丙烯酸酯橡胶、丁腈橡胶及其并用胶的配位硫化及可逆性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶及热固性树脂等交联聚合物的材料回收方法,尤其是化学回收方法的开发是聚合物材料科学研究中特别值得关注的重大难题之一。由于聚合物交联的网络结构给发展合适的回收方法带来了困难,因此人们一直在寻求新的解决方案。可逆的交联-解交联结构是解决高效回收利用问题的科学方案。
     配位键是最强的非共价键,又具有可逆性。本文将配位键引入到橡胶交联网络的构筑,开发橡胶硫化技术,制备新型可逆交联的橡胶/金属盐复合材料。借助红外光谱、电子顺磁共振表征金属离子与高分子配体问形成的配位键。利用DSC、DMA、平衡溶胀法等手段分析配位交联网络的形成过程。采用SEM分析金属盐在橡胶基体中的分散状态和橡胶-金属盐界面相互作用。
     有机聚合物与金属盐填料共混时,相容性是影响材料最终性能的重要因素。本研究针对制备丁腈橡胶橡胶(NBR)/金属盐复合材料遇到的这一问题,实施了三个方案:1)利用氨络合硫酸铜在受热时,铜离子上络合的氨释放,暴露出反应活性点与丁腈橡胶的腈基发生原位配位反应,制备了具有良好界面相互作用力的NBR/Cu(NH3)4SO4·H2O复合材料;2)利用有机金属盐与丁腈橡胶良好的相容性,将硬脂酸锌、铜、铁、锰分别与丁腈橡胶共混,制备了颗粒尺度小、分散性良好的丁腈橡胶/过渡金属硬脂酸盐配位交联复合材料;3)利用氯化锌易吸水潮解的性质,并且水分的存在有利于配位反应的发生,获得了ZnCl2添加量<10 phr时,均相的NBR/ZnCl2配位交联复合材料。
     丙烯酸酯橡胶(AR)是一类饱和橡胶,它的酯基可以作为配体,将配位硫化的方法推广到AR的交联具有重要意义。在AR/CuSO4复合材料中,酯基中的两个氧原子均参与与铜离子的配位,形成了交联网络。AR与CuSO4的配位反应在室温即可进行。180℃形成配位交联网络的速度最快,CuSO4颗粒表面形成一个厚度达500 nm的界面层。
     AR/NBR/CuSO4复合材料内同时形成了-COOR→Cu2+和-CN→Cu2+配位键,利用硫酸铜作为交联剂实现了对AR/NBR合金配位共硫化。随着AR/NBR合金含量接近时,AR/NBR/CuSO4复合材料体系中配位交联反应越难发生,配位交联网络越不易形成,CuSO4粒子在基体中的尺寸和形状也发生改变。AR/NBR/CuSO4(10/90/10)复合材料具有最优的力学性能(932.23%,43.73MPa)和热稳定性(411℃分解,700℃下残余质量22.63%)。
     对丁腈橡胶的配位交联网络的可逆性进行了研究。NBR/CuSO4和NBR/ZnCl2的配位交联网络均可溶解在DMF 95℃溶剂中。实现了丁腈橡胶配位交联复合材料交联-解交联-交联的可逆过程。
The development of methodologies for material recycling, especially chemical recycling of crosslinked polymers, such as thermosetting resins and rubbers, is one of the most important issues in polymer and material science. Because of the difficulty in developing suitable recycling methodologies owing to the network structure of polymers, a new recycling concept has long been sought after. Reversible crosslinking-decrosslinking may constitute an efficacious recycling protocol.
     Coordination bond is the strongest non-covalent bond and reversible. In this study coordination bond was employed to build rubber network structures; vulcanization technology based on coordination-bonded crosslink was developed;novel reversible crosslinked rubber/metallic salt composites were prepared.Infrared spectra (FT-IR) and electron spin resonance (ESR) were applied to characterize the coordination bonds formed between metal ions and polymeric ligends.The formation of coordination-bonded networks was analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and a swell equilibrium method.The morphology of metallic salt particles dispersed in polymer matrix and the interface between polymer and particles were observed by scanning electron microscope (SEM).
     Compatibility is one of the most important factors affecting the performance of polymer-metal salt composites. On this issue efforts were made in three aspects:first, NBR/ Cu(NH3)4SO4·H2O composites with strong interface interactions were prepared, in that Cu(NH3)4SO4·H2O was active to form coordination bond with nitrile groups when ammonia released on heating; second, owing to the good compatibility between organic polymer and transitional metallic streates, well-dispersed coordination-crosslinked NBR/zinc streate, NBR/copper streate, NBR/ferric streate and NBR/ manganese streate composites were obtained;third, a homogeneous NBR/ZnCl2 composite were prepared when the content of ZnCl2 was no more than 10 phr, as a result of great deliquescence of ZnCl2.
     Acrylic rubber (AR) is a saturated rubber with ester carbonyl groups as potential ligends. It is of significance to vulcanize AR via coordination bonds.Both of the two oxygen atoms of ester carbonyl group coordinated with copper ion in AR/CuSO4 composites. The coordination reaction between AR and CuSO4 can carry out at room temperature.The coordination bonded networks formed fast at 180℃, and CuSO4 particles were encapsulated by a 500 nm thick interface layer.
     Copper sulfate was incorporated into AR/NBR alloy to co-vulcanize the two components through simultaneous formation of -COOR→Cu2+ and -CN→Cu2+ coordination bonds. The nearer the ratio of AR/NBR approached 1, the harder the coordination reactions took place and the looser crosslinking networks formed in AR/NBR/CuSO4 compounds. Moreover, shapes and sizes of copper sulfate particles changed with the ratio of AR/NBR. AR/NBR/CuSO4(10/90/10) composite had the optimum mechanical properties (932.23%, 43.73MPa) and good thermal stability (decompose temperature 411℃,22.63% residue at 700℃).
     Finally, the reversibility of networks of coordination-bonded NBR-based composites was investigated in this study. The coordination-bonded cross linking networks of NBR/CuSO4 and NBR/ZnCl2 composites could dissolve in DMF at 95℃. A reversible crosslinking-decrosslinking- crosslinking was achieved in NBR/ZnCl2 composites.
引文
[1]王作龄.橡胶的交联科学及其进展(一)[J].世界橡胶工业,2005,32(11):44-48.
    [2]G. Bernstein. Vulcanization of Rubber[J]. J. Franklin Inst.1913,176(3):345-346.
    [3]R. R. Babu, N. K. Singha, K. Naskar. Melt viscoelastic properties of peroxide cured polypropylene-ethylene octene copolymer thermoplastic vulcanizates[J]. Polym. Eng. Sci., 2010,50 (3):455-467.
    [4]D. Bacci, R. Marchini, M.T. Scrivani. Constitutive equation of peroxide cross-linking of thermoplastic polyolefin rubbers[J]. Polym. Eng. Sci.,2005;45(3):333-342.
    [5]M. Akiba, A. S. Hashim. Vulcanization and crosslinking in elastomers [J].Polym. Eng. Sci.,1997,22 (3):475-521.
    [6]江畹兰.橡胶硫化体系[J].世界橡胶工业,2006,33(5):16-21.
    [7]C. Goodyear. Improvement in india-rubber fabrics[P].US patent 3633,1844.
    [8]C. Goodyear. GB patent 2933[P],1853.
    [9]J. R. White, S. K. De. Rubber technologist's handbook[M]. Rapra Technology Ltd., Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK.2001.
    [10]S. F. Edwards, T. H. Vilgis. The effect of entanglements in rubber elasticity[J]. Polymer, 1986,27 (4):483-492.
    [11]T. Hjertberg, B. Gustafsson. The role of entanglements in network formation in unsaturated low density polyethylene[J]. Polymer,2004,45(14):4867-4875.
    [12]Y. Iskender, E. Tugba, Y. Emel, G. L.Wilkes. Contribution of soft segment entanglement on the tensile properties of silicone-urea copolymers with low hard segment contents[J]. Polymer,2009,50(19):4432-4437.
    [13]Y. He, B. Zhu, Y. Inoue. Contribution of soft segment entanglement on the tensile properties of silicone-urea copolymers with low hard segment contents[J].Prog. Polym. Sci.2004,29 (10):1021-1051.
    [14]H. J. Qi, M. C. Boyce. Stress-strain behavior of thermoplastic polyurethanes[J]. Mech. Mater.,2005,37 (8):817-839.
    [15]J. Krijgsman, D. Husken, R.J. Gayman. Stress-strain behavior of thermoplastic polyurethanes[J]. Polymer,2003,44 (25):7573-7588.
    [16]R. L. Gustafson, J. A. Lirio. Binding of divalent metal ions by crosslinked polyacrylic acid[J]. J. Phy. Chem.,1968,72 (5):1502-1505.
    [17]D. D. J. Rousseaux, X. Drooghaag, M. Sclavons, P. Godard, V. Carlier. J. Marchand-Brynaert. Polypropylene ionic thermoplastic elastomers:Synthesis and properties[J]. Polym. Degrad Stabil.,2010,95 (3):363-368.
    [18]C. P. Chwang, C. L. Wang, Y. M. Kuo, S. N. Lee, A. Chao, D. Y. Chao. On the study of polyurethane Ionomer-Part I [J]. Polym. Adv. Technol.,2002,13 (3-4):285-292.
    [19]J. W. Lee, C. H. Kim, J. K. Park, T. S. Hwang. Study on the microphase structure and mechanical properties of the blends of acrylonitrile-butadiene-styrene and sodium sulphonated styrene-acrylonitrile ionomer[J]. Polym. Int.,1998,45 (1):47-54.
    [20]Viviane. Friese, G. Dirk. Kurth. From coordination complexes to coordination polymers through self-assembly[J]. Curr. Opin. Colloid. In. Sci.,2009,14:81-93.
    [21]V. Tobolsky, A. J. Eisenberg. Equilibrium Polymerization of Sulfur[J] J. Am. Chem. Sci., 1959,81(4):780-782.
    [22]纪奎江.实用橡胶制品生产技术[M].北京:化学工业出版社.1991.
    [23]王作龄.橡胶的交联科学及其进展(一)[J].世界橡胶工业,2005,32(11):44-48.
    [24]许春华.21世纪我国橡胶工业的进展[J].橡胶科技市场,2010,24:1-5.
    [25]姚世杰,樊云峰.橡胶硫化剂的进展[J].中国橡胶,2003,19(21):23-24.
    [26]R. Chandra,R. K. Soni.Recent developments in thermally curable and photocurable systems[J].Prog. Polym. Sci.,1994,19(1):137-169.
    [27]M. Akiba, A. S. Hashim. Vulcanization and crosslinking in elastomers [J]. Prog. Polym. Sci.,1997,22:475-521.
    [28]J. E. Mark. Some unusual elastomers and experiments on rubberlike elasticity [J]. Prog. Polym. Sci.,2003,28:1205-1221.
    [29]J. E. Mark. Generate reinforcing particles in place[J]. Chem. Tech.,1989,19:230-232.
    [30]W. C. Fitzgerald, M. N. Davis, J. L. Blackshire, J. F. Maguire, D. B. Mast. Evanescent microwave sensor scanning for detection of sub-coating corrosion[J].J. Corrosion Sci. Eng.,2002,3:15-22.
    [31]S. Besbes, I. Cermelli, L. Bokobza, L.Monnerie, I. Bahar, B. Erman, J. Herz. Segmental orientation in model networks of poly(dimethylsiloxane):Fourier transform infrared dichroism measurements and theoretical interpretation[J]. Macromolecules,1992,25: 1949-1954.
    [32]S. Wang, P. Xu, J. E. Mark. Method for generating oriented oblate ellipsoidal particles in an elastomer and characterization of the reinforcement they provide[J]. Macromolecules, 1991,24:6037-6039.
    [33]S. Wang, J. E. Mark. Generation of glassy ellipsoidal particles within an elastomer by in-situ polymerization, elongation at an elevated temperature, and finally cooling under strain[J]. Macromolecules,1990,23:4288-4291.
    [34]M. A. Sharaf, A. Kloczkowski, J. E. Mark. Monte Carlo simulations on filler-induced network chain deformations and elastomer reinforcement from oriented oblate particles. Polymer,2002,43:643-652.
    [35]E. P. Giannelis, R. Krishnamoorti, E. Manias. Polymer-silicate nanocomposites:model systems for confined polymers and polymer brushes[J]. Adv. Polym. Sci., 1999,138:107-147.
    [36]S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker. Individual single-wall carbon nanotubes as quantum wires[J]. Nature,1997,386:474-477.
    [37]H.Nakamura, Y. Matsui. Silica gel nanotubes obtained by the sol-gel method[J]. J. Am. Chem. Soc.,1995,117:2651-652.
    [38]H. L. Frisch, J. E. Mark. Nanocomposites prepared by threading polymer chains through zeolites, mesoporous silica, or silica nanotubes[J]. Chem. Mater.,1996,8:1735-1738.
    [39]G. Kickelbick. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale[J]. Prog. Polym. Sci.,2003,28:83-114.
    [40]T. N. Vu, J. E. Mark, D. W. Schaefer. Surface modification of silica fillers formed in-situ for the reinforcement of polydimethylsiloxane networks[J]. Prepr., Am. Chem. Soc., Div. Polym. Mater:Sci. Engng.,2000,83:411-412.
    [41]W. Schaefer, B. T. N. Vu, J. E. Mark. The effect of interphase coupling on the structure and mechanical properties of silica-siloxane composites[J]. Rubber. Chem. Technol., 2002,75:795-810.
    [42]Z. Rigbi, J. E. Mark. Effects of a magnetic field applied during the curing of a polymer loaded with magnetic filler[J]. J. Polym. Sci, Polym. Phys. Ed.,1985,23:1267-1269.
    [43]G. B. Sohoni, J. E. Mark. Anisotropic reinforcement in elastomers containing magnetic filler particles[J]. J. Appl.Polym. Sci.,1987,34:2853-2859.
    [44]S. Sivakova, D. A. Bohnsack, M. E. Mackay, P. Suwanmala, S. J. Rowan. Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers[J]. J. Am. Chem. Soc.,2005, 127:18202-18211.
    [45]L.L de Lucca Freitas., R. Stadler. Thermoplastic elastomers by hydrogen bonding.3. Interrelations between molecular parameters and theological properties [J]. Macromolecules,1987,20:2478-2485.
    [46]L. R. Rieth, R. F. Eaton, G.W. Coates. Polymerization of ureidopyrimidinone functionalized olefins by using late-transition metal ziegler-natta catalysts:synthesis of thermoplastic elastomeric polyolefins[J]. Angew. Chem. Int. Ed.,2001,40:2153-2156.
    [47]V. Berl, M. Schmutz, M. J. Krische, R. G. Khoury, J.M.Lehn. Supramolecular polymers generated from heterocomplementary monomers linked through multiple hydrogen-bonding arrays—formation, characterization, and properties[J]. Chem.-Eur. J., 2002,8:1227-1244.
    [48]Y. Li, T. Park, J. K. Quansah, S.C. Zimmerman. Synthesis of a Redox-Responsive Quadruple Hydrogen-Bonding Unit for Applications in Supramolecular Chemistry [J].J. Am. Chem. Soc.,2011,133 (43):17118-17121.
    [49]J. Foster, E. B. Berda, E. W. Meijer. Metastable Supramolecular Polymer Nanoparticles via Intramolecular Collapse of Single Polymer Chains[J]. J. Am. Chem. Soc.,2009,131 (20):6964-6966.
    [50]J. J. Vittal. Supramolecular structural transformations involving coordination polymers in the solid state[J]. Coord. Chem. Rev.,2007,251:1781-1795.
    [51]C. P. Pradeep, L. Cronin. Supramolecular coordination chemistry [J]. Annu. Rep. Prog. Chem., Sect. A,2007,103:287-332.
    [52]C. R. South, C. Burd, M. Wec. Modular and dynamic functionalization of polymeric scaffolds[J]. Acc. Chem. Res.,2007,40(1):63-74.
    [531K. Chino. M.Ashiura. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks[J]. Macromolecules,2001,34(26):9201-9204.
    [54]T. Kato,N. Mizoshita, K. Kanie. Hydrogen-Bonded Liquid Crystalline Materials: Supramolecular Polymeric Assembly and the Induction of Dynamic Function[J]. Macromol. Rapid Commun.,2001,22:797-814.
    [55]R. J. Thibault, P. J. Hotchkiss, M. Gray, V. M. Rotello. Thermally reversible formation of microspheres through non-covalent polymer cross-linking[J]. J. Am. Chem. Soc.,2003, 125(37):11249-11252.
    [56]L. Bouteiller. Assembly via hydrogen bonds of low molar mass compounds into supramolecular polymers[J].Adv. Polym. Sci.,2007,207:79-112.
    [57]C. B. Pourcain, A. C. Griffin. Thermoreversible supramolecular networks with polymeric properties [J]. Macromolecules,1995,28:4116-4121.
    [58]P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature,2008,451:977-980.
    [59]Ciesielski, P.Samori. Supramolecular assembly/reassembly processes:molecular motors and dynamers operating at surfaces[J]. Nanoscale,2011,3:1397-1410.
    [60]U. S. Schubert, H. Hofmeier. Metallo-supramolecular graft copolymers:a novel approach toward polymer-analogous reactions[J]. Macromol. Rapid Commun.,2002,23:561-566.
    [61]S.R. Batten. Coordination polymers[J]. Curr. Opin. Colloid. In. Sci.,2001,5:107-114.
    [62]J.C.Bailar, Jr. Prep. Coordination Polymers[J]. Inorg. React.,1964,1:1-57.
    [63]S. Zang, Y. Su, Y. Li. One dense and two open chiral Metal-Organic Frameworks:Crystal structures and physical properties[J].Inorg Chem.,2006,45:2972-2978.
    [64]B. F. Abrahams, B. E. Hoskins, R. Robson. A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks [J]. J. Am. Chem. Soc.,1991,113(99):3606-3607.
    [65]B. F. Abrahams, B. F. Hoskins, D. M. Michail, R. Robson. Assembly of porphyrin building blocks into network structures with large channels [J]. Nature,1994, 369(1225):727-729.
    [66]S. R. Batten, B. F., Hoskins R. Robson.3D Knitting patterns. Two independent, interpenetrating rutile related infinite frameworks in the structure of Zn[C(CN)3]2[J]. Chem. Commun.,1991,4(6):445-447.
    [67]W. Gable, B. E. Hoskins, R. Robson. Synthesis and structure of [NMe4] [CuPt(CN)4]:an infinite three-dimensional framework related to PtS which generates intersecting hexagonal channels of large cross section [J]. Chem. Commun.,1990,12(8):762-763.
    [68]B. F. Abrahams, B. F.Hoskins, R.Robson. A novel three-dimensional network complex [J]. Chem. Commun.,1990,60(5):732-738
    [69]Y. Robin, K. M. Fromm. Coordination polymer networks with O- and N-donors:What they are, why and how they are made[J]. Coord. Chem. Rev.,2006,250:2127-2157.
    [70]S. Noroa, S. Kitagawab, T. Akutagawaa, T. Nakamuraa. Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands: Crystal structures and microporous properties[J].Prog. Polym. Sci.,2009,34:240-279.
    [71]V. A. Friese, D. G. Kurth. Soluble dynamic coordination polymers as a paradigm for materials science[J]. Coord. Chem. Rev.,2008,252:199-211.
    [72]Erxleben. Structures and properties of Zn(II) coordination polymers[J]. Coord. Chem. Rev.,2003,246:203-228.
    [73]M. Heller, U. S. Schubert.Optically Active Supramolecular Poly(l-lactide)s End-Capped with Terpyridine[J].Macromol. Rapid Commun.,2001,22:1358-1363.
    [74]C. Janiak. Engineering coordination polymers towards applications[J]. Roy. Soc. Chem., 2003,6:2781-2804.
    [75]Y. X Hu, W. W Zhang, X. F. Zhang, Z. L. Wang, Y. Z. Li, J. F. Bai. Two corrugated 2D bilayer (63) (658) topological coordination polymers:Synthesis, structure, and water-induced reversibletransformation[J]. Inorg.Chem. Commun.,2009,12 (2):166-168.
    [76]U. Velten, B. Lahn, M. Rehahn. Soluble, well-defined copper(I) and silver(I) coordination polymers from 4,4"-bis((9-aryl)-2-o-phenanthrolinyl)-2',5'-dihexyl-p-terphenyl macromol [J]. Chem. Phys.,1991,198:2789-2816.
    [77]U. Velten, M. Rehahn. First synthesis of soluble, well defined coordination polymers from kinetically unstable copper(Ⅰ) complexes[J]. Chem. Commun.,1996,23:2639-2640.
    [78]S. Schmatloch, M. F. Gonzalez, U. S. Schubert. Metallo-Supramolecular Diethylene Glycol:Water-Soluble Reversible Polymers[J].Macromol. Rapid Commun.,2002,23: 957-961.
    [79]Q. T. Liu, Y. L. Wang, W. Li, L. X. Wu. Structural Characterization and Chemical Response of a Ag-Coordinated Supramolecular Gel [J]. Langmuir,2007,23:8217-8223.
    [80]R. Kersey, D. M. Loveless,S. L. Craig. A hybrid polymer gel with controlled rates of cross-link rupture and self-repair[J]. J. Roy. Soc. Interface,2007,4:373-380.
    [81]T. Oku, Y. Furusho, T. Takata. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly[J].Angew. Chem.2004,116:984-984.
    [82]Y. Furusho, T. Oku, T. Hasegawa, A. Tsuboi, N. Kihara, T. Takata.Dynamic covalent approach to [2]- and [3]rotaxanes by utilizing a reversible thiol-disulfide interchange reaction[J]. Chem.-Euro. J.,2003,9(12):2895-2903.
    [83]R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B.Folmer, J. H. K. K.Hirschberg, R.F. M. Lange, J. K. L. Lowe, E.W. Meijer. Reversible polymers formed from selfcomplementary monomers using quadruple hydrogen bonding[J]. Science,1997,278:1601-1604.
    [84]T. Hentschel, H. Munstedt. Kinetics of the molar mass decrease in a polyurethane melt:a rheological study[J]. Polymer,2001,42:3195-203.
    [85]D. Joel, A. Hauser. Thermal dissociation of urethanes studied by FTIR spectroscopy[J]. Angew. Makromol. Chem.,1994,217:191-199.
    [86]Pazos JF. US Patent 3872057[P],1975.
    [87]N. Yoshie, M. Watanabe, H. Araki, K. Ishida.Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond:Polymers from bisfuranic terminated poly(ethylene adipate) and tris-maleimide[J]. Polym. Degrad. Stab.,2010,95:826-829.
    [88]R. Gheneim, C. Perez-Berumen, A.Gandini. Diels-Alder Reactions with Novel Polymeric Dienes and Dienophiles:(?) Synthesis of Reversibly Cross-Linked Elastomers[J]. Macromolecules,2002,35:7246-7253.
    [89]Goiti, M. B. Huglin, J. M. Rego.Thermal Breakdown by the Retro Diels-Alder Reaction of Crosslinking in Poly[styrene-co-(furfuryl methacrylate)][J]. Macromol. Rapid. Commun.,2003,24(11):692-696
    [90]J. P. Kennedy, K. F. Castner. Thermally reversible polymer systems by cyclopentadienylation. Ⅱ. The synthesis of cyclopentadiene-containing polymers[J].J. Polym. Sci. Polym. Chem. Ed.,1979,17:2055-2070.
    [91]M. A. J. van der Mee, J. G.P. Goossens, M.van Duin. Thermoreversible cross-linking of maleated ethylene/propylene copolymers with diamines and amino-alcohols[J]. Polymer,2008,49:1239-1248
    [92]殷红,李效玉.热塑性弹性体中的热可逆共价交联反应[J].高分子材料科学与工程,2000,16(6):24-27.
    [93]J.E. Puskas, Y. H. Chen. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement [J]. Biomacromolecules.2004,5(4):1141-1154
    [94]钱伯章.几种热塑性弹性体的产需现状和发展趋势[J].橡胶工业,2005,52:371-377.
    [95]岳献云.热塑性弹性体研究进展[J].特种橡胶制品,2005,26(1):51-54.
    [96]崔巍,吕占霞,闫卫东,李杨.热塑性弹性体的研究进展[J].合成树脂及塑料,2005,22(4):71-75.
    [97]严海彪,石文鹏,潘国元.动态硫化粉末NBR/高聚合度PVC热塑性弹性体性能的研究[J].高分子材料科学与工程,2004,20(2):165-167.
    [98]丁雪佳,王啸,刘振亚,朱玉俊,余鼎.开炼机与密炼机动态硫化制备NBR/PVC热塑性弹性体的研究[J].弹性体,2001,11(6):31-33.
    [99]焦书科,夏宇正,付志峰,石淑先.丙烯酸酯类热塑性弹性体[J].合成橡胶工业,2003,26(3):129-135.
    [100]R. J. Spontak, N. P. Pate. Thermoplastic elastomers:fundamentals and applications[J]. J. Colloid Interface Sci.,2000,5:334-341.
    [101]Prince, S. K. De. Ionic thermoplastic elastomers:a review[J]. Polym. Rev., 2001,41(1):41-77.
    [102]J. T. Maynard, P. R. Johnson.Crosslinking Chlorosulfonated Polyethylenes[J].Rubber Chem. Technol.,1963,36:963-974.
    [103]U. Paeglis, F. X. O'Shea.Thermoplastic elastomer compounds from sulfonated epdm ionomers[J]. Rubber Chem. Technol.,1988,61:223-237.
    [104]J. T. Maynard, P. R. Johnson.Ionic crosslinking of chlorosulfonated polyethylenes[J]. J. Appl. Polym. Sci.,1963,7(5):1943-1950.
    [105]J. Oostenbrink, R. J. Gaymans. Maleic anhydride grafting on EPDM rubber in the melt[J]. Polymer,1992,33(14):3086-3088.
    [106]W. Cooper. Copolymers of butadiene and unsaturated acids:Crosslinking by metal oxides[J]. J. Polym. Sci.,1958,28(116):195-206.
    [107]P. Brown, C. F. Gibbs. Carboxylic Elastomers [J]. Rubber Chem. Technol.,1995,28:937-951.
    [108]S. Datta, S. K. De, E. G. Kontos, J. M. Wefer.Ionic thermoplastic elastomer based on maleated epdm rubber. I. Effect of zinc stearate[J]. J. Appl. Polym. Sci.,1996,61(1): 177-186.
    [109]W. J. MacKnight, R. D. Lundberg.Elastomeric Ionomers[J]. Rubber Chem. Technol., 1984,57:652-663.
    [110]P. Antony, A. K. Battacharya, S. K. De. Ionomeric polyblends of zinc salts of maleated EPDM rubber and poly(ethylene-co-acrylic acid).Ⅱ. Effect of zinc stearate on processability[J]. J. Appl. Polym. Sci.,1999,71:1257-1265.
    [111]张祥麟,康衡等.配位化学[M].湖南长沙:中南工业大学出版社.1986
    [112]F. Wells. Structural Inorganic Chemistry [M].5th ed. Oxford University Press. Oxford.1984
    [113]J. M. G. Cowie, N. M. A. Wadi. Polymer-metal complexes, based on poly(itaconic acid ester) derivatives, as catalysts for the decomposition of hydrogen peroxide[J]. Polymer,1985,26:1571-1574.
    [114]D. Wohrle, A. D. Pomogailo.Metal complexes and metals in macromolecules: sythesis, structure and properties[M].Weinheirn,Germany:Wiley-VCH.2003.
    [115]V. Bushkova, I. P. Koryakova, Y. A. Skorik, B. I. Lirova, A. V. Pestov, V. M. Zhukovsky. Influence of metal coordination on conductivity behavior in poly(butadiene-acrylonitrile)-CoCl2 system[J]. Electrochim. Acta,2008,53:5322-5333.
    [116]J. Pietrasik, M. Gaca, M. Zaborski, L. Okrasa, G. Boiteux,O. Gain. Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles[J]. Euro. Polym. J.,2009,45:3317-3325.
    [117]游长江,段晓霞,丁奎,沈洁,许晋国,贾德民.丁腈橡胶/聚氯乙烯/有机蒙脱土纳米复合材料的结构与性能[J].合成橡胶工业.2005,28(6):465-469.
    [118]J. T. Kim, D. Y. Lee, T S. Oh, D. H. Lee. Characteristics of nitrile-butadiene rubber layered silicate nanocomposites with silane coupling agent [J]. J. Appl. Polym. Sci.,2003, 89(10):2633-2640
    [119]J. T. Kim, T. S.Oh, D. H.Lee. Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates [J]. Polym. Int., 2003,52(7):1203-1208.
    [120]X. H. Yuan, Z. L. Peng, Y.Zhang, Y X.Zhang. In situ preparation of zinc salts of unsaturated carboxylic acids to reinforce NBR [J]. J. Appl. Polym. Sci.,2000,77(2): 2740-2748.
    [121]王聿衡,彭宗林,张勇,张隐西.原位合成甲基丙烯酸锌增强氢化丁腈橡胶[J].合成 橡胶工业.2005,28(3):205-210.
    [122]王聿衡,彭宗林,张勇,张隐西.原位合成甲基丙烯酸锂增强丁腈橡胶的性能和结构[J].合成橡胶工业.2006,29(1):40-43.
    [123]X. H. Yuan, Y.Zhang, Z. L. Peng, Y. X. Zhang. In situ preparation of magnesium methacrylate to reinforce NBR [J].J. Appl Polym. Sci.,2002,84(4):1403-1408.
    [124]H. Du, Y.Zhang, Z. L. Peng, Y. X.Zhang. Polymerization conversion and structure of magnesium methacrylate in ethylene-vinyl acetate rubber vulcanizates [J]. J. Appl. Polym. Sci.,2004,93(3):2379-2384.
    [125]P. Antony, S. K. De. Synergism in properties of ionomeric polyblends based on zinc salts of maleated high-density polyethylene and carboxylated nitrile rubber [J]. J. Appl. Polym. Sci.,1998,70(1):483-488.
    [126]S. P. Wen, X. P. Zhang, S. Hu, L. Q. Zhang, L. Liu. Influence of in-situ reaction on luminescent properties of Sa complex/HNBR composites [J]. Polymer,2009,50:3269-3274.
    [127]刘力,张秀娟,金日光,杨程,贺磊,张婉,张立群.原位反应法制备丙烯酸钐/丁腈橡胶复合材料及其荧光性能研究[J].高等化学学报,2004,25(3):570-574.
    [128]李慧,吴驰飞,张喜亮,袁晓芳,黄剑锋,沈飞,肖方一.高性能、无污染可再生的金属配位交联的新型丁腈橡胶[P].中国专利:CN1583856.2004
    [129]李慧,袁晓芳,黄剑峰,沈飞,张尧,吴驰飞.高性能丁腈橡胶的配位键交联,中国有色金属学报[J],2004,14:140-142.
    [130]袁晓芳,吴国章,吴驰飞.结晶水对硫酸铜与丁腈橡胶之间配位交联反应的影响.高等学校化学学报[J],2006,27(10):1978-1981
    [131]X. F. Yuan, F. Shen, G. Z. Wu, C. F. Wu. Effects of acrylonitrile content on the coordination crosslinking reaction between acrylonitrile-butadiene rubber and copper sulfate[J]. Mater. Sci. Eng. A,2007,459:82-85.
    [132]X. F. Yuan, F. Shen, G. Z. Wu, C. F. Wu. Novel in situ coordination copper sulfate/acrylonitrile-butadiene rubber composite [J]. J. Polym. Sci. B:Polym. Phys.,2007, 45(5):571-576.
    [133]袁晓芳,吴国章,吴驰飞.新型配位交联硫酸铜/丁腈橡胶复合材料的影响因素[J].特种橡胶制品,2007,28(4):16-19
    [134]J. F. Huang, S. Y. Qian, F.Shen, C. F. Wu. Investigation on the Coordination Interfacial Reaction by Dynamical Mechanical Analysis[J]. J. Polym. Sci. B:Polym. Phys.,2008,47:1-13
    [135]袁晓芳,吴国章,吴驰飞.硫酸铜含量对硫酸铜与丁腈橡胶之间配位交联反应的影响[J].高分子学报,2007,(3):272-276
    [136]X. F.Yuan, F. Shen, G. Z. Wu, C. F. Wu. Effects of Small Molecule Plasticizer on the Coordination Crosslinking Reaction Between Acrylonitrile-Butadiene Rubber and Copper Sulfate[J]. Polym. Comp.,2008,29:302-306
    [137]F. Shen, X. F. Yuan, W. H. Guo, C. F.Wu. Coordination crosslinking of nitrile rubber filled with copper sulfate particles[J]. Chinese J. Polym. Sci.,2007,25 (5): 447-459
    [138]李宁子,任文坛,张勇,张隐西.氯化亚锡对氢化丁腈橡胶配位交联作用的研究[J].2007,28(1):14-18.
    [139]李宁子,任文坛,张勇,张隐西.一种氢化丁腈橡胶硫化胶的制备方法[P].中国专利:200610116629.2006.
    [140]张诚,徐立新.一种核壳型橡胶配位交联剂[J].中国专利:200710164553.2007.
    [141]Luis Ibarra, Andres Rodriguez, Irene Mora-Barrantes. Crosslinking of carboxylated nitrile rubber (XNBR) induced by coordination with anhydrous copper sulfate[J]. Polym. Int.,2009,58:218-226.
    [142]赵志正.丙烯酸酯橡胶的耐热性和耐油性[J].世界橡胶工业,2009,36(11):5-8.
    [143]王作龄.丙烯酸酯橡胶及其配方技术[J].世界橡胶工业,1999,26(5):50-60.
    [144]梁诚.丙烯酸酯橡胶的生产、改性与应用[J].化工新型材料,2004,32(4):18-20.
    [145]马文石.丙烯酸酯橡胶的加工与性能[J].特种橡胶制品,1999,20(3):1-5.
    [146]C. D. Calder. Halogenated polyacrylate elastomers[P]. US 4069180,1978
    [147]M. R. De, H. Tucker. Acrylic ester vinylbenzyl chloride elastomers[P]. US 3763119, 1973.
    [148]Yokota, T. Kano. Halogen-containing acrylic rubber composition and products of vulcanization thereof[P].JP20090172575,2009.
    [149]M. Fujita, Y. Nakagawa. Acrylic rubber composition[P].JP 2000198901,2000
    [150]T. Miyauchi, Y. Abe. Acrylic rubber composition, and vulcanized rubber thereof and its applications[P]. JP20080012158,2008.
    [151]Masuda, Y. Ishii. Acrylic rubber, acrylic rubber composition, and acrylic rubber crosslinked product[P]. JP 2008214418,2008.
    [152]G. Mathew, J.M. Rhee, Y.S. Lee, D.H. Park, C. Nah. Cure kinetics of ethylene acrylate rubber/clay nano-composites. J. Ind. Eng. Chem.,2008,14:60-65.
    [153]T. Miyauchi, Y. Abe. Acrylic rubber composition, vulcanized rubber obtained therefrom, and use thereof[P]. WO2008JP59385,2008.
    [154]M. Ichikawa, A. Suzuki. Acrylic rubber composition and rubber hose obtained using the same[P]. US19950454625,1995.
    [155]R. Weisendanger, M. Reisinger. UV-curable epoxy acrylates[P]. CH20020002161, 2002.
    [156]D. D. Berry, F. E. Critchfield, R. M. Gerkin, J. V. Koleske, N. Dunski. New comonomer for preparing high performance sulfur curable acrylic rubbers[J]. Rubber World,1974,170:42-44,46-47.
    [157]L. Da, L. Lanzavecchia, G. Savini. Vulcanizable compositions based on modified acrylic rubbers[P]. US19950413893,1995.
    [158]R.E. Mprris, C. Falls. Acrylate rubber vulcanizable compositions [P]. US19730397991,1973.
    [159]B. G. Soares, D. M. Santos, A. S. Sirqueira. A novel thermoplastic elastomer based on dynamically vulcanized polypropylene/acrylic rubber blends[J]. Express Polym. Lett., 2008,2:602-613.
    [160]R. E. Morris, C. Falls. Acrylate rubber vulcanizable compositions [P]. US19730398090,1973.
    [161]D. E. Jablonski. Acrylate rubber compositions[P]. US19820367209,1982.
    [162]E. Giannetti, R. Mazzocchi, L. Fiore, E. Crespi. Ammonium Salt Catalyzed Crosslinking Mechanism of Acrylic Rubbers[J]. Rubber Chem. Technol.,1983,56:21-30.
    [163]S. Hagiwara, M. Koga. Acrylic rubber composition[P]. JP20050325586,2005.
    [164]T. Ooishi, Y. Ishii. Acrylic rubber composition and crosslinked product[P]. JP20050160688,2005.
    [165]Abhijit, K. Anil. Bhowmick. Influence of Dynamic Vulcanization and Phase Interaction on the Swelling Behavior of the Thermoplastic Elastomeric Blends of Nylon-6 and Acrylate Rubber in Various Solvents and Oil[J]. J. Appl. Polym. Sci.,1998. 69:2331-2340.
    [166]M. Debowska, J. Piglowski, J. Rudzinska-Girulska, T. Suzuki, Z. Q. Chen. Polyamide, acrylic rubber and their blends studied by positron annihilation and other methods[J].Radiat. Phys. Chem.,2003,68:471-473.
    [167]Jha, A. K. Bhowmick. Thermal degradation and ageing behaviour of novel thermoplastic elastomeric nylon-6/acrylate rubber reactive blends[J].Polym. Degrad. Stab.,1998,62:575-586.
    [168]Hassan, B. Haworth. Impact properties of acrylate rubber-modified PVC:Influence of temperature [J]. J. Mater. Process.Tech.,2006,172:341-345.
    [169]Wongon, J. Wootthikanokkhan. Dynamic Vulcanization of Acrylic Rubber-Blended PVC[J]. J. Appl. Polym. Sci.,2003,88:2657-2663.
    [170]Jha, A. K. Bhowmick. Thermoplastic elastomeric blends of poly(ethylene terephthalate) and acrylate rubber:1. Influence of interaction on thermal, dynamic mechanical and tensile properties [J]. Polymer,.1997,38 (17):4337-4344.
    [171]J. W. Huang. Effect of Nanoscale Fully Vulcanized Acrylic Rubber Powders on Crystallization of Poly(butylene terephthalate):Nonisothermal Crystallization[J]. J. Appl. Polym. Sci.,2007,106:2031-2040.
    [172]Jha, A.K. Bhowmick. Mechanical and Dynamic Mechanical Thermal Properties of Heat- and Oil-Resistant Thermoplastic Elastomeric Blends of Poly(butylene terephthalate) and Acrylate Rubber[J].J. Appl. Polym. Sci.,2000,78:1001-1008.
    [173]Byung Kyu Kim,Jung Hwan Shin. Modification of waterborne polyurethane by forming latex interpenetrating polymer networks with acrylate rubber[J]. Colloid Polym. Sci.,2002,280:716-724.
    [174]X. Q. Yu, G. Gao, J. Y. Wang, F. Li, X. Y. Tang. Damping materials based on polyurethane/polyacrylate IPNs:dynamic mechanical spectroscopy, mechanical properties and multiphase morphology [J]. Polym. Int.,1999.48:805-810.
    [175]J. Yang, M. A. Winnik, D. Ylitalo, R. J. DeVoe. Polyurethane-Polyacrylate Interpenetrating Networks.1.Preparation and Morphology [J]. Macromolecules,1996, 29:7047-7054.
    [176]Y. Coran. New elastomers by reactive processing. Part I. Vulcanizable precured alloys from nitrile rubber (NBR) and acrylate rubber (AR)[J]. Rubber Chem. Tech.,1990, 63(4):599-612.
    [177]L. Celestino, M. de Oliveira, A. S. Sirqueira, B. G. Soares. Acrylic Rubber/Nitrile Rubber Blends:The Effect of Curatives on the Mechanical, Morphological, and Dynamic Mechanical Properties [J]. J. Appl. Polym. Sci.,2009,113:721-729.
    [178]吴福生,王真琴.丙烯酸酯橡胶与丁腈橡胶并用研究[J].弹性体,2001,11(6):27-30.
    [179]孙俊英,陈运熙,马晓兵.橡胶加工助剂在NBR和ACM中的应用[J].橡胶工业,1997,44(9):527-529
    [180]A. Kader, A. K. Bhowmick. Acrylic Rubber-Fluorocarbon Rubber Miscible Blends: Effect of Curatives and Fillers on Cure, Mechanical, Aging, and Swelling Properties[J]. J. Appl. Polym. Sci.,2003,89:1442-1452.
    [181]A. Kader, A. K. Bhowmick. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polym. Degrad Stabil.,2003,79:283-295.
    [182]M. A. Kader, A. K. Bhowmick. Morphology, mechanical and thermal behavior of acrylate rubber/fluorocarbon elastomer/polyacrylate blends[J]. J. Mater. Sci.,2002,37: 1503-1513.
    [183]袁晓芳.原位配位交联新型NBR复合材料的研究[D].华东理工大学,2006.
    [184]M. S. Akanni, E. K. Okoh, H. D. Burrows, H.A. Ellis. The thermal behaviour of divalent and higher valent metal soaps:a review[J]. Thermochim. Acta,1992,208:1-41.
    [185]S. Barman, S. Vasudevan. Melting of Saturated Fatty Acid Zinc Soaps[J]. J. Phys. Chem. B,2006,110 (45):22407-22414.
    [186]Schreiner, W. Beck. Coordination of the Ester Group-Hydrido-Rhodium (III) and Iridium (Ⅲ) Complexes of Orthometallated Diphenylmethylene Glycine Esters[J].Z. anorg. allge. Chem.,2010,636:499-505.
    [187]E. Leach, R. J. Angelici, Metal-ion catalysis of the hydrolysis of some amino acid ester N, N-diacetic acids[J]. J. Am. Chem. Soc.,1968,90:2504-2508.
    [188]Kapoor, A. Pathak, P. Kau, P. Venugopalan, R. Kapoor. Steric control of coordination: Unusual coordination mode of dimethylpyridine-2,6-dicarboxylate in a new dinuclear copper(II) complex [(dmpc)(Cl)(μ-Cl)Cu2(μ-Cl)(Cl)(dmpc)] and reversal of the coordination mode in [Cu(dmpc) (H2O)3] (ClO4)2. Transition. Met. Chem.,2004,29: 251-258.
    [189]J. W. Fisher, K. L. Trinkle. Iodide dealkylation of benzyl, PMB, PNB, and t-butyl n-acyl amino acid esters via lithium ion coordination. Tetrahedron Lett.,1994,35, 2505-2508.
    [190]M. J. Szabo, R. K. Szilagyi, L. Bencze. Density functional studies of [(alkoxy-carbonyl) methyl] cobalt tricarbonyl triphenylphosphine complexes:an a-ester □3-coordination[J]. Inorg. Chim. Acta,2003,344:158-168.
    [191]J. Rolker, T. Glasner. Modification of acrylate polymers by treatment with metal carbonyl[P]. US 3959231,1973.
    [192]G. A. Nunnery, K. I. Jacob, R. Tannenbaum. Physical gelation of cellulose acetate propionate solutions mediated by metal carbonyl complexes[J]. Polymer,2010,51: 1082-1087.
    [193]K. Nakamoto, J. Fujita, S. Tanaka, M. Kobayashi. Infrared spectra of metallic complexes. IV. comparison of the infrared spectra of unidentate and bidentate metallic complexes[J]. J. Am. Chem. Soc.,1957,79:4904-4908.
    [194]R. Aubin, R. Rivest. Sur les reactions des polyesters avec le tetrachlorure de titane:I. La reaction de l'oxalate de diethyle avec le tetrachlorure de titane[J]. Can. J. Chem.,1958, 36:915-920.
    [195]R. V. Hull, L. Li, Y. C. Xing, C. C. Chusuei. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes[J]. Chem. Mater.,2006,18:1780-1788.
    [196]Kneubuhl, F.K. Line Shapes of Electron Paramagnetic Resonance Signals Produced by Powders, Glasses, and Viscous Liquids[J]. J. Chem.l Phys.,1960,33:1074-1078.
    [197]X.Q. Lu, W.D. Johnson. The reaction of aquatic humic substances with copper (II) ions:an ESR study of complexation[J]. Sci. Total Environ.,1997,203:199-207.
    [198]J. Hathaway, D. E. Billing, The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion[J]. Coord. Chem. Rev.,1970,5:143-207.
    [199]Z. El-Sonbatia, M. A. Diab, M. M. El-Halawany, N. E. Salam. Polymer complexes. XLXI. Supramolecular spectral studies on metal-ligand bonding of novel rhodanine sulphadrugs hydrazone[J]. Mater. Chem. Phys.,2010,123:439-449.
    [200]S. Balasubramanian, C.N. Krishnan. Synthesis and characterization of five-coordinate macrocyclic complexes of nickel (II) and copper (Ⅱ)[J]. Polyhedron, 1986,5:669-675.
    [201]Singh, B. P. Yadav, R. C. Aggarwal. Synthesis and characterization of 1-pheyl- 5-benzoyl-4-thiobiuret complexes with oxovanadium (IV), cobalt (Ⅱ and Ⅲ), nickel (Ⅱ), copper(Ⅱ),cadmium(Ⅱ) and mercury (Ⅱ)[J]. Ind. J.Chem.,1984,23A:441-444.
    [202]Antonya, S. K. De. Ionic thermoplastic elastomers:a review[J]. Polym. Rev.,2001, 41:41-77.
    [203]谢芙霞,顾润民.硫化胶交联结构及其性能[J].高分子材料科学与工程,1998,14(6):12-13.
    [204]B. H. A. A. van den Brule, P. J. Hoogerbrugge. Brownian dynamics simulation of reversible polymeric networks [J]. J. Non-Newtonian Fluid Mech.,1995,60:303-334.
    [205]袁晓芳.原位配位交联新型NBR复合材料的研究[D].华东理工大学,2006.
    [206]K. Sugiyasu, N. Fujita, M. Takeuchi, S. Yamada, S. Shinkai. Proton-sensitive fluorescent organogels[J].Org. Biomol.Chem.,2003,1:895-899.
    [207]S. I. Kawano, N. Fujita, S. Shinkai. Quater-, quinque-, and sexithiophene organogelators:unique thermochromism and heating-free sol-gel phase transition [J]. Chem.-Eur. J.,2005,11:4735-4742.
    [208]J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H.van Esch, B. L. Feringa. Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality[J]. Science, 2004,304:278-281.
    [209]H. J. Kim, J. H. Lee, M. Lee. Stimuli-Responsive Gels from Reversible Coordination Polymers[J]. Angew. Chem. Int. Ed.,2005,44:5810-5814.
    [210]F. Fages. Metal Coordination To Assist Molecular Gelation[J]. Angew. Chem., Int. Ed.,2006,45:1680-1682.
    [211]Frenkel. Hydrolysis of acrylonitrile-butadiene rubber[J]. Plast. Rub. Compos. Pro., 1992,17:19-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700