasons is different. Over Xinjiang, YSU scheme is the best in spring, MYNN2.5scheme is the best in summer; QNSE scheme is the best in fall and winter.(2) The performances of prediction vary in different seasons. Overall, the forecast of wind direction is very good; while for wind speed forecasting, it is better in spring and summer, the values is too large in fall and too small in winter.(3) For the four seasons the predicted wind speed is always smaller than the observed wind speed when it is large while larger when it is small. When the predicted values are too large in spring, fall and winter, the range of the observed values are<4m/s、<6m/s、<8m/s respectively; when the predicted values are too small in spring, summer, fall and winter the range of the observed values are>4m/s、>4m/s、6-10m/s、8-12m/s respectively.
     Secondly, by using the observed wind data over Xinjiang and Inner Mongolia, the performance of the WRF model in predicting the wind speed was tested in complex terrains. Results show that:(1) the prediction is better under the resolution of3km×3km than1km×1km.(2) slow wind region (0-3m/s), the prediction is the worst and it is just a little better in rapid wind region (≥25m/s). The prediction is good over the region where the wind speed is between3m/s and25m/s. Over Xinjiang the prediction is the best when wind speed is between12m/s and25m/s, while for Inner Mongolia it is best between3m/s and12m/s.
     Thirdly, by using WRF model we studied wind power forecast error and the condition of low level wind field and the possible causes over the arid region of northwest China. The results show that (1) the forecast error is always large when the observed wind speed is small while small when it is large.(2) On the daily scale, when the mean wind speed is less than2.5m/s or the anomaly is higher than15m/s, the model performance is worst; the prediction is the best between12:00-17:00and the worst between7:00-9:00; the prediction is better in cloudy day than in clear day.(3) The prediction error is closely related to the stability parameters. It is found that the simulation of wind shear is too small, which may be due to the simulation error in the high level wind speed. That the M-O length in the model is larger than the real one may be the source of the errors.
     In the end, by using the four dimension data assimilation, rapid update cycle and analog-based Kalman filter bias correction technology we decreased the prediction error of wind field. Based on this, the ensemble probability forecast is adopted and built a real-time business platform. Results as follows:(1) based on WRF model, the four dimension data assimilation, rapid update cycle and analog-based Kalman filter bias correction technology are applied to the numerical weather forecast platform and built the numerical weather forecast platform. The case of2012in Gansu Province shows that the application of the four dimension data assimilation can decrease the RMSE by17%and MAE by20%; rapid update cycle technology can decrease the MAE from3.63to3.03and increase the correlation coefficients from0.65to0.78; analog-based Kalman filter bias correction can decrease the RMSE from2.93to2.42and the MAE from2.28to1.82and increase the correlation coefficients from0.80to0.84.(2) Based on the improvements of the prediction error, considering the difference of the surface condition, an ensemble probability forecast system is established which contains26prediction member, by using the multi-boundary condition and multi-physical parameterization schemes. The preliminary probability forecast products is generated, which provide more accurate meteorological information for the electric power dispatching and decision-making.
引文
[1]加快风能发电实现可持续发展,国研网,2008年8月13日.
    [2]中华人民共和国可再生能源法,2006年1月1日正式实施..
    [3]全球风电发展年报:全球风电市场发展报告2012.全球风能理事会.
    [4]能源发展“十二五”规划,国务院印发,2013年1月1日.
    [5]Kariniotakis G, D Mayer, J Moussafir. ANEMOS:development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms[C]. European Wind Energy Conference & Exhibition, Madrid, Spain,2003.
    [6]Giebel G, L Landberg, G Kariniotakis. State-of-the-art on methods and software tools for short-term, prediction of wind energy production[C]. European Wind Energy Conference & Exhibition, Madrid, Spain,2003.
    [7]戴慧珠,王伟胜,迟永宁.风电场接入电力系统研究的新进展[J].电网技术,2007,31(20):16223.
    [8]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响[J].电网技术,2007,31(3):77281.
    [9]冯双磊,王伟胜,刘纯,等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6.
    [10]冯双磊,王伟胜,刘纯,等.基于物理原理的风电场短期风速预测研究[J].太阳能学报,2011,32(5):661-666.
    [11]肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108.
    [12]韩爽.风电场功率短期预测方法研究[D].北京:华北电力大学,2008.
    [13]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.
    [14]Dragoon K, B Kirby, M Milligan. Do wind forecasts make good generation schedules?[C]. NREL Technical Conference:NREL/CP-500-43507. Houston/Texas USA 2008:2-3.
    [15]潘晓春等.风电场测风数据订正方法的比较研究[A].中国电机工程学会第九届青年学术会议电力科技发展与节能中国电机工程学会第九届青年学术会议论文集下册[C],2006.
    [16]风电场风能资源长年代评估[A].第五届亚洲风能大会第五届亚洲风能大会论文集[C],2008.
    [17]Barbara J, D Francesco, L Bernhard, et al. Offshore Wind Resource Assessment with WAsP and MM5:Comparative Study for the German Bight[J]. Wind Energ,2007,10:121-134.
    [18]http://www.energy.gov.en
    [19]Areher CL. The Santa Cruz Eddy and U.S[A]. wind Power. Stanford University, Stanford, APril 2004.
    [20]Aieher CL and MZ Jacobson. Corrections to "Spatial and temporal distribution of U.S. winds and wind Power at 80m derived from measurements"[J]. Journal of Geophysical Research, 2004,109:D20116.
    [21]Bolinger M and R Wiser. Summary of Power Authority Letters of Intent for Renewable EnergyfM]. Memorandum, Lawrenee Berkeley National Laboratory,20 October,2001.
    [22]Bowen AJ and NGMortensen. Exploring the limits of WAsP:the Wind Atlas Analysis and Application Program. Proeeedings of the 1996 European Union Wind Energy Conference and Exhibition[M]. Goteborg, Sweden, May 20-24,1996,584-587.
    [23]李俊峰,高虎,施鸱飞,等.中国风电发展报告[R].北京:中国环境出版社,2008.
    [24]薛桁,朱瑞兆,杨振斌,等.中国风能资源贮量估算[J].太阳能学报,2001,22(2):14.
    [25]张玉书,班显秀,纪瑞鹏,等.辽宁省气候资源分析[J].气象科技,2004,32(1):39-43.
    [26]李泽椿,朱蓉,何晓凤,等.风能资源评估技术方法研究[J].气象学报,2007,65(5):708-717.
    [27]贺志明,聂秋生,曾辉.鄱阳湖区风能资源数值模拟[J].江西农业大学学报:自然科学版,2008,30(1):169-173.
    [281高延庆,陶林,宗英飞,等.朝阳燕山湖区风电厂风能资源评价[J].安徽农业科学,2007,35(36):11968-11970.
    [29]齐丽丽,袁国恩,尖子山风电场风能资源评价[J].可再生能源,2003,111(5):3941.
    [30]张德,刘秋锋,朱蓉,等.风能资源数值模拟系统WEST在新疆地区的应用[J].沙漠与绿洲气象,2007,1(1):6-19.
    [31]Wendell L, H Wegley, M Verholek. Report from a working group meeting on wind forecasts for WECS operation[C]. PNL-2513, Pacific Northwest Laboratory,1978.
    [32]Bailey B and R Stewart. Wind forecasting for wind power stations. Galt J, editor. Proceedings of wind energy conversion, Edinburgh, UK,1987,265-9.
    [33]Notis C, D Trettel, J Aquino, et al. Learning to forecast wind at remote sites for wind energy applications. PNL-4318, Pacific Northwest Laboratory,1983.
    [34]Wegley H and W Formica. Test applications of a semi-objective approach to wind forecasting for wind energy applications. PNL-4403, Pacific Northwest Laboratory,1983.
    [35]Wegley H, M Kosorok, W Formica. Subhourly wind forecasting techniques for wind turbine operations. PNL-4894, Pacific Northwest Laboratory,1984.
    [36]Bossanyi E. Short-term wind prediction using Kalman filters. Wind Eng 1985,9(1):1-8.
    [37]Geerts H. Short range prediction of windspeeds:a system-theoretic approach. PalzW, editor. Proceedings of European wind energy conference, Hamburg, Germany,1984,594-599.
    [38]Bossanyi E. Stochastic wind prediction for turbine system control. Proceedings of the seventh British wind energy association conference, Oxford, UK,1985.
    [39]Bossanyi E. Short-term stochastic wind prediction and possible control applications. Proceedings of the Delphi workshop on wind energy applications; 1985.
    [40]Giebel G. Short-term prediction-overview and taxonomy. Proceedings of the second joint action symposium on wind forecasting techniques. Lyngby, Denmark:International Energy Agency (IEA); 2004.
    [41]Kaminsky F, et al. Time series models of average wind speed within synoptic weather categories[C]. In:Proceedings of the fourth ASME wind energy symposium; 1985,215-219.
    [42]Machenhauer B. HIRLAM Final Report. HIRLAM Technical Report 5, Copenhagen, Denmark,1988.
    [43]Fellows A and D Hill. Wind and load forecasting for integration of wind power into a meso-scale electrical grid[C]. Proceedings of European community wind energy conference, Madrid, Spain,1990,636-640.
    [44]Troen I and L Landberg. Short term prediction of local wind conditions[C]. Proceedings of European community wind energy conference, Madrid, Spain,1990,76-78.
    [45]Watson S, J Halliday, L Landberg. Assessing the economic benefits of numerical weather prediction model wind forecasts to electricity generating utilities[C]. Clayton B, editor. Proceedings of wind energy conversion, Nottingham, UK,1992,291-297.
    [46]Landberg L, S Watson, J Halliday, et al. Short-term prediction of local wind conditions[C]. Garrad A, Palz W, Scheller S, editors. Proceedings of European community wind energy conference, Lubeck-Travemunde, Germany,1993,677-679.
    [47]Tande J and L Landberg. A 10 sec forecast of wind turbine output with neural networks[C]. Garrad A, Palz W, Scheller S, editors. Proceedings of European community wind energy conference, Lubeck-Travemunde, Germany,1993,774-777.
    [48]Beyer H, T Degner, J Hausmann, et al. Short term prediction of wind speed and power output of a wind turbine with neural networks[C]. Tsipouridis J, editor. Proceedings of European wind energy conference, Thessaloniki-Macedonia, Greece,1994,349-352.
    [49]Lin L, J Eriksson, H Vihriala, et al. Predicting wind behaviour with neural networks[C]. Zervos A, Ehmann H, Helm P, editors. Proceedings of European union wind energy conference, Goteborg, Sweden,1996,655-658.
    [50]Jensen U, E Pelgrum, H Madsen. The development of a forecasting model for the prediction of wind power production to be used in central dispatch centres[C]. Tsipouridis J, editor. Proceedings of European wind energy conference, Thessaloniki-Macedonia, Greece,1994, 353-356.
    [51]Landberg L. Implementing wind forecasting at a utility[C]. Tsipouridis J, editor. Proceedings of European wind energy conference, Thessaloniki-Macedonia, Greece,1994,357-360.
    [52]Kariniotakis G. E Nogaret, G Stavrakakis. A fuzzy logic and a neural network based wind power forecasting model. Zervos A, Ehmann H, Helm P, editors. Proceedings of European union wind energy conference, Goteborg, Sweden,1996,596-599.
    [53]Martin F, R Zubiaur, P Moreno, et al. Operational tool for short term prediction model of energy production in wind power plants at Tarifa (Spain). Garrad A, PalzW, Scheller S, editors. Proceedings of European community wind energy conference, Lubeck-Travemunde, Germany,1993,802-803.
    [54]Grell G, J Dudhia, D Stanffer. A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN 3981 STR,1995.
    [55]Michalakes J, S Chen, J Dudhia, et al. Development of a next generation regional weather research and forecast model. Developments in teracomputing, Proceedings of the ninth ECMWF workshop on the use of high performance computing in meteorology, Singapore, 2001.
    [56]Jimenez P, et al. Sensitivity of MM5 wind prediction to domain size and PBL schemes. Proceedings of European wind energy conference, London,2004.
    [57]Costa A, A Crespo, E Feitosa, et al. Mathematical and physical wind power forecasting models:a proposal for the UPMPREDICTION project. Proceedings of the second joint action symposium on wind forecasting techniques. Lyngby:International Energy Agency (IEA); 2004.
    [58]Costa A, A Crespo, J Navarro, et al. Modelling the integration of mathematical and physical models for short-term wind power forecasting. Proceedings of European wind energy conference, Athens,2006.
    [59]Gallardo C, M Gaertner, C Tejeda, et al. The Casandra project:first results of a new wind power operational forecasting system in Spain. Proceedings of European wind energy conference, Madrid,2003.
    [60]Nielsen H. Wind power ensemble forecasting. Proceedings of the second joint action symposium on wind forecasting techniques. Lyngby:International Energy Agency (IEA); 2004.
    [61]Kariniotakis G. ANEMOS:development of a next generation wind power forecasting system for the large-scale integration of onshore & offshore wind farms 2002-2006. Proceedings of the second joint action symposium on wind forecasting techniques. Lyngby:International Energy Agency (IEA); 2004.
    [62]Holttinen H, T Nielsen, G Giebel. Wind energy in the liberalised market-forecast errors in a day-ahead market compared to a more flexible market mechanism. Proceedings of the first joint action symposium on wind forecasting techniques. Norrkoping:International Energy Agency (IEA); 2002.
    [63]Ernst B and K Rohrig. Online-monitoring and prediction of wind power in German transmission system operation centres. Proceedings of the first joint action symposium on wind forecasting techniques. Norrkoping:International Energy Agency (IEA); 2002.
    [64]Westrick K.Wind energy forecasting in the Pacific Northwestern U.S. Proceedings of the first joint action symposium on wind forecasting techniques. Norrkoping:International Energy Agency (IEA); 2002.
    [65]Schwartz M and M Milligan. Statistical wind forecasting at the US, National Renewable Energy Laboratory. Proceedings of the first joint action symposium on wind forecasting techniques. Norrkoping:International Energy Agency (IEA); 2002.
    [66]Berge E. Experiences with wind forecasting techniques in Norway. Proceedings of the first joint action symposium on wind forecasting techniques. Norrkoping:International Energy Agency (IEA); 2002.
    [67]Bremnes J. Probabilistic wind power forecasts by means of statistical model. Proceedings of the first joint action symposium on wind forecasting techniques. Norrkoping:International Energy Agency (IEA); 2002.
    [68]Costa A, A Crespo, J Navarro, et al. A review on the young history of the wind power short-term prediction[J]. Renewable and Sustainable Energy Reviews,2008,12(6):1725-1744.
    [69]George K. Next Generation Short-term Forecasting of Wind Power Overview of the Anemos Project. Proceedings(online). European Wind Energy Conference, Athens,2006.
    [70]Matthias L and F Ulrich. State-of-the-art in wind power prediction in Germany and international developments, http://www.iset.uni-kassel.de
    [71]Bernhard E, R Kurt, J Rene. Online-monitoring and prediction of wind power in German transmission system operation centres, http://www.iset.uni-kassel.de
    [72]Gregor G, K George, B Richard. The State-of-the-Art in Short-Term Prediction of Wind Power from a Danish Perspective, http://anemos.cma.fr
    [73]Gregor G. The state-of-the-Art in Short-Term Prediction of Wind Power-A Literature Overview, http://anemos.cma.fr
    [74]Giebel G, L.Landberg, GKariniotakis, et al. State-of-the-art on Methods and Software Tools of Short-Term Prediction of Wind Energy Production. Proceedings CD-ROM. European Wind Energy Conference&Exhibition EWEC 2003, Marid,Spain.
    [75]Storm B, J Dudhia, S Basu, et al. Evaluation of the Weather Research and Forecasting Model on Forecasting Low-level Jets:Implications for Wind Energy[J]. Wind Energy,2009, 12:81-90.
    [76]Draxl C, A Hahmann, A Pena, et al. Validation of boundary-layer winds from WRF mesoscale forecasts with applications to wind energy forecasting[C].19th Symposium on Boundary Layers and Turbulence, Session 1B Observations and Modeling Related to Renewable Energy Applications 1,2010,1B.1.
    [77]Liu YB, T Warner, YW Liu, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications [J]. Journal of Wind Engineering and Industrial Aerodynamics,2011, doi:10.1016/j.jweia.2011.01.013.
    [78]王澄海,胡菊,靳双龙等.中尺度WRF模式在西北西部地区低层风场模拟中的应用和检验[J].干旱气象,2011,29(2):161-167.
    [79]Wang C.H., S.L. Jin, J Hu et al. Comparing Different Boundary Layer Schemes of WRF by Simulation the Low-Level Wind over Complex Terrain. The International Workshop on Environment Management and Energy Ecomomic, IEEE,2011, doi:10.1109/AIMSEC.2011. 6009632,6183-6183.
    [80]Mohrlen, C. On the Benefits of and Approaches to Wind Energy Forecasting. Invited Speaker at the Irish Wind Energy Association Annual Conference "Towards 500MW",2001.
    [81]Rife, D.L., and C.A. Davis. Verification of Temporal Variations in Mesoscale Numerical Wind Forecasts. Mon Wea Rev,2005,133(11):3368-3381.
    [82]Davis C, W Wang, J Dudhia, et al. Does Increased Horizontal Resolution Improve Hurricane Wind Forecasts? Weather and Forecasting,2010,25(6):1826-1841.
    [83]Yim S, J Fung, A Lan, et al. Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system[J]. Journal of Geophysical Research,2007,112, D05106, doi:10.1029/2006JD007752.
    [84]王文勇,陈楠.山区风场的WRF/CALMET模式模拟[J].西南交通大学学报,2010,45(6),990-996.
    [85]周荣卫,何晓凤,朱蓉MM5/CALMET模式系统在风能资源评估中的应用[J].自然资源学报,2010,25(12),2101-2113.
    [86]邓国卫,高晓清,惠小英,等.酒泉地区风能资源开发优势度分析[J].高原气象,2010,29(6):1634-1640.
    [87]王勇,王澄海,陶健红,等.甘肃酒泉地区近地层风场特征[J].干旱气象,2012,30(3):393-403.
    [88]王澄海,靳双龙,杨世莉.新疆”2.28"大风过程中热、动力作用的模拟分析[J].中国沙漠,201 1,31(2):511-516.
    [89]程兴宏,陶树旺,魏磊,等.基于WRF模式和自适应偏最小二乘回归法的风能预报试验研究[J].高原气象,2012,31(5):1461-1469.
    [90]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [91]王耀南,孙春顺,李欣然.用实测风速校正的短期风速仿真研究[J].中国电机工程学报,2008,28(11):94-100.
    [92]Liu Y.B., T Warner, Y Liu, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J. Wind Eng. Ind. Aerodyn. (2011), doi:10.1016/j.jweia.2011.01.013.
    [93]Liu Y, F Chen, T Warner, et al. Verification of a mesoscale data assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 Field Project[J]. Journal of applied meteorology and climatology,2006.45,912-929.
    [94]Liu Y., T Warner, J Bowers, et al. The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command:part 1:overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteorol. Clim.2008. 47,1077-1092.
    [95]Liu Y, T Warner, E Astling, et al. The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command:part 2:inter-range comparison of the accuracy of model analyses and forecasts. J. Appl. Meteorol. Clim.2008.47,1093-1104.
    [96]中国气象局风电功率预测预报系统.风能太阳能资源中心,2011年9月19日.
    [97]张德,朱蓉,罗勇等.风能模拟系统WEST在中国风能数值模拟中的应用[J].高原气象,2008,27(1):202-207.
    [98]穆海振,徐家良,柯晓新等.高分辨率数值模式在风能资源评估中的应用初探[J].应用气象学报,2006,17(2):152-159.
    [99]袁春红,薛析,杨振斌.近海区域风速数值模拟试验分析[J].太阳能学报,2004,25(6):740-743.
    [100]惠小英,高晓清,桂俊祥,等.酒泉风电基地高分辨率风能资源的数值模拟[J].高原气象,2011,30(2):538-544.
    [101]Stensrud D, D Baurahefner, J Du, et al. Using ensembles for short-range forecasting[J]. Mon Wea Rev,1999,127 (4):433-446.
    [102]Stensrud D, J Bao, T Warner. Using initial condition andmodel physics perturbation in short-range ensemble simulation of meso-scale connective system [J]. Mon Wea Rev,2000, 128 (7):2077-2107.
    [103]Mullen S, J Du, F Sanders. The dependence of ensemble dispersion on analysis forecast system implication to shortrange ensemble forecasting of precipitation [J]. Mon Wea Rev, 1999,127(7):1674-1686.
    [104]Mylne K, C Woolcock, R Darvell. EU FP6 PREVIEW Windstorms Forecast Verification Report, September 2008, Met Office, UK.
    [1]Yim S, J Fung, A Lan, et al. Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system[J]. Journal of Geophysical Research,2007,112, D05106, doi:10.1029/2006JD007752.
    [2]Jimenez P. Sensitivity of MM5 wind prediction to domain size and BL schemes[C]. Proceedings of European wind energy conference, London,2004.
    [3]龚强,袁国恩,张云秋,等.MM5模式在风能资源普查中的应用试验[J].资源科学,2006,28(1):145-15.
    [4]李晓燕,余志.基于MM5的沿海风资源数值模拟方法研究[J].太阳能学报,2005,26(3):400-408.
    [5]张德,朱蓉,罗勇,等.风能模拟系统WEST在中国风能数值模拟中的应用[J].高原气象,2008,Vo1.27(1):202-207.
    [6]中国气象局风能太阳能资源评估中心,中国风能资源评估(2009)[M].气象出版社,2010,北京,1-37.
    [7]穆海振,徐佳良,杨永辉.数值模拟在上海海上风能资源评估中的应用[J].高原气象,2008,27(Suppl):196-202.
    [8]孙川永,陶树旺,罗勇,等.高分辨率中尺度数值模式在风电场风速预报中的应用[J].太阳能学报,2009,30(8):1097-1099.
    [9]李江林,陈玉春,吕世华.利用RAMS模式对山谷城市冬季局地风场的数值模拟[J].高原气象,2009,28(6):1250-1259.
    [10]Storm B, J Dudhia, S Basu, et al. Evaluation of the Weather Research and Forecasting Model on Forecasting Low-level Jets:Implications for Wind Energy[J]. Wind Energy,2009, 12:81-90.
    [11]Papanastasiou D, D Melas, I Lissaridis. Study of wind field under sea breeze conditions; an application of WRF model[J]. Atmospheric Research,2010,98:102-117.
    [12]Draxl C, A Hahmann, A Pena, et al. Validation of boundary-layer winds from WRF mesoscale forecasts with applications to wind energy forecasting[C].19th Symposium on Boundary Layers and Turbulence, Session 1B Observations and Modeling Related to Renewable Energy Applications 1,2010,1B.1.
    [13]Liu Y, T Warner, Y Liu, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011, doi:10.1016/j.jweia.2011.01.013.
    [14]Wang CH, SL Jin. Error features and their possible causes in simulated low-level winds by WRF at a wind farm[J]. Wind Energy,2013, doi:10.1002/we.1635.
    [15]Wang CH, SL Jin, J Hu et al. Comparing Different Boundary Layer Schemes of WRF by Simulation the Low-Level Wind over Complex Terrain. The International Workshop on Environment Management and Energy Ecomomic, IEEE,2011, doi:10.1109/AIMSEC.2011. 6009632,6183-6188.
    [16]王澄海,靳双龙,杨世莉.新疆”2.28"大风过程中热、动力作用的模拟分析[J].中国沙漠,2011,31(2):511-516.
    [17]王澄海,胡菊,靳双龙,等.中尺度WRF模式在西北西部地区低层风场模拟中的应用和检验[J].干旱气象,2011,29(2):161·167.
    [18]王澄海,胡菊,靳双龙.2009年中国一次沙尘暴过程中的水汽变化特征及WRF回报[J].中国沙漠,2013,33(1):205-213.
    [19]李江风.新疆气侯[M].气象出版社,北京,1991.
    [20]Paulson C. The mathematical representation of Wind speed and temperature profiles in the unstable atmospheric surface layer[J]. Appl. Meteor.,1970 (9).
    [21]Dyer A and B Hicks. Flux-gradient relationships in the constant flux layer[J]. Roy. Meteor. Soc.,1970(96).
    [22]Webb EK. Profile relationships:The log-linear range, and extension to strong stability[J]. Roy. Meteor. Soc.,1970(96).
    [23]Beljaars A. The parameterization of surface fluxes in large-scale models under free convection[J]. Roy. Meteor. Soc.,1994 (121).
    [24]Janjic Z. The surface layer in the NCEP Eta model, Eleventh Conference on numerical weather prediction[J]. Amer. Meteor. Soc.,1996.
    [25]Janjic Z. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model[J]. NCEP office note,2002.
    [26]Monin A and A Obukhov. Basic laws of turbulent mixing in the surface layer of the atmospherie[J]. Contrib. Genphys. Inst. Acad. Sci., USSR,1954 (151).
    [27]Hong S and H Pan. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon. Wea. Rev.,1996,124,2322-2339.
    [28]Hong S, Y Noh, J Dudhia. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev.,2006,134,2318-2341.
    [29]Troen I and L Mahrt. A simple model of the atmospheric boundary layer sensitivity to surface evaporation[J]. Bound.-Layer Meteor.,1986,37:129-148.
    [30]Holtslag A and B Boville. Local versus nonlocal boundary-layer diffusion in a global climate model[J]. J. Climate,1993,6:1825-1842.
    [31]Noh Y, WG Cheon, S Hong, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Bound.-Layer Meteor,2003, 107:401-427.
    [32]Hong SY. Stable Boundary Layer Mixing in a Vertical Di"usion Scheme. The Korea Meteor. Soc, Fall conference, Seoul, Korea,2007, Oct.25-26.
    [33]Mellor GL and T Yamada. Development of a turbulence closure model for geophysical fluid problems[J]. Rev. Geophys. Space Phys.,1982,20,851-875.
    [34]Janjic ZI. The step-mountain coordinate:physical package[J]. Mon. Wea. Rev.,1990,118, 1429-1443.
    [35]Janjic ZI. The surface layer in the NCEP Eta Model[C]. Eleventh Conference on Numerical Weather Prediction, Norfolk, VA,1996,19-23 August; Amer. Meteor. Soc., Boston, MA, 354-355.
    [36]Janjic ZI. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Offce Note,2002, No.437,61 pp.
    [37]Pleim JE. A combined local and non-local closure model for the atmospheric boundary layer. Part 1:Model description and testing[J]. Appl. Meteor. and Clim.,2007,46,1383-1395.
    [38]Hong SY, J Dudhia, SH Chen. A Revised Approach to Ice Microphysical Pro-cesses for the Bulk Parameterization of Clouds and Precipitation[J]. Mon. Wea. Rev.,2004,132,103-120.
    [39]Hong SY and J Lim. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J]. Korean Meteor. Soc.,2006,42,129-151.
    [40]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].Atmos. Sci.,1989,46,3077-3107.
    [41]Mlawer EJ, SJ Taubman, PD Brown, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave[J]. Geophys. Res.,1997,102 (D14), 16663-16682.
    [42]Lacis A and JE Hansen. A parameterization for the absorption of solar radiation in the earth's atmosphere [J]. Atmos. Sci.,1974,31,118-133.
    [43]Stephens GL. Radiation profiles in extended water clouds. Part Ⅱ:Parameterization schemes[J]. Atmos. Sci.,1978,35,2123-2132.
    [44]Kain JS. The Kain-Fritsch convective parameterization:An update[J]. Appl. Meteor.,2004, 43,170-181.
    [45]Kain JS and JM Fritsch. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. Atmos. Sci.,1990,47,2784-2802.
    [46]Kain JS and JM Fritsch. Convective parameterization for mesoscale models:The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc.,1993,246 pp.
    [47]Wang CH, SL Jin, JHu, et al. Comparing different boundary layer schemes of WRF by simulation the low-level wind over complex terrain[C]. The international workshop on environment management and energy Economic,2011,6183-6188.
    [48]Draxl C, A Hahmann, A Pena, et al. Validation of boundary-layer winds from WRF mesoscale forecasts with applications to wind energy forecasting[C].19th Symposium on Boundary Layers and Turbulence, Session 1B Observations and Modeling Related to Renewable Energy Applications 1,2010,1B.1.
    [49]Hahmann A and A Pena. Validation of boundary-layer winds from WRF mesoscale forecasts over Denmark. In:European Wind Energy Conference and Exhibition. Warsaw, Poland, 2010.
    [50]Cefla A. Avanzando en la gestionabilidad (Advancing in manageability)[J]. wind power,2006, P81-87.
    [51]Wharton S and J Lundquist. Assessing atmospheric stability and the impacts on wind characteristics at an onshore wind farm[C].19th Symposium on Boundary Layers and Turbulence, Session 2B Observations and Modeling Related to Renewable Energy Application Ⅱ,2010,2B.3.
    [52]Roger A and S Pielke. Mesoscale meteorological modeling[M]. International geophysics series, volume 78,2nd edition, Academic Press,2002.
    [1]能源发展“十二五”规划,国务院印发,2013年1月1日.
    [2]可再生能源发展“十二五”规划,国家能源局制定,2012年8月6日.
    [3]张德,朱蓉,罗勇,等.风能模拟系统WEST在中国风能数值模拟中的应用[J].高原气象,2008,27(1):202-207.
    [4]龚强,袁国恩,张云秋,等.MM5模式在风能资源普查中的应用试验[J].资源科学,2006,28(1):145-15.
    [5]李江林,陈玉春,吕世华.利用RAMS模式对山谷城市冬季局地风场的数值模拟[J].高原气象,2009,28(6):1250-1259.
    [6]Draxl C, AN I-Iahmann, A Pena, et al. Validation of boundary-layer winds from WRF mesoscale forecasts with applications to wind energy forecasting. Poster and proceedings at the 9th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Farms, Quebec City (CA),18/19 October 2010.
    [7]Agustsson H, H Olafsson, M Jonassen, et al. Improving high-resolution atmospheric simulations of local weather using insitu realtime observations from small unmanned aircraft. European Geophysical Union General Assembly, Vienna (AT),3-8 April 2011.
    [8]李晓燕,余志.基于MM5的沿海风资源数值模拟方法研究[J].太阳能学报,2005,26(3):400-408.
    [9]贺志明,聂秋生,曾辉.都阳湖区风能资源数值模拟[J].江西农业大学学报,2008,30(1):169-173.
    [10]袁春红,薛桁,杨振斌.近海区域风速数值模拟实验分析[J].太阳能学报,2004,25(6):740-743.
    [11]J(?)rgensen JU, C M6hrlen, K Sattler. An on and offshore prediction system for real-time prediction and climatic studies. Offshore Wind energy, EWEA Special Topic Conference, Brussels, Dec.2002.
    [12]Mohrlen C. On the Benefits of and Approaches to Wind Energy Forecasting. Invited Speaker at the Irish Wind Energy Association Annual Conference "Towards 500MW",2001.
    [13]Rife DL and CA Davis. Verification of Temporal Variations in Mesoscale Numerical Wind Forecasts. Monthly Weather Review,2005,133(11):3368-3381.
    [14]Davis C, W Wang, J Dudhia, et al. Does Increased Horizontal Resolution Improve Hurricane Wind Forecasts? Weather and Forecasting,2010,25(6):1826-1841.
    [15]Jimenez P, et al. Sensitivity of MM5 wind prediction to domain size and PBL schemes[C]. Proceedings of European wind energy conference, London,2004.
    [16]Yim S, J Fung, A Lan, et al. Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system[J]. Journal of Geophysical Research,2007,112, D05106, doi:10.1029/2006JD007752.
    [17]王文勇,陈楠.山区风场的WRF/CALMET模式模拟[J].西南交通大学学报,2010,45(6),990-996.
    [18]周荣卫,何晓凤,朱蓉.MM5/CALMET模式系统在风能资源评估中的应用[J].自然资源学报,2010,25(12),2101-2113.
    [19]邓国卫,高晓清,惠小英,等.酒泉地区风能资源开发优势度分析[J].高原气象,2010,29(6):1634-1640.
    [20]Wang CH, SL Jin, J Hu et al. Comparing Different Boundary Layer Schemes of WRF by Simulation the Low-Level Wind over Complex Terrain. The International Workshop on Environment Management and Energy Ecomomic, IEEE,2011, doi:10.1109/AIMSEC.2011. 6009632,6183-6188.
    [21]风电场风能资源评估方法.CN-GB, GB/T 18710-2002.
    [22]Hong SY, J Dudhia, SH Chen. A Revised Approach to Ice Microphysical Pro-cesses for the Bulk Parameterization of Clouds and Precipitation[J]. Mon. Wea. Rev.,2004,132,103-120.
    [23]Hong SY and J Lim. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J]. Korean Meteor. Soc.,2006,42,129-151.
    [24]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Atmos. Sci.,1989,46,3077-3107.
    [25]Mlawer EJ, SJ Taubman, PD Brown, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave[J]. Geophys. Res.,1997,102 (D14), 16663-16682.
    [26]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Atmos. Sci.,1989,46,3077-3107.
    [27]Lacis A and J Hansen. A parameterization for the absorption of solar radiation in the earth's atmosphere[J]. Atmos. Sci.,1974,31,118-133.
    [28]Stephens GL. Radiation profiles in extended water clouds. Part Ⅱ:Parameterization schemes[J]. Atmos. Sci.,1978,35,2123-2132.
    [29]Kain JS. The Kain-Fritsch convective parameterization:An update[J]. Appl. Meteor.,2004, 43,170-181.
    [30]Kain JS and JM Fritsch. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. Atmos. Sci.,1990,47,2784-2802.
    [31]Kain JS and JM Fritsch. Convective parameterization for mesoscale models:The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A. Emanuel and D.J. Raymond, Eds., Amer. Meteor. Soc.,246 pp.
    [32]Janjic ZI. The step-mountain coordinate:physical package[J]. Mon. Wea. Rev.,1990,118, 1429-1443.
    [33]Janjic ZI. The surface layer in the NCEP Eta Model[C]. Eleventh Conference on Numerical Weather Prediction, Norfolk, VA,1996,19-23 August; Amer. Meteor. Soc., Boston, MA, 354-355.
    [34]Janjic ZI. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model[J]. NCEP Offce Note,2002, No.437,61 pp.
    [35]Janjic ZI. The surface layer in the NCEP Eta model, Eleventh Conference on numerical weather prediction[J]. Amer. Meteor. Soc.,1996.
    [I]Storm B, J Dudhia, S Basu, et al. Evaluation of the Weather Research and Forecasting Model on Forecasting Low-level Jets:Implications for Wind Energy[J]. Wind Energy,2009,12 81-90.
    [2]Papanastasiou D, D Melas, I Lissaridis. Study of wind field under sea breeze conditions; an application of WRF model[J]. Atmospheric Research,2010,98:102-117.
    [3]Draxl C, A Hahmann, A Pena, et al. Validation of boundary-layer winds from WRF mesoscale forecasts with applications to wind energy forecasting[C].19th Symposium on Boundary Layers and Turbulence, Session 1B Observations and Modeling Related to Renewable Energy Applications 1,2010,1B.1.
    [4]Liu YB, T Warner, YW Liu, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011, doi:10.1016/j.jweia.2011.01.013.
    [5]Wang CH, SL Jin. Error features and their possible causes in simulated low-level winds by WRF at a wind farm[J]. Wind Energy,2013, doi:10.1002/we.1635.
    [6]Wang CH, SL Jin, J Hu et al. Comparing Different Boundary Layer Schemes of WRF by Simulation the Low-Level Wind over Complex Terrain. The International Workshop on Environment Management and Energy Ecomomic, IEEE,2011, doi:10.1109/AIMSEC.2011. 6009632,6183-6188.
    [7]王澄海,靳双龙,杨世莉.新疆”2.28"大风过程中热、动力作用的模拟分析[J].中国沙漠,2011,31(2):511-516.
    [8]王澄海,胡菊,靳双龙,等,中尺度WRF模式在西北西部地区低层风场模拟中的应用和检验[J].干旱气象,2011,29(2):161-167.
    [9]王澄海,胡菊,靳双龙.2009年中国一次沙尘暴过程中的水汽变化特征及WRF回报[J].中国沙漠,2013,33(1):205-213.
    [10]程兴宏,陶树旺,魏磊,等.基于WRF模式和自适应偏最小二乘回归法的风能预报试验研究[J].高原气象,2012,31(5):1461-1469.
    [11]Cena A. Avanzando en la gestionabilidad (Advancing in manageability)[J], wind power,2006, P81-87.
    [12]Lange M and HP Waldl. Assessing the uncertainty of wind power predictions with regard to specific weather situations[C]. Proceedings of European wind energy conference, Copenhagen,2001.
    [13]Roger A and S Pielke. Mesoscale meteorological modeling[M]. International geophysics series, volume 78,2nd edition, Academic Press,2002.
    [l]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [2]王耀南,孙春顺,李欣然.用实测风速校正的短期风速仿真研究[J].中国电机工程学报,2008,28(11):94-100.
    [3]Jeffrey L, Erson. An adaptive covariance inflation error correction algorithm for ensemble filters. DOI:10.1111/j.1600-0870.2006.00216.x..
    [4]Courtier P, JN Thepaut, A Hollingsworth. A strategy for operational implementation of 4D-var using an incremental approach. Quart. J. Roy. Meteor. Soc.1994.120,136701387.
    [5]Daley R. Estimating the observation error statistics for atmo-spheric data assimilation. Ann. Geophys.1993,11,634-647.
    [6]Dee DP and Todling R. Data assimilation in the presence of forecast bias:theGEOSmoisture analysis.Mon.Wea. Rev.2000,128,3268-3282.
    [7]Evensen G Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to do forecast error statistics. J. Geophys.1994, Res.99(C5),10143-10162.
    [8]Bjerknes V. Dynamic meteorology and hydrographs. Part Ⅱ:Kinematics[M]. New York, Camegie Institute, Gibson Bros,1911.
    [9]Wang CH, SL Jin. Error features and their possible causes in simulated low-level winds by WRF at a wind farm[J]. Wind Energy,2013, doi:10.1002/we.1635.
    [10]Liu YB, T Warner, Y Liu, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications. J. Wind Eng. Ind. Aerodyn. (2011), doi:10.1016/j.jweia.2011.01.013.
    [11]Liu Y, F Chen, T Warner, et al. Verification of a mesoscale data assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 Field Project. J. Appl. Meteorol. Clim.2006.45,912-929.
    [12]Liu Y, T Warner, J Bowers, et al. The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command:part 1:overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteorol. Clim.2008. 47,1077-1092.
    [13]Liu Y, T Warner, E Astling. et al. The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command:part 2:inter-range comparison of the accuracy of model analyses and forecasts. J. Appl. Meteorol. Clim.2008.47,1093-1104.
    [14]中国气象局风电功率预测预报系统.风能太阳能资源中心,2011年9月19日.
    [15]张德,朱蓉,罗勇,等.风能模拟系统WEST在中国风能数值模拟中的应用[J].高原气象,2008,27(1):202-207.
    [16]穆海振,徐家良,柯晓新,等.高分辨率数值模式在风能资源评估中的应用初探[J].应用气象学报,2006,17(2):152-159.
    [17]袁春红,薛析,杨振斌.近海区域风速数值模拟试验分析[J].太阳能学报,2004,25(6):740-743.
    [18]庄智福,丁慧,袁志勇,等.洪泽湖区风能资源的数值模拟与应用[J].气象科学,2011,31:40-45.
    [19]程兴宏,陶树旺,魏磊,等.基于WRF模式和自适应偏最小二乘回归法的风能预报试验研究[J].高原气象,2012,31(5):1461-1469.
    [20]惠小英,高晓清,桂俊祥,等.酒泉风电基地高分辨率风能资源的数值模拟[J].高原气象,2011,30(2):538-544.
    [21]邓国卫,高晓清,惠小英,等.酒泉地区风能资源开发优势度分析[J].高原气象,2010,29(6):1634-1640.
    [22]肖永山,王维庆,霍晓萍.基于神经网络的风电场风速时间序列预测研究[J].节能技术,2007,25(2):106-108.
    [23]韩爽.风电场功率短期预测方法研究[D].北京:华北电力大学,2008.
    [24]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.
    [25]冯双磊,王伟胜,刘纯,等.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6.
    [26]冯双磊,王伟胜,刘纯,等.基于物理原理的风电场短期风速预测研究[J].太阳能学报,2011,32(5):661-666.
    [27]Hoke J and R Anthes. The initialization of numerical models by a dynamic relaxation technique. Mon. Wea. Rev.,1976,104:1551-1556.
    [28]Dudhia J. WRF Four-Dimensional Data Assimilation.
    [29]Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Atmos. Sci.,1989 (46).
    [30]Mlawer EJ, SJ Taubman, PD Brown, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave[J]. Geophys. Res.,1997 (102).
    [31]Stephens GL. Radiation profiles in extended water clouds. Part Ⅱ:Parameterization schemes[J]. Atmos. Sci.,1978 (35).
    [32]Chen F and J Dudhia. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part Ⅰ:Model description and implementation[J]. Mon. Wea. Rev.,2001 (129).
    [33]Sukoriansky S, B Galperin, V Perov. A quasinormal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Process. Geophys.2006; 13:9-22.
    [34]Kain JS and JM Fritsch. A one-dimensional entraining/detraining plume model and its applicaton in convective parameterization[J]. Atmos. Sci.1990 (47).
    [35]Kain JS and JM Fritsch. Convective parameterization for mesoscale models:The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models. K. A. Emanuel & D. J. Raymond, Eds., Amer. Meteror. Soc.,1993.
    [36]Liu Y, T Warner, et al. The Operational Mesogamma-Scale Analysis and Forecast System of the US Army Test and Evaluation Command. Part II:Interrange Comparison of the Accuracy of Model Analyses and Forecasts. Journal of Applied Meteorology and Climatology (2008).47 (4):1093-1104.
    [37]Min C, SY Fan, J Zhong, et al. A WRF-based rapid updating cycling forecast system of BMB and its performance during the summer and Olympic Games 2008.
    [1]Lorenz EN. A study of the p redictability of a 282 variable atmo sphere model[J]. Tellus,1965, 17 (3):321-333.
    [2]Lorenz EN. Determ inistic nonperiodic flow [J]. J A tmo s Sci,1963,20 (2):1302141.
    [3]Toth Z. Estimation of atmospheric predictability by circulation analogs[J]. Mon Wea Rev,1991, 119(1):65-72.
    [4]Epstein ES. Stochastic dynamic prediction[J]. Tellus,1969,21 (6):739-759.
    [5]Leith CE. Theoretical skill of Monte Carlo forecasts[J]. Mon Wea Rev,1974,102 (6) 409-417.
    [6]Anderson JL. Exploring the need for localization in ensemble data assimilation using an hierarchical ensemble filter. Physica D,2007.
    [7]Houtekamer PL and HL Mitchell. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev.2001,129,123-137.
    [8]Leith CE. Theoretical skill of Monte Carlo forecasts[J]. Mon Wea Rev,1974,102:409-418.
    [9]Hoffman N and E Kalnay. Lagged averaged forecasting, an alternative to Monte Carlo forecasting[J]. Tellus,1983,35A:100-118.
    [10]Toth Z and E Kalnay. Ensemble forecasting at NMC:The generation of perturbations [J]. Bull Amer Meteor Soc,1993,174:2317-2330.
    [11]Toth Z and E Kalnay. Ensemble forecasting at NCEP and the breeding method[J]. Mon Wea Rev,1997,125:3297-3319.
    [12]Buizza R and TN Palmer. The singular-vector structure of the atmospheric global circulation[J]. J Atmos Sci,1995,52:1434-1456.
    [13]Molteni F, R Buizza, TN Palmer, et al. The ECMWF ensemble prediction system: Methodology and validation [J]. Quart J Roy Meteor Soc,1996,122:73-119.
    [14]Houtekamer PL, L Lefaivre, J Derome, et al. A system simulation approach to ensemble prediction[J]. Mon Wea Rev,1996,124:1225-1242.
    [15]Bishop CH, BJ Etherton, S Majumdar. Adaptive sampling-with the ensemble transform Kalman filter. Part Ⅰ:Theoretical aspects[J]. Mon Wea Rev,2001,129:420-436.
    [16]Wang X and CH Bishop. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes [J]. J Atmos Sci,2003,60:1140-1158.
    [17]Wei M, Z Toth, R Wobus, et al. Initial perturbations based on the ensemble transform(ET) technique in the NCEP global operational forecast system[J]. Tellus,2008,60A:62-79.
    [18]Buizza R, M Miller, TN Palmer. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system [J]. Quart J Roy Meteor Soc,1999,125:2887-2908.
    [19]Hou D, Z Toth, Y Zhu. A stochastic parameterization scheme within NCEP global ensemble forecast system[C]. Extended abstract, the 18th AMS conference on probability and statistics, 29 January 2 February 2006, Atlanta, Georgia.
    [20]Hou D, Z Toth, Y Zhu, et al. Impact of a stochastic perturbation scheme on NCEP global ensemble forecast system[C]. Extended abstract, the 19th AMS conference on probability and statistics,21-24 January 2008, New Orleans, Louisiana.
    [21]Hou D, Z Toth, Y Zhu, et al. A stochastic total tendency perturbation scheme representing model-related uncertainties in the NCEP global ensemble forecast[J]. Tellus,2010.
    [22]段明铿,王盘兴.集合预报方法研究及应用进展综述[J].南京气象学院学报,2004,27(2):279-288.
    [23]杜钧.集合预报的现状和前景[J].应用气象学报,2002,13(1):16-28.
    [24]Stensrud DJ, DP Baurahefner, J Du, et al. Using ensembles for short-range forecasting[J]. Mon Wea Rev,1999,127 (4):433-446.
    [25]Stensrud DJ, J Bao, T Warner. Using initial condition andmodel physics perturbation in short-range ensemble simulation of meso-scale connective system [J]. Mon Wea Rev,2000, 128 (7):2077-2107.
    [26]Mullen SL, J Du, F Sanders. The dependence of ensemble dispersion on analysis forecast system implication to shortrange ensemble forecasting of precipitation [J]. Mon Wea Rev, 1999,127(7):1674-1686.
    [27]Mylne K, C Woolcock, R Darvell. EU FP6 PREVIEW Windstorms Forecast Verification Report, September 2008, Met Office, UK.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700