三种植物凝集素基因在转基因小麦中的表达及其抗蚜效果分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦生产在国家粮食安全中占据举足轻重的地位,近年来,随着麦田水肥条件的改善和农业生态环境的变化,麦蚜危害日趋加重。常规育种在抗蚜小麦种质资源筛选与鉴定方面作了大量工作,但进展缓慢。利用转基因技术可弥补传统小麦育种的不足,突破可利用基因库的限制。植物凝集素对具有刺吸式口器的麦蚜具有较好的抗性,可以有效抑制其生长和繁殖率,因此通过转基因技术将其导入普通小麦品种,培育小麦抗蚜新种质,从而提高我国小麦的抗蚜水平。
     本研究根据小麦基因密码子的偏好性和天然凝集素的氨基酸信息,人工合成了雪花莲凝集素基因(synthesized Galanthus navalis agglutinin, sGNA)与中国水仙凝集素基因(synthesized Narcissus tazetta lectin,sNTL),并通过RT-PCR获得了半夏凝集素基因(Pinellia ternate agglutinin, pta),分别构建了由番茄核酮糖-1、5-二磷酸羧化酶小亚基基因(rbcs)启动子驱动的3个表达载体,通过基因枪法转化普通小麦品种,以研究其在小麦中的表达和抗蚜效果。主要研究结果如下:
     (1)通过转化小麦幼胚愈伤组织,经分化和再生,分别获得42株、65株、54株T0代阳性植株。对后代转基因植株进行PCR、RT-PCR、Southern blot、Northern blot、以及转基因株系的叶片蛋白提取液的凝血活性的检测,确认sGNA与sNTL基因成功整合到小麦基因组中并且能够稳定表达,分别筛选出12个与11个T4代纯合株系。
     (2)通过分析株系zy2-18外源基因插入位点的边界序列,初步判断转sGNA基因株系2-18的外源片段是通过同源重组和随机插入的方式整合到小麦A染色体组。
     (3)对转sGNA与sNTL基因纯合株系的抗蚜性分别进行室内离体叶片鉴定以及两年的田间鉴定,结果表明5个(zy2-11、zy2-18、jd8-10、yn5-2、yn5-20)转sGNA基因小麦纯合株系与7个(fy4-4、fy4-10、af7-8、af7-10、zy9-1、zy9-4、zy9-8)转sNTL基因纯合株系的蚜虫致死率、增长率以及单分蘖蚜虫发生量与相应对照品种差异显著或极显著。且转sGNA株系yn5-20抗虫水平提高幅度最高,可达75.6%;在转sNTL基因株系中af7-8的抗虫水平比对照AF9高出80.3%。另外经室内离体叶片鉴定,6株转pta基因小麦表现出了较高的抗蚜水平。
     (4)转sGNA基因株系及相应对照的单分蘖蚜虫相对发生量与叶片蛋白提取液的OD值之间呈显著正相关(r=0.812*)关系,转sNTL基因株系及相应对照的单分蘖蚜虫相对发生量与叶片蛋白提取液的OD值之间呈极显著正相关(r=0.0.932*)关系。因此,转基因株系抗虫水平的提高主要原因在于sGNA与sNTL蛋白的表达。
     上述结果表明,转sGNA、sNTL和pta基因小麦都具有较好的抗蚜虫效果,因此,可以将它们作为培育抗蚜小麦的优良外源基因,并聚合多个基因的以进一步提高转基因小麦的抗蚜性。
Wheat has a special status in stabilizing China food supply. The product loss of wheat due to insects is very high in recent years. For a long time the control of these pests has depended chiefly on large amounts of insecticides sprays which cause considerable environmental pollution and represent a health hazard to farmers as well as significantly increasing the costs of wheat production. Conventional plant breeding programs have been undertaken and considerable time and effort has been made in searching for insect-resistant germplasm resources, but it has moved slowly. Genetically modified (gm) can make up the deficiency of the conventional wheat breeding and breakthrough the limitation of available gene pool. Protease inhibitors, Bt endotoxins and plant lectins have been proven to be very successful in control insects. A more complete transformation system of particle bombardment method has been established, with young embryo and young ear as the receptor, which made it is possible to fostering high-quality and aphid-resistant wheat by genetic engineering.
     Plant lectins had been shown toxic to sucking pests resulting in reduced survival and delayed development. It's significantly for developing aphid-resistant wheat germplasm resources by introducing these genes into common wheat.
     In this study, sGNA (synthesized Galanthus nivalis agglutinin) and sNTL (synthesized Narcissus tazetta lectin) genes encoding mannose binding lectins were synthesized according to the codons preferable principle of wheat genes and transgenic sGNA and sNTL common wheat lines, driven by constitutive and phloem-specific promoter rbcs, were generated by particle bombardment transformation. The objectives of this study were:(1) to confirm that the two synthetic genes sGNA and sNTL can be effectively expressed in transgenic wheat respectively;(2) to examine the aphid resistance performance of sGNA transgenic lines and sNTL transgenic lines indoors as well as field conditions and evaluate the functions of sGNA and sNTL against wheat aphid; and (3) to produce transgenic lines that may be useful for developing aphid-resistant wheat germplasm resources. Main research results are as follows:
     (1)42To sGNA transgenic plants,56To sNTL transgenic plants and54To pta transgenic plants were obtained by particle bombardment transformation with embryogenic calli as receptor. Twelve homozygous T4sGNA transgenic lines and eleven homozygous T4sNTL transgenic lines were identified by PCR amplification. The three genes were successfully integrated into the wheat genome and expressed stable according to the tests of PCR, RT-PCR、Southern blot. Northern blot and clotting test.
     (2) The transgene insert site in single gene patental line zy2-18containing sGNA were analyzed preliminary. The flanking sequences of sGNA were cloned by genomewalking, and located on chromosome A by the homologous recombination and random insertion.
     (3) After the insect bioassays in the lab and field-test, five sGNA transgenic lines (zy2-11、zy2-18、 jd8-10、yn5-2、yn5-20) and seven sNTL transgenic lines (fy4-4、fy4-10、af7-8、af7-10、zy9-1、 zy9-4、zy9-8) were found highly resistant to aphids compared to the corresponding control plants. Significant differences were also observed for mortality and growth rate of aphids between the transgenic lines and the corresponding controls in lab condition on detached leaf tissues. The aphid amount per tiller of af7-8sNTL transgenic line was reduced by80.3%maximum compared to the control Af9. Six pta transgenic plants showed a higher level of resistance genes in wheat□ccordingto the identification of detached leaf segment.
     (4) The sGNA transgenic lines and the controls showed a significant positive correlation (r=0.812*) between the relative aphid amount per tiller and OD values of leaf tissues extracts. The sNTL transgenic lines, of which it showed a significant positive correlation (r=0.932**) between aphid amount per tiller and OD values of leaf tissues extracts. So the result of clotting activity test indicated that the increased resistance to aphids was significantly correlated with the expression of sGNA and sNTL lectins in the transgenic lines.
     Therefore pta, sGNA and sNTL could be served as alternative choice to produce aphid-resistance wheat through genetically modified approach. It may also be worth commenting on the strategies for pyramiding the lectin genes.
引文
[1]Abdeen A, Virgos A, Olivella E, et al. Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol,2005,57:189-202
    [2]Aceob GN, Conking MA, Oppeman CH. Aprotinin compans. For killing insect contain serine proteinase inhibitor in non-phytotoxin vehicle. A01h005/00. Patent No. W09417194,1994
    [3]Adang MJ, Merlo DJ, Murry EE. Synthetic gene for B.thuringiensis insecticidal protein-designed against insect pest. A01N063/00, Patent No.EP682115,1995
    [4]Ajouba A, Causse H, Van Damme EJM, et al. Interactions of plant lectins with the components of the bacterial cell wall peptidoglycan. Biochemical Systematics and Ecology,1994,22:153-159
    [5]Allen GC, Hall GE, Jr, et al. High-level transgene expression in plant cells:effects of a strong scaffold attachment region from tobacco. Plant Cell,1996,8:899-913
    [6]Allen GC, Hall GE, Jr, et al. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell,1993,5:603-613
    [7]Allen GC, Spiker S, Thompson WF. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Molecular Biology,2000,43:361-376
    [8]Altabella T, Chrispeels MJ. Tobacco plants transformed with the Bean aai gene express an inhibitor of insect α-Amylase in their seeds. Plant physiol,1990,93:805-810
    [9]Altpeter F, Diaz I, McAuslane H, et al. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe. Molecular Breeding,1999,5:53-63
    [10]Amirhusin B, Shade RE, Koiwa H, et al. Soyacystatin N inhibits proteolysis of wheat alpha-amylase inhibitor and potentiates toxicity against cowpea weevil. J Econ Entomol,2004,97: 2095-2100
    [11]Amoah BK, Wu H, Sparks C, et al. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Exp Bot,2001,52 (358):1135-1142
    [12]Baldwin IT. An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol,2001,127:1449-1458
    [13]Balzarini J, Neyts J, Schols D, et al. The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) n-specifi c plant lectin from Urtica dioica are potent and selective inhibitors of human immunodefi ciency virus and cytomegalovirus replication in vitro. Antivir Res,1992,18:191-207
    [14]Barrea A, Bourneb Y, Van Dammec EJM, et al. Mannose-binding plant lectins:Different structural scaffolds for a common sugar-recognition process. Biochimie,2001,83:645-651
    [15]Barton KA. Insecticidal toxins in plant express an insect-specific toxin from a scorpion. C12N015/82, European patent, patent No. EP0431829A1,1990
    [16]Barton KA. Bacillus Thuringiensis 8-endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects. Plant Physiol,1987,85:1103-1109
    [17]Birkett MA, Campbell CAM, Chamberlain K, et al. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl Acad Sci USA,2000,97:9329-9334
    [18]Bone EJ, Ellar DJ. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiology Letters,1989,58:171-178
    [19]Bosch HJ, Stiekema WJ. New Bacillus thuringiensis hybrid toxin fragment (hybrid toxins), recombinant DNA, vectors, transformed plants and microorganisms/for insect. A01H005/00, Patent No.W09506730,1995
    [20]Boulton MT, Buchholz WG, Marks MS. Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol Biol,1989,12:31-40
    [21]Breyne B, Montagu MV, Gfieysen G. The role of scaffold attachment regions in the structural and functional organization of plant chromatin. Transgenic Research,1994,3:195-202
    [22]Brisson JA, Stern DL. The pea aphid, Acyrthosiphon pisum:an emerging genomic model system for ecological, developmental and evolutionary studies. Bioessays,2006,28,747-755
    [23]Brown P, Sutikna T, Morwood M, et al. A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature,2004,431:1055-61
    [24]Calvin NM, Hanawalt PC. High-efficient transformation of bacterial cells by electroporation. Journal of Bacterlology,1988,170 (6):2796-2801
    [25]Cao J, Tang JD, Strizhov N, et al. Transgenic broccoli with high levels of Bacillus thuringiensis cry I C protein control diamondback moth larvae resistant to cry I A or cry I C. Mol Breed,1999, 5:131-141
    [26]Carlini CR, Grossi-de-Sa MF. Plant toxic proteins with insecticidal properties:a review on their potentialities as bio-insecticides. Toxicon,2002,40 (11):1515-1539
    [27]Carozzi N, Koziel M, eds. Advances in insect control. Taylor & Francis,1997, pp195-236 Cassas AM, Kononowicz AK, Bressan RA. Cereal transformation through particle bombardment. Plant Breed Rev,1995,13:235-264
    [28]Chabregas SM, Luche DD, Farias LP, et al. Dual targeting properties of the N-terminal signal sequence of Arabidopsis thaliana THI1 protein to mitochondria and chloroplasts. Plant Mol Biol, 2001,46:639-650
    [29]Chabregas SM, Luche DD, Van Sluys MA, et al. Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. Journal of Cellular Science,2003,116:285-291
    [30]Chan MT, Hang HH, Ho SL, et al. Agrobacteriurn-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol,1993,22 (3):491-506
    [31]Chan MT, Hang HH, Ho SL, et al. Agrobacteriurn-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol,1993,22 (3):491-506
    [32]Chandra NR, Kumar N, Jeyakani J, et al. Lectindb:a plant Iectin database. Glycobiology,2006,16 (10):938-946
    [33]Cheng M, Fry JE, Pang S, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol,1997,115 (3):971-980
    [34]Christou P, Ford TL, Kofron M. Production of transgenic rice (Orya sativa L..) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology,1991,9:957-962
    [35]Confalonieri M, Allergo G, Balestrazzi A, et al. Regeneration of Populus nigra transgenic plants expressing a Kunitz proteinase inhibitor (KTi3) gene. Mol Breed,.1998,4:137-145
    [36]Cornelisson M, Soetaert P, Stam M. Modified Bacillus thuringiensis insecticidal crystal protein genes-having A and T sequences encoding same amino acids, for increased expression levels. A01H005/00, Patent No. W09116432,1995
    [37]Could J, Devery M, Hasegawa O. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol,1991,95:426-434
    [38]Czapla TH, Lang BA. Effect of plant lectins on the larval development of European corn borer (Lepidoptera:Pyralidae) and southern corn rootworm (Coleoptera:Crysomelidae). J. Econ. Entomol,1990,83:2480-2485
    [39]Desoignies N. Etude des interactions virus-vecteur:transmission par Myzus persicae d'un virus sur le mode non-persistant (PVY) et d'un virus sur le mode persistant (PLRV). Memoire DEA: Universite Catholique de Louvain (Belgique),2008
    [40]Dimitrov DS. Virus entry:molecular mechanisms and biomedical applications. Nat. Rev. Microbiol, 2004,2 (2):109-122
    [41]Ferry N, Edwards MG, Gatehouse JA, et al. Plant-insect interactions:molecular approaches to insect resistance. Current Opinion in B iotechnology,2004,15:155-161
    [42]Fischhoff DA, Bowdish KS, Perlak FJ, et al. Insect tolerant transgenic tomato plants. Biotechnology,1987,5:807-813
    [43]Fitches E, Gatehouse JA. A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Laconobia oleracea). J. Insect Physiol,1998,44 (12):1213-1224
    [45]Fitches E, Ilett C, Gatehouse AMR, et al. The effects of Phaseolus vulgaris erythro-and leucoagglutinating isolectins (PHA-E and PHA-L) delivered via artificial diet and transgenic plants on the growth and development of tomato moth(Lacanobia oleracea) larvae; lectin binding to gut glycoproteins in vitro and in vivo. J. Insect Physiol,2001b,47 (12),1389-1398
    [46]Fitches E, Woodhouse SD, Edwards JP, et al. In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; ConA) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. J. Insect Physiol,2001a, 47 (7):777-787
    [47]Foiling L, Olesen A. Transformation of wheat (Triticum aestivum Linn) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep,2001,20:629-636
    [48]Foissac X, Loc NT, Christou P, et al. Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). Journal of Insect Physiology,2000,46:573-583
    [49]Garret A, Kerlan C, Thomas D. The intestine is a site of passage for potato leafroll virus from the gut lumen into the haemocoel in the aphid vector, Myzus persicae Sulz. Arch. Virol,1993,131(3): 377-392
    [50]Gatehouse AMR, Dewey FM, Dove J, et al. Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity. J. Sci. Food Agric, 1984,35 (4):373-380
    [51]Gatehouse AMR, Gatehouse JA. Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops. Pest Sci,1998,52 (2):165-175
    [52]Gatehouse AMR, Hilder VA, Boulter D, eds. Plant genetic manipulation for crop protection. CAB international,1992, pp155-181
    [53]Glyn A Edwards, Andrew Hepher, Stephen P, et al. Pea lectin is correctly processed, stable and active in leaves of transgenic potato plants. Plant Molecular Biology,1991,17:89-100
    [54]Godwin I, Gordon T, Ford-Lloyd B. The effects of acetosyringone and PH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep,1991,9: 671-675
    [55]Gray SM, Banerjee N. Mechanisms of arthropod transmission of plant and animal viruses. Microbiol. Mol. Biol. Rev,1999,63 (1):128-148
    [56]Habibi JE, Backus EA, Czapla TH. Subcellular effects and localization of binding sites of phytohemagglutinin in the potato leafhopper, Empoasca fabae (Insecta:Homoptera:Cicadellidae). Cell Tissue Res,1998,294 (3):561-571
    [57]Habibi JE, Backus EA, Czapla TM. Plant lectins affect survival of the potato leafhopper (Homoptera:Cicadellidae). J Econ Entomol,1993,86 (3):945-951
    [58]Habibi JE, Backus EA, Huesing JE. Effects of phytohemagglutinin (PHA) on the structure of midgut epithelial cells and localization of its binding sites in western tarnished plant bug Lygus hesperus Knight. J Insect Physiol,2000,46 (5):611-619
    [59]Hagio T. Optimising the particle bombardment method for efficient genetic transformation. Japan Agricultural Research Quarterly,1998,32:239-247
    [60]Hansen G, Shillito RD, Chilton MD. "Agrolistic" transformation of plant cells integration of T-strands generated in plant. Proc Natl Acad Sci USA,1996,93:14978-14983
    [61]Haruta M, Major IT, Christopher ME, et al. A Kunitz trypsin inhibitor gene family from trembling aspen (Populus tremuloides Michx.):cloning, functional expression, and induction by wounding and herbivory. Plant Mol Biol,2001,46:347-359
    [62]He DG, Mouradov A, Yang YM, et al. Transformation of wheat (Triticum aestivum L) through electroporation of protoplasts. Plan tcell Rep,1994,14:192-196
    [63]Hester G, Wright CS. The mannose-specific bulb lectin from Galanthusnivali (snowdrop) binds mono-and dimanno sides at distinct sites. structure analysis of refined complexes at 23A and 30A Reso lu tion. J Mol Biol,1996,262:516-531
    [64]Hiei Y, Ohta S, Komari T. Efficient transformation of rice (Oriza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant J,1994,6: 271-282
    [65]Hilder VA, Boulter D. Genetic engineering of crop plants for insect resistance—a critical review. Crop Prot,1999,18:177-191
    [66]Hilder VA, Gatehouse AMR, Sheerman SE, et al. A novel mechanism of insect resistance engineered into tobacco. Nature,1987,300:160-163
    [67]Hilder VA, Powell KS, Gatehouse AMR, et al. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res,1995,4:18-25
    [68]Hogenhout SA, Ammar ED, Whitfield AE, et al. Insect vector interactions with persistently transmitted viruses. Ann Rev Phytopathol,2008,46,327-359
    [69]Hussain SS, Makhdoom R, Husnam T, et al. Toxicity of snowdrop lectin protein towards cotton aphids Aphis gossypii (Homoptera, Aphididae). Journal of Cell and Molecular Biology,2008,7 (1):29-40
    [70]Iannacone R, Grieco PD, Cellini F. Specific sequence modification of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol,1997,34:485-496
    [71]Ingrain HM, Power JB, Lowe KC, et al. Optimisation of procedures for microprojectile bombardment of microspore-derived embryos in wheat. Plant Cell Tissue and Organ Culture,1999, 57:207-210
    [72]Jianhong Yao, Yongzhen Pang, Huaxiong Qi, et al. Transgenic tobacco expressing Pinellia ternate agglutirfin confers enhanced resistance to aphids. Transgenic Reserch,2003,12:715-722
    [73]Jongsma MA, Bakker PL, Peters J, et al. Adaptation of spodoptera exigua lavae to plant proteinase inhibitor by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA, 1995,92:8041-8045
    [74]Kalh G, Winter P. Plant genetic engineering for crop improvement. World Jounal of Microbiology and Biotechnology,1995, (11):449-460
    [75]Khanna HK, Daggard GE. Agorbacterium tumefaciens -mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep,2003,21: 429-436
    [75]Klein TM, Gradziel T, Fromm ME. Factors influencing gene delivery into zea mays cells by high-velocity microprojectiles. Bio/Technology,1988,6:559-563
    [76]Kliebenstein DJ, Kroymann J, Brown P, et al. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol,2001,126:811-825
    [77]Kohli A, Gfiffiths S, Palacios N. Molecular characterization of transforming plasmid rearrangements in transgenie rice reveals n recombination hotspots in the CaMV35S promoter and confmns the predominance of microhomology mediated recombination. The Plant Journal,1999, (6):591-601
    [78]Kohli A, Leech M, Vain EL, et al. Transgene orgnization in rice engineered through direct DNAtransfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Aca&Sci USA,1998,95 (12):7203-7208
    [79]Konami Y, Yamamoto K, Osawa T. The Primary Structures of two Typea of the Ulex Europeus Seed Lectin. Journal of biochemistry,1991,109:650-658
    [80]Kraulis PJ. Molscript:a program to produce both detailed and schematic plots of protein structures. J Appl Cryst,1991,24:946-950
    [81]Krens FL, Molendijk L, Wullems CJ, et al. In vitro transformation of plant protoplasts wth Ti-plasmid DNA. Nature,1982,296:72-74
    [82]Lee BU. Chymotrypsin producing harmful insect-resistant plant-can be prepd. By inducing plasmid pJLS231 contg.proteinase inhibitor gene into plants. C12N015, Patent No. KR9202313,1998
    [83]Lee SI, Lee SH, Koo JC, et al. Soybean Kunitz trysin inhibitor (SKTI) confers resistance to the brown plant hopper in transgenic rice. Mol Breed,1999,5:1-9
    [84]Luo ZX, Wu R. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Bin Rep,1988,6 (3):165-174
    [85]Majumder P, Banerjee S, Das S. Identification of receptors responsible for binding of the mannose specific lectin to the gut epithelial membrane of the target insects. Glycoconj J,2004,20:525-530
    [86]Majumder P, Mondal HA, Das S. Insecticidal Activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem,2005,53:6727-6729
    [87]Maqbool SB, Husana T, Riazuddin S, et al. Effective control of yellow stem borer and rice leaf yellow stem borer and rice leaf folder in transgenic rice India varieties Basmati 370 and M7 using the novel δ-endotoxin cry2A Bacillus thuringiensis gene. Mol Breed,1998,4:501-507
    [88]Maqbool SB, Riazuddin S, Loc NT, et al. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol. Breed,2001,7:85-93
    [89]Mayerhofer R, Konz-Kalma Z, Nawrath C. T-DNA integration:a mode of illegitimate recombination in plants. The EMBO J,1991,10 (3):697-704
    [90]Mckersie BD, Brown DCW, eds. Biotechnology and the improvement of forage legumes. CAB international,1997, pp229-258
    [91]Mello MO, Silva-Filho MC. Plant-insect interactions:an evolutionary arms race between two distinct defense mechanisms. Braz J Plant Physiol,2002,14 (2):71-81
    [92]Merritt EA, Bacon DJ. Raster3D photorealistic molecular graphics. Methods Enzymol,1997,277: 505-524
    [93]Michael SC, Sharron SO, Francois DT. The value conserved wheat germplasm evaluated for arthropod resistance. In:Stephen L, CSharron S Q eds. Global genetic plant resources for insect-resistant crops. Boca Raton Boston London New York Washington, D. C. CRC Press,1999 25-49
    [94]Murdock LL, Shade RE. Lectins and protease inhibitors as plant defense against insects. J. Agric. Food Chem,2002,50 (22):6605-6611
    [95]Murry EE, Rochleau TR, Eberle M, et al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protolasts. Plant Mol Biol,1991,16:1035-1060
    [96]Nagadhara D, Ramesh S. Pasalu IC, et al. Transgenic indica rice resistant To sap-suckingiUSCA: tS. Plant Biotechnology Journal,2003,1:231-240
    [97]Naidu RA, Ingle CJ, Deom CM, et al. The two envelope membrane glycoproteins of tomato spotted wilt virus show differences in lectin-binding properties and sensitivities to. glycosidases. Virology,2004,319:107-117
    [98]Nehra NS, Chibbar N, Leung K. Self-fertile transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol,1997,115:971-980
    [99]Nicolas sauvion, et al. Effect of GNA and other mannose-binding lectins on development and fecundity of the peach-potato aphids Myzus persicae. Entomologia Experimentalis et Applicata, 1996,79:285-293
    [100]Olsnes S, Pihl. Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis. Biochemistry,1973,12:3121-3126
    [101]Pastori GM, Wilkinson MD, Steele SH, et al. Age-dependent transformation frequency in elite wheat varieties. J Exp Bot,2001,52 (357):857-863
    [102]Payne J, Sick AJ. Bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins. U.S., patent for all invention,5188960,1993
    [103]Peferoen M. Progress and prospects for field use of Bt genes in crops. Trends Biotechnol,1997, 15:173-177
    [104]Pellegrineschi A, Noguera LM, Skovmand B, et al. Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants. Genome,2002,45:421-430
    [105]Pereira CA, Correa AD, Santos CD, et al. Hemaglutinina de folhas de mandioca (Manihot esculenta Crantz):purificacao parcial e toxicidade. Ciencia e Agrotecnologia,2008,32:900-907
    [106]Perlak FJ, Deaton RW, Armstrong TA, et al. Insect resistant cotton plants. Biotechnology,1990,8: 939-943
    [107]Perlak FJ, Fuchs RL, Dean DA, et al. Modification of coding sequence enhances plant expressing of insect control protein genes. Proc Natl Sci USA,1991,88:3324-3328
    [108]Perlak FJ, Fuchs RL, Dean DA, et al. Modification of coding sequence enhances plant expressing of insect control protein genes. Proc Natl Sci USA,1991,88:3324-3328
    [109]Perlak FJ, Stone TB, Muskopf YM, et al. Genetically improved potatoes:protection from damage by Colorado potato beetles. Plant Mol Biol,1993,22:313-321
    [110]Petnual P, Sangvanich P, Karnchanatat A. A lectin from the rhizomes of turmeric(Curcuma longa L.) and its antifungal, antibacterial and alpha-glucosidase inhibitory activities. Food Science and Biotechnology,2010,19:907-916
    [111]Peumans WJ, Van Damme EJM. Lectins as plant defense proteins. Plant Physiol,1995,109 (2): 347-352
    [112]Pierpoint WS, shewry PR, eds. Genetic engineering of crop plants for resistance to pests and diseases. British crop protection council,1996, pp8-15
    [113]Potrykus L. Gene transfer to cereals:an assessment. Bio/Technology,1990,8:535-542
    [114]Powell K.S, Gatehouse AMR, Hilder VA, et al. Antimetabolic effects of plants lectins and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol Exp Appl,1993,66 (2):119-126
    [115]Powell KS, Spence J, Bharathi M, et al. Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper Nilaparvata lugens (Stal). J Insect Physiol,1998,44 (7):529-539
    [116]Powell KS, Gatehouse AMR, Hilder VA, et al. Antifeedant effects of plant lectins and an enzyme on the adult stage of the rice brown planthopper, Nilaparvata lugens. Entomol Exp Appl,1995,75 (1):51-59
    [117]Rahbe Y, Sauvion N, Febvay G, et al. Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl,1995,76:143-155
    [118]Rasco-Gaunt S, Riley A, Barcelo E, et al. Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep,1999,19:118-127
    [119]Reinbothe S, Reinbothe C, Lehmann J, et al. JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci USA,1994, 91:7012-7016
    [120]Remy Loris, Thomas Hamelryck, Julie Bouckaert, et al. Legume lectin structur. Biochimica et Biophysica Acta,1998,1383:9-36
    [121]Rendic D, Wilson IBH, Paschinger K. The glycosylation capacity of insect cells. Croatica ChemicaActa,2008,81:7-21
    [122]Rudiger H, Gabius HJ. Plant lectins:occurrence, biochemistry, functions and applications. Glycoconjugate J,2001,18 (8):589-613
    [123]Sachs ES, Benedict JH, Stelly DM, et al. Expression and segregation of gene encoding crylA insecticidal protein in cotton. Crop sciences,1998,38:1-11
    [124]Sauerbor MK, Wright LM, Reynolds CD. Insights into carbohydrate recognition by narcissus pseudonarcissus lectin:the crystal structure at 2A resolu-tion incomplex with A1-3 mannobiose. J Mol Biol,1999,290:185-199
    [125]Sauvion N, Nardon C, Febvay G, et al. Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J Insect Physiol,2004,50 (12):1137-1150
    [126]Sauvion N, Rahbe Y, Peumans WJ, et al. Effects of GNA and other mannose binding lectins on development and fecundity of the potato-peach aphid Myzus persicae. Entomol Exp Appl,1996, 79,285-293
    [127]Schouten A, Roosien J, Van-Engelen FA, et al. The C-terminal KDEL sequence increase the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol,1996,30:781-793
    [128]Schroeder HE, Gollasch S, Moore A, et al. Bean α-Amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas. Plant physiol,1995,107:1233-1239
    [129]Schuler TH, Poppy GM, Kerry BR, et al. Insect-resistant transgenic plants. Trends Biotechnol, 1998,16:168-175
    [130]Scott JG, Wen ZM. Cytochromes P450 of insects:the tip of the iceberg. Pest Manag Sci,2001,57: 958-967
    [131]Selvapandiyan A, Reddy VS, Kumar PA, et al. Transformation of Nicotiana tabacum with a native cryⅡα5 gene confers complete protection against Heliothis armigera. Mol Breed,1998,4: 473-478
    [132]Sharon N, Lis H. Legume lectins-a large family of homologous proteins. FASEB J,1990,14 (3):198-208
    [133]Shi Y, Wang MB, Powell KS, et al. Use of the rice sucrose synthase-1 promoter to direct phleoem-specific expression of beta-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J Exp Bot,1994,45:623-631
    [134]Shillito RD, Saul MW, Paszkowski J, et al. High efficiency direct gene transfer to plants. Bio/Technology,1985,3:1099-1103
    [135]Silva CP, Terra WR, Grossi de Sa MF, et al.Induction of digestive a-amylases in larvae of Zabrotes subfasciatus (Coleoptera:Bruchidae) in response to ingestion of common bean α-amylase inhibitor 1. J Insect Physiol,2001,47:1283-1290
    [136]Smith RH, Hood EE. Agorbacterium tumefaciens transformation of monocotyledins. Crop Science,1995,35 (2):301-309
    [137]SOLVEIG S(?)RBU AASEN, ELINE BENESTAD HA°GVAR. Effect of potato plants expressing snowdrop lectin (GNA) on the performance and colonization behaviour of the peach-potato aphid Myzus persicae. Acta Agriculturae Scandinavica Section B_ Soil and Plant Science,2012, 62:352-361
    [138]Somers DA. Fertile transformation of oat plants. Bio/Technology,1992,10:1589-1594
    [139]Spiker S, Thompson WF. Nuclear matrix attachment regions and transgene expression in plants. Plant Physiol,1996,110:15-21
    [140]Stachedl SE, Messens E, Van Montagu. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agorbacterium tumefaciens. Nature,1985, 318:624-629
    [141]Stewart CN, Adang MJ, All JN, et al. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cry1Ac gene. Plant Physiol,1996, 112:121-129
    [142]Stirpe F, Barbieri L, Gorini P, et al. Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett,1996,382: 309-312
    [143]Stirpe F, Battelli MG. Ribosome-inactivating proteins:progress and problems. Cell Mol Life Sci, 2006,63 (16):1850-1866
    [144]Stirpe F. On the action of ribosome-inactivating proteins:are plant ribosomes species-specific? Biochem J,1982,202:279-280
    [145]Stoger E, Williams S, Christou P, et al. Expression of the insecticidal lectin from snowdrop in transgenic wheat plant. Mol Breed,1999,5:65-73
    [146]Tabashnik BE, Liu YB, Finson N, et al. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc Nat; Acad Sci USA,1997,94:1640-1644
    [147]Tailor R, Tippett J, Gibb G, et al. Identification and characterization of a novel Bacillus thuringiensis δ-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol Microbiol, 1992,6:1211-1217
    [148]Thielens NM, Tacnet-Delorme EP, Arlaud GJ. Interaction of C1q and mannanbinding lectin with viruses. Immunobiology,2002,205:563-574
    [149]Thomas JC, Adams DG, Nessler CL, et al. Tryptophan decarboxylase, tryptamine, and reproduction of the whitefly. Plant physiol,1995,109:717-720
    [150]Tiemeyer M, Selleck SB, Esko JD. Arthropoda. In:Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Essentials in glycobiology. Plainview, NY:Cold Spring Harbor Laboratory Press,2008, p 347-362
    [151]Trigueros V, Lougarre A, Ali-Ahmed D, et al. Xerocomus chrysenteron lectin:identification of a new pesticidal protein. Entomol Exp Appl,2003,1621 (3):292-298
    [152]Ulker B, Allen GC, Thompson WF, et al. A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants. Plant J,1999,18:253-263
    [153]Uze M, Potrykus Ⅰ, Sautter C. Single-stranded DNA in the genetic transformation of wheat (Triticum aestivum L.):Transformation frequency and integration pattern. Theoretical and Applied Genetics,1999,99:487-495
    [154]Vaeck M, Reynaerts A, Hofte H, et al. Transgenic plants protected from insect attack. Nature, 1987,328:33-37
    [155]Van Damme EJM, Barre A, Mazard A M, et al. Characterization and molecular cloning of the lectin from Helianthus Tuberosus. Eur J Biochem,1999,259:135-142
    [156]Van Damme EJM, Lannoo N, Peumans WJ. Plant lectins. Adv Bot Res,2008,48:109-209
    [157]Van Damme EJM, Peumans WJ, Pusztai A, et al. Handbook of plant lectins:Properties and Biomedical Applications. Chichester:John Willey and Sons Ltd,1997
    [158]Vasconcelos IM, Oliveira JTA. Antinutritional properties of plant lectins. Toxicon,2004,44 (4) 385-403
    [159]Vasil IK. Molecular improvement of cereal. Plant Mol Biol 1994,25:925-927
    [160]Vasil V, Castillo AM, Frommm ME, et al. Herbicide resistant fertile transgenic wheat plant obtained by micro-projectile bombardment of regenerable embryogenic callus. Bio/Technology, 1992,10 (6):667-674
    [161]Vasil V, Srivastava V, Castillo AM. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology,1993,11 (12):1553-1558
    [162]Walsh TA, Morgan AE, Hey TD. Characterization and molecular cloning of a proenzyme form of a ribosomeinactivating protein from maize-novel mechanism of proenzyme activation by proteolytic removal of a 2.8-kilodalton internal peptide segment. J Biol Chem,1991,266: 23422-23427
    [163]Wan YE, Lemaux PG. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol,1994,104:37-48
    [164]Wandelt CI, Khan MRI, Craig S, et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J, 1992,2:181-192
    [165]Weeks JT, Anderson OD, Blechl AE. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum asetivum). Plant Physiol,1993,102:1077-1084
    [166]Wei T, Chen H, Ichiki-Uehara T, et al. Entry of rice dwarf virus into cultured cells of its insect vector involves clathrin-mediated endocytosis. J Virol,2007,81 (14):7811-7815
    [167]Wenck A, Pugieux C, Turner M, et al. Reef-coral proteins as visual:non-destructive reporters for plant transformation. Plant Cell Rep,2003,22:244-251
    [168]Wong EY, Hironaka CM, Fischoff DA. Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thwingiensis proteins in transgenic plants. Plant Mol Biol,1992,20:81-93
    [169]Wu H, Sparks C, Amoah B, et al. Factors influencing successful Agrobacmrium—mediated genetic transformation of wheat. Plant Cell Rep,2003,21:659-668
    [170]Wu JH, Luo XL, Zhang XR, et al. Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts. Transgenic Res,2011,20:963-973
    [171]Xia GM, Li ZY, He CX. Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agorbacterium turnefaciens. Acta Phytophysiology Sinica,1999,25 (1):22-28
    [172]Zangerl AR. Furanocoumarin induction in wild parsnip:evidence for an induced defense against herbivores. Ecology,1990,71:1926-1932
    [173]Zhou GY. Introduction of exogenous DNA into cotton embryos. Meth Enzymo,1983,10:433-481
    [174]曾君祉,王东江,吴有强,等.用花粉管途径获得小麦转基因植株.中国科学(B辑),1993,23(3):256-262
    [175]陈乃用.电穿孔法在细菌质粒转化中的应用.微生物学通报,1993,18(2):97-103
    [176]冯英,薛庆中.作物抗虫基因工程及其安全性.遗传,2001,23(6):571-576
    [177]付永彩,吴茂森,成卓敏.小麦不同品种外植体的农杆菌转化方法的研究.农业生物技术学报,2002,10(1):25-28
    [178]耿德贵,王义琴,李文彬,等.GUS基因在杜氏盐藻细胞中的瞬间表达.高技术通讯.2002,12(2)
    [179]龚秦秦,沈慰芳,周光字.受粉后外源DNA导入植物技术-DNA通过花粉管通道进入胚囊.中 国科学(B辑),1988,6:611-614
    [180]何道一,李中存,王洪刚.农杆菌介导的小麦活体转化.中国农业科学,2003,36(12)1437-1441
    [181]华志华,黄大年.转基因植物中外源基因的遗传学行为.植物学报,1999,41(1):1-5
    [182]黄其满,毛立群,黄卫红,等.转人工合成GFM Cry IA基因烟草表现明显杀虫活性.植物学报,1998,38:95-99
    [183]黄益洪,周森平,叶兴国,等.农杆菌介导法获得小麦转基因植株的研究.作物学报,2002,28(4):510-515
    [184]贾力,吴茂森,张文蔚,肖红,成卓敏.大麦黄矮病毒单双价外壳蛋白基因植物表达载体构建及小麦遗传转化.农业生物技术学报,2001,9(1):23-27.
    [185]蒋红,朱玉贤,陈章良.导入蜘蛛杀虫肽基因的烟草具有抗虫性.植物学报,1996,38:95-99
    [186]金危危,李宗芸,宁顺斌,等.基因枪介导质粒共转化整合模式的FISH研究.科学通报,2001,46(15):1281-1284
    [187]柯遐义,黄粤,石和平,等.利用电激法转化小麦幼胚的研究.武汉植物学研究,1997,15(2):103-107
    [188]李慧芬,刘翔,曲强,等.转抗虫融合基因(crylAc3-cpti):玉米(Zea mays L.)植株的获得及其抗虫性分析.自然科学进展,2002,12(1):37-40
    [189]李庆,叶华智.小麦近缘植物生态分布与抗禾谷溢管蚜的关系.西南农业大学学报,2002,21(5):418-420
    [190]李学宝,郑世学,董五辈,等.甘蓝型油菜抗虫转基因植株及其抗性分析.遗传学报,1999,26:262-268
    [191]刘春明,朱祯,周兆斓,等.豇豆胰蛋白酶抑制剂抗虫转基因烟草的获得.科学通报,1992,37:1694-1697
    [192]刘谦,朱鑫全.生物安全.北京:科学出版社,2001,25-27
    [193]刘晏良.麦双尾蚜对麦类品种自然选择性的初步研究仁.新疆农业科技,1996,2:18
    [194]刘缨,张锦珠.细胞电穿孔动态过程的荧光测量.生物物理学报,1994,10(2):225-232
    [195]毛慧珠,唐惕,曹湘玲,等.抗虫转基因甘蓝及其后代的研究.中国科学(C辑),1996,26:339-347
    [196]庞俊兰,徐惠君,杜丽璞,等.土传花叶病毒外壳蛋白基因导入小麦的研究.中国农业科学,2002,35(7):738-742
    [197]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志,2003,23(Ⅰ):1-10
    [198]宋诗铎,张同海,祁伟,等.应用电激转化在大肠杆菌中导入外源性DNA.生物工程学报,1993,9(3):237-240
    [199]陶余敏,唐锡华.农杆菌转化单子叶植物的可能性及问题.植物生理学报,1992,18(6):402-406
    [200]田颖川,秦晓峰,许丙,等.表达苏云金杆菌δ-内毒素基因的转基因烟草的抗虫性.生物工程学报,1991,7:1-10
    [201]王东江,吴有强,曾君祉(1995).小麦转基因植株的后代鉴定及遗传学分析.中国农业科学.28(2):90-92.
    [202]王关林,方宏筠.植物基因工程.北京:科学出版社,2002,742-798
    [203]王国英,贺普超.电击法诱导欧白英原生质体转化和转化植株再生.生物工程学报,1994,10(1):24-29
    [204]王京红,纵微星,杨应昌,等Bt cry IA基因的人工设计、改造和构建.农业生物技术学报,1994,2:100-102
    [205]王伟,朱祯,高越峰,等.双价抗虫基因陆地棉转化植株的获得.植物学报,1999,41:384-388
    [206]王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究.遗传学报,2002,29(3):260-265
    [207]王岳五,江波,焦瑞身.球形芽孢杆菌Ts-1原生质体电诱导质粒转化研究.微生物学报,1991,31(2):94-99
    [208]伍晓丽,朱祯,李晚忱,等.农杆菌介导豇豆胰蛋白酶抑制剂基因(cpti)在玉米中的遗传转化.作物学报,2004,30(3):297-298
    [209]武丽敏,郑有良,魏育明,等.小麦转基因研究进展.四川农业大学学报,2003,21(2):
    176-180
    [210]武予清,李素娟,刘爱芝,等.小麦抗蚜育种研究进展.河南农业科学,2002,2:19-20
    [211]夏光敏,陈惠民,成卓敏,等.BYDVCP基因转化小麦原生质体及转基因植株再生.山东大学学报(自然科学版),1996,31(3):357-359
    [212]夏光敏,李忠谊.根癌农杆菌介导的小麦转基因植株再生.植物生理学报,1999,25(1):22-28
    [213]谢道听,范云六,倪万潮.苏云金芽抱杆菌(Bacillus thuringiensis)杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学B辑,1991,21(8):367-373
    [214]徐明良,杨金水,葛扣麟.植物转基因的整合机制.植物生理学通讯,1996,32(3):697-704
    [215]徐琼芳,李连城,陈孝,等.基因枪法获GNA转基因小麦植株的研究.中国农业科学,2001,34(1):5-8
    [216]许耀,贾敬芬,郑国倡.酚类化合物促进根癌农杆菌对植物离体外殖体的高效转化.科学通报,33(22):1745-1748
    [217]杨书礼,曾君祉,吴有强,等.抗除草剂基因和荧光素酶基因在小麦愈伤组织中的稳定表达.植物学报,1993,35(11),825-830
    [218]叶兴国,Shirley Sato,徐惠君,等.小麦农杆菌介导转基因植株的稳定获得和检测.中国农业科学,2001,34(5):469-474
    [219]叶兴国,程红梅,徐惠君,等.转几丁质酶和β-1,3葡聚糖酶双价基因小麦的获得和鉴定.作物学报,2005,31(5):583-586
    [220]喻修道,徐兆师,陈明,等.小麦转基因技术研究及其应用.中国农业科学,2010,43(8)1539-1553
    [221]张红宇,吴先军,唐克轩,等.半夏凝集素基因导入水稻及其表达的初步研究.遗传学报,2003,30(11):1013-1019
    [222]张晓东,梁荣奇,陈绪清,等.优质HMW谷蛋白亚基转基因小麦的获得及其遗传稳定性 和品质性状分析.科学通报,2003,48(5):474-479
    [223]赵慧,张正斌,徐萍.转基因小麦目录.麦类作物学报,2005,25(4):116-126
    [224]赵建周,范云六,范贤林,等.转双基因抗虫烟草延缓棉铃虫抗性的作用评价.科学通报,1999,44:1635-1638
    [225]郑王义,谢瑞材,王东升.冬小麦品种(系)抗蚜性的初步研究.作物品种资源.1987,1:21-22
    [226]周春江,黄占景,沈银柱,等.兔防御素NP.1基因在小麦抗病育种中应用的初步研究.麦类作物学报,2003,23(2):7-10
    [227]周光宇.远源杂交的分子基础-DNA片段杂交假设的一个论证.遗传学报,1979,4:405-413
    [228]朱祯,孙宝林,刘春明,等.转化脂介导小麦原生质体转化及转基因白化苗的再生.生物工程学报,1993,9(4):320-323
    [229]朱祯.高效抗虫转基因水稻的研究与开发.中国科学院院司,2001,5:353-357
    [230]朱祯.走向21世纪的植物分子生物学.北京:科学出版社,2000,121
    [231]刘德虎,陈三凤译.柯纳德J.海勒.基因工程食品一生产方法与检测技术.北京:化学工业出版社,2005
    [232]金芜军,贾士荣,彭于发.不同国家和地区转基因产品标识管理政策的比较.农业生物技术学报,2004,12(1):1-7
    [233]Zuo K-J(左开井),Zhang X-L(张献龙),Nie Y-C(聂以春),等.Sequence analysis of Bt insertion flanking fragments in transgenic Bt cotton. Acta Genet Sin (遗传学报),2002,29(8):735-740(inChinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700