载BMP2活性肽PLGA-NHAC仿生骨基质材料修复大鼠颅骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】探讨自行研制的BMP2活性多肽与纳米羟基磷灰石胶原仿生骨材料修复大鼠颅骨缺损的效果,以及BMP2活性多肽与重组人骨形态发生蛋白2的诱导成骨活性的初步比较。
     【方法】通过材料学生物自组装技术PLGA-NHAC复合材料,同时用固相合成法合成BMP2活性多肽P24。将P24和rhBMP2分别通过真空吸附到复合材料上。动物实验随机分为三组,制备5mm颅骨缺损模型,分别接受空白PLGA-NHAC材料(A组),3ug rhBMP2/PLGA-NHAC(B组), 3mg P24/PLGA-NHAC(C组)。于6、12周每组各处死5只大鼠,取颅骨行X线、CT三维扫描及组织学检查,并行放射计量学和灰度值测定。比较各组骨缺损区新骨形成、炎症及材料降解情况。
     【结果】①12周X线骨缺损修复面积测定,A组与B组、C组均有明显差异(α<0.05),而B组、C组成骨量则近似(α>0.05)。灰度值的结果也存在同样的差异。②CT扫描:6周时A组未见成骨,B组、C组见部分高密度钙化影。12周时A组周边有部分新骨形成,B组、C组骨缺损已大部修复。③组织学检查:6周时A组材料少量降解,无炎症反应,B组、C组可见新生骨组织和大量成骨细胞。12周时A组缺损区纤维结缔组织密集,有少量新生骨在材料周边发现,B组、C组材料基本降解,有骨重建过程,但C组成骨量少于B组。
     【结论】①P24多肽具备很强的诱导成骨活性和稳定性。②PLGA-NHAC是理想的生物支架和缓释载体。③P24/PLGA-NHAC系统是潜在的临床骨缺损修复基质材料。
Objective: To investigate the efficiency of bone repair in rat calvarial defects by Biomimetic hydroxyapatite-collagan complex carrier/BMP2-derived peptide P24 system, and the preliminary comparison of bioactivity between bmp2-derived peptide P24 and rhBMP2
     Methods: Five-millimeter critical-size calvarial defects were created in 30 male Sprague–Dawley rats. The animals were divided into three groups of 10 animals each. The defects were treated with PLGA-NHAC (A group), rhBMP-2/PLGA-NHAC (B group), P24/PLGA-NHAC (C group). Defects were evaluated by X-ray, radiodensity, CT scan, histology, following a 6- and 12-week healing interval (5 animals/group/healing intervals).
     Results:①Radiological examination: The percentages of the regenerated areas in A group were significantly lower than B group and C group at 12 weeks (α<0.05),but no significant difference between B group and C group(α>0.05).The comparison of the gray levels also shows the difference.②Histological examination: At 6 weeks post-surgery, Small amount of biomimetic material in group A degraded, free of inflammation; and B group and C group show a large number of new bone tissue and osteoblasts. At 12 weeks, the defect sites were filled with dense connective tissue and small particles of residual PLGA-NHAC, minimal new bone formation was observed in group A. The quantity of the newly formed bone was greater than that observed at 6 weeks in B and C group, and the bone showed more advanced stages of remodeling and consolidation.
     Conclusion: P24 peptide is with strong osteoinductive activity and stability in vivo, and PLGA-NHAC is an ideal scaffold and a sustained release carrier. It is suggested that P24/PLGA-NHAC system may be a available matrix material for clinical bone defect.
引文
[1] Weiland.A.J, Phillips.T.W., Randolph M. Bone grafts: a radiologic, histologic and biomechanical model comparing autografts, allografts and free vascularized bone grafts. Plast. Reconstructr. Surg. 1984, 74:368–379.
    [2] DeLuca L., Raszewski R., Tresser N, et al. The fate of preserved autogenous bone graft. Plast. Reconstructr. Surg,1997,99:1324–1328.
    [3] Vogelin E, Jones NF, Huang JI, et al. Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J Bone Jt Surg Am, 2005,87(6):1323–1331.
    [4] Miki T, Imai Y. Osteoinductive potential of freeze-dried, biodegradable, poly(glycolic acid-co-lactic acid) disks incorporated with bone morphogenetic protein in skull defects of rats. Int J Oral Maxillofac Surg, 1996, 25: 402–406.
    [5] Cowan CM, Aalami OO, Shi YY, et al. Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover. Tissue Eng,2005,11(3-4):645–658.
    [6] Vogelin E, Jones NF, Huang JI, et al. Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap, a biodegradable matrix, and bone morphogenetic protein. J Bone Jt Surg Am, 2005,87(6):1323–31.
    [7] Takahashi Y, Yamamoto M, Tabata Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials, 2005,26(23):4856–65.
    [8] Narumichi M, Naoto Sa, Jun T, Hiroshi O, Hiroshi H, Masashi N, et al. Repair of a proximal femoral bone defect in dogs using a porous surfaced prosthesis in combination with recombinant BMP-2 and a synthetic polymer carrier. Biomaterials, 2003,24(13):2153–9.
    [9] Yamashita A, Takada T, Narita J, et al. Osteoblastic differentiation of monkey embryonic stem cells in vitro. Cloning Stem Cells, 2005,7(4):232–7.
    [10] Meinel L, Hofmann S, Betz O, et al. Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer andprotein delivery of BMP-2. Biomaterials ,2006,27(28):4993–5002..
    [11] Zhao B, Katagiri T, Toyoda H, et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem ,2006,281(32): 23246–53.
    [12] Alden TD ,Varady P , Kallemes DF ,et al . Bone morphogenetic protein gene therapy. Spine ,2002 ,27:S87~93
    [13] Simon. Z, Deporter. D.A, Pilliar. R.M, et al. Heterotopic bone formation around sintered porous-surfaced Ti-6Al-4V implants coated with native bone morphogenetic proteins. Implant Dent, 2006, 15: 265–274.
    [14] Seeherman, H, Wozney, J.M . Delivery of bone morphogenetic proteinsfor orthopedic tissue regeneration. Cytokine Growth Factor Rev, 2005, 16: 329–345.
    [15] Zhao B, Katagiri T, Toyoda H, Takada T, Yanai T, Fukuda T, et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem,2006,281(32):23246–53.
    [16] Kirsch T, Sebald W, Dreyer MK. Crystal structure of the BMP2-BRIA ectodomain complex. Nat struct Biol,2000, 7(6):492-296.
    [17]段智霞,郑启新,郭晓东等. BMP2活性多肽体外定向诱导大鼠BMSC向成骨方向分化的实验研究.中国矫形外科杂志,2007,15(21):1647-1650.
    [18]段智霞,郑启新,郭晓东等.骨形成蛋白2活性多肽体外定向诱导骨髓间充质干细胞向成骨方向分化的剂量依赖性研究.中国修复重建外科杂志, 2007 ,21(10):1118-1122.
    [19]段智霞,郑启新,郭晓东等. BMP2活性多肽/PLGA复合物植入异位成骨的实验研究.国际生物医学工程杂志,2007,30(3):129-132.
    [20]清华大学.纳米相钙磷盐/胶原/高分子骨复合多孔材料的制备方法.中国, A61L27/24, 01129699.2001.1-8.
    [21] Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: Molecular clones and activities. Science, 1988,242:1528–1534.
    [22] Riley EH, Lane JM, Urist MR, et al. Bone Morphgenetic protein-2:biology and application.Clin Orthop, 1996,327:39-46.
    [23] B.Wildemann, A. Kadow-Romacker, N. P. Haas,etal. Quantification ofvarious growth factors in different demineralized bone matrix preparations. J Biomed Mater Res, 2007,81A:437-442.
    [24] H. Inoda, G. Yamamoto, T. Hattori. rh-BMP2-induced ectopic bone for grafting critical size defects: a preliminary histological evaluation in rat calvariae. International Association of Oral and Maxillofacial Surgeons.,2007, 36: 39–44.
    [25] Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Relat Res, 1987, 225: 7–16.
    [26]清华大学.纳米相钙磷盐/胶原/高分子骨复合多孔材料的制备方法.中国, A61L27/24, 01129699.2001.1-8.
    [27]王程越,姚玉胜,艾红军等.纳米羟基磷灰石/胶原对富血小板血浆促进骨髓基质干细胞成骨向分化的影响.口腔医学研究,2007,23(3):241-244.
    [28]林朋,孙伟,李子荣等.纳米晶胶原基骨与人骨髓间充质干细胞的复合培养.中国临床康复, 2006,10(13):41-43.
    [29] Nakahara H, Takaoka K, Koezuka M, et al. Periosteal bone formation elicited by partially purified bone morphogenetic protein. Clin Orthop, 1989,239:299–305.
    [30] Kim CS, Kim JI, Kim J, et al. Ectopic bone formation associated with recombinant human bone morphogenetic protein-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials, 2004,19:1–7.
    [31] Pang EK, Paik JW, Kim SK, et al. Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in rat calvarial defects. J Periodontol, 2004,75: 1364–70.
    [32] Han DK, Kim CS, Jung UW, Chai JK, Choi SH, Ckim CK, et al. Effect of a Fibrin-fibronectin sealing system as a carrier for recombinant human bone morphogenetic protein-4 on bone formation in rat calvarial defects. J Periodontol, 2005,76(12):2216–22.
    [1] Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. J Biochem Cell boil,2004,36:568-584.
    [2] Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Relat Res ,1987,225:7–16.
    [3] Scarborough MT. Allograft-allograft healing? Salvage of massive allografts after fracture. Cin Orthop Relat Res,2001,382:28-33.
    [4] Kirker-Head CA. Potential application and delivery strategies for bone morphogenetic proteins. Advanced Drug Delivery Rev ,2000, 43: 65–92.
    [5] Kitazawa R, Kitazawa S. Gene expression during fracture healing in normal mouse: in situ hybridization on hard tissue for investigation of regenerative mechanisms. Acta Histochem Cytochem,2001,34: 321–328.
    [6] Kitazawa R, Kitazawa S, Kishimoto H. Expression of bone morphogenetic protein (BMPs) in fracture mouse bone tissue: in situ hybridization with polymerase chain reaction (PCR)-derived antisense DNA probe. Acta Histochem Cytochem,1998,31: 231–236.
    [7]胡蕴玉.现代骨科基础与临床.第一版.北京:人民卫生出版社,2006.151-166.
    [8] Rui Hou, Fulin Chen, Yaowu Yang, et al. Comparative study between coral- mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical- sized cranial defect model. Journal of Biomedical Materials Research, 2006, 10:85-93.
    [9] Milan Milovancev, Peter Muir, Paula Manley, et al. Clinical Application of Recombinant Human Bone Morphogenetic Protein-2 in 4 Dogs. Journal of The American College of Veterinary Surgeons, 2007,36:132-140.
    [10] Seeherman H, Bouxsein M, Kim H, et al: rhBMP-2/calcium phosphate matrix accelerates osteotomy-site healing in a non-human primate model at multiple treatment times and concentrations. J Bone Joint Surg Am ,2006,88:144–160.
    [11] Masatoshi Hoshino, Takeshi Egi, Hidetomi Terai, et al. Repair of long intercalated rib defects using porous beta-tricalcium phosphate cylinders containing recombinant human bone morphogenetic protein-2 in dogs. Journal of Biomaterials ,2006,27:4934–4940.
    [12] C. Schopper, D. Moser, E. Spassova, et al. Bone regeneration using a naturally grown HA/TCP carrier loaded with rhBMP-2 is independent of barrier-membrane effects. J Biomed Mater Res, 2008,85A:954-963.
    [13] Esther W. H. Bodde, Otto C. Boerman, Frans G. M. Russel, The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. J Biomed Mater Res,2008, 87A: 780–791.
    [14] Kao HJ., Lin HR., Lo YL, et al. 2006. Characterization of pilocarpineloaded chitosan/ Carbopol nanoparticles. J. Pharm. Pharmacol. 58, 179–186.
    [15] Maria L. E. Faria, Yan Lu, Kathleen Heaney, et al. Recombinant Human Bone Morphogenetic Protein-2 in Absorbable Collagen Sponge Enhances Bone Healing of Tibial Osteotomies in Dogs. J The American College of Veterinary Surgeons,2007,36: 122-131.
    [16] Joa?o Paulo Mardegan Issa, Ca′ssio do Nascimento, Maria Vito′ria Lopes Badra Bentley, et al. Bone repair in rat mandible by rhBMP-2 associated with two carriers. J Micron,2008,39:373-379.
    [17] Jungju Kim, In Sook Kim, Tae Hyung Cho, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Journal of Biomaterials, 2007, 28: 1830-1837.
    [18] C. Kirker-Head. V. Karageorgiou, S. Hofmann, et al. BMP-silk composite matrices heal critically sized femoral defects. J BONE,2007,41: 247-255.
    [19] Chang-Sung Kim, Joon-Il Kim, Jin Kim, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Journal of Biomaterials,2005,26:2501-2507
    [20] Ahn SH, Kim CS, Suk HJ, et al. Effect of recombinant human bone morphogenetic protein-4 with carriers in rat calvarial defects. J Periodontol, 2003,74:787–97.
    [21] Henning Schliephake, Herbert A. Weich, Christian Dullin, et al. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid-An experimental study in rats. Journal of Biomaterials,2008,29:103-110.
    [22] Narumichi Murakami, Naoto Saito, Jun Takahashi, et al. Repair of a proximal femoralbone defect in dogs using a porous surfaced prosthesis in combination with recombinant BMP-2 and asynthetic polymer carrier. Journal of Biomaterials,2003,24: 2153-2159.
    [23] Megan E. Oest, Kenneth M. Dupont, Hyun-Joon Kong, et al. Quantitative Assessment of Scaffold and Growth Factor-Mediated Repair of Critically Sized Bone Defects. Journal of Orthopaedic Research,2007,25:941–950.
    [24] Joa?o Paulo Mardegan Issa, Ca′ssio do Nascimento, Mamie Mizusaki Iyomasa, et al. Bone healing process in critical-sized defects by rhBMP-2 using poloxamer gel and collagen sponge as carriers. J Micron,2008,39:17-24.
    [25] Yong-Il Chung , Kang-Min Ahn, Seung-Ho Jeon, et al. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle–hydrogel complex. Journal of Controlled Release,2007,121:91-99.
    [26] Satoshi Kokubo, Ryuhei Fujimoto, Shoji Yokota, et al. Bone regeneration by recombinant human bone morphogenetic protein-2 and a novel biodegradable carrier in a rabbit ulnar defect model. Journal of Biomaterials,2003,24:1643-1651.
    [27] Tien-Min G. Chu, Stuart J. Warden, Charles H. Turner, et al. Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Journal of Biomaterials,2007,28:459-467.
    [28] Yin-Chih Fu,1Hemin Nie,Mei-Ling Ho, et al. Optimized Bone Regeneration Based on Sustained Release From Three-Dimensional Fibrous PLGA/Hap Composite Scaffolds Loaded with BMP-2. J Biotechnology and Bioengineering,,99:996-1006.
    [29] Masahiro Yoneda, Hidetomi Terai, Yuuki Imai, et al. Repair of an intercalated long bone defect with a synthetic biodegradable bone-inducing implant. Journal of Biomaterials,2005,26:5145-5152.
    [30]清华大学.纳米相钙磷盐/胶原/高分子骨复合多孔材料的制备方法.中国, A61L27/24, 01129699.2001.1-8.
    [31]吴斌,郑启新,郭晓东.BMP-2活性多肽/重组胶原矿化骨复合材料修复大鼠颅骨缺损的实验研究.中华创伤杂志,24(12):1010-1012.
    [32] Sung-Jae Hong, Chang-Sung Kim, Dong-Kwan Han, The effect of a fibrin- fibronectin/b-tricalcium phosphate/recombinant human bone morphogenetic protein-2system on bone formation in rat calvarial defects. Journal of Biomaterials,2006,27: 3810-3816.
    [33] Urist MR. Bone: Formation by autoinduction. J Science, 1965,150:893–899.
    [34] Honsawek S, Powers RM, Wolfinbarger L.etal Extractable bone morphogeneticprotein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. J Cell Tissue Bank ,2005,6:13–23.
    [35] Takikawa S, Bauer TW, Kambic H, Togawa D,etal. Comparative evaluation of the osteoinductivity of two formulations of human demineralized bone matrix. J Biomed Mater Res A,2003,65:37–42.
    [36] Zhang M, Powers RM, Jr., Wolfinbarger L Jr. Effect(s) of the demineralization process on the osteoinductivity of demineralized bone matrix. J Periodontol ,1997,68:1085– 1092.
    [37] Iwata H, Sakano S, Itoh T, etal. Demineralized bone matrix and native bone morphogenetic protein in orthopaedic surgery.Clin Orthop Relat Res ,2002,395:99– 109.
    [38] B.Wildemann, A. Kadow-Romacker, N. P. Haas,etal. Quantification ofvarious growth factors in different demineralized bone matrix preparations. J Biomed Mater Res, 2007,81A:437-442.
    [39] H. Inoda, G. Yamamoto, T. Hattori. rh-BMP2-induced ectopic bone for grafting critical size defects: a preliminary histological evaluation in rat calvariae. International Association of Oral and Maxillofacial Surgeons.,2007, 36: 39–44.
    [40] Zhao B, Katagiri T, Toyoda H, Takada T, Yanai T, Fukuda T, et al. Heparin potentiates the in vivo ectopic bone formation induced by bone morphogenetic protein-2. J Biol Chem,2006,281(32):23246–53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700