输电线路覆冰导线舞动及其对塔线体系力学特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆冰导线舞动对输电线路安全运行造成了严重危害,国内外学者对覆冰导线舞动机理及防护已进行了大量的研究工作。但是目前对舞动机理的研究多采用传统方法,对目标模型进行简化处理。本文在国内外研究成果基础上,全面考虑影响导线舞动的因素,就其发生机理以及对塔线体系影响进行研究。本文的研究有助于更深入地认识覆冰导线舞动机理及其对输电线路力学特性的影响,对“西电东送、南北互供、全国联网”和超、特高压输电线路的建设和运行具有一定的参考意义。
     本文首先应用“悬链曲线”理论和“抛物线”理论分别对架空输电线路导线的静力特性进行分析,在此基础上研究了均匀覆冰条件下,风、气温等气象条件对导线静力特性的影响。在“悬链曲线”方法基础上,采用VC++6.0编制了“架空输电线静力特性分析软件”。根据湖北中山口大跨越的实际参数,计算了不同气象条件下其导线张力大小,并分析了气温、覆冰厚度、风速对导线张力的影响。结果表明,冰冻环境下,导线张力和形状的变化大小主要取决于覆冰的变化。
     根据不均匀覆冰特性,研究了耐张段内不均匀覆冰与不同期脱冰条件下杆塔的不平衡张力。对于各档不均匀覆冰输电线路,当重冰档在耐张段两端时,靠近耐张杆塔的直线杆塔承受的不平衡张力最大;对于各档不同期脱冰线路,当轻冰档位于耐张段中央时,轻冰档的弧垂减小量最大。因此,对于新建的塔线需根据其气象条件对铁塔关键部位进行加固处理。
     基于流体力学理论,提出了典型覆冰导线——新月形覆冰导线气动特性分析模型的建立方法以及数值模拟方法,并利用该模型与方法计算了覆冰导线周围的空气流场,以及不同覆冰厚度的导线在不同迎风攻角下的升力系数、阻力系数及扭矩系数,得到了覆冰厚度、风速对不对称覆冰导线空气动力参数的影响规律。本方法计算得到的影响规律与现有文献中的影响规律基本一致,验证了本文方法的正确性。从而实现了流体计算代替风洞试验获取覆冰导线的空气动力参数的方法,避免了大量的试验工作,节省了人力和物力。
     针对传统的单自由度模型忽略扭转方向和水平方向振动、不能获取导线舞动的时程曲线与轨迹的不足,建立了考虑覆冰导线垂直、水平及扭转方向的耦合振动条件下的覆冰导线舞动的三自由度力学分析模型。采用解析法与Simulink仿真相结合的方法对三自由度模型控制方程进行求解,该方法不仅解决了三自由度控制方程的求解问题,还能够直接得到导线舞动轨迹与时程曲线。以湖北中山口大跨越姚双线为例,分析其舞动时程曲线及舞动轨迹。结果表明,当舞动达稳定状态时,垂直方向和水平方向振动波形近似为简谐波。横向振动和扭转振动的频率相一致。从舞动轨迹可以看出,舞动以垂直运动为主,水平方向的振幅较小,舞动轨迹近似斜椭圆。
     在目前导线张力计算方法基础上,推导了在一个舞动周期内导线水平张力变化量与竖向张力变化量最大值的计算公式,并分析了两个方向的张力变化量最大值与舞动参数及导线参数之间的关系。采用该公式可以估算出舞动发生时导线的水平、垂直方向的最大张力值,为输电塔架等支撑结构的安全设计提供估算方法。从振动平衡方程出发,推导了以振动位移为约束、频率为随机变量的铁塔振动问题的安全边界方程,进而提出了铁塔振动的可靠性设计方法。
Icing conductor galloping is of great danger to the safe operation of the transmission line. Both at home and abroad, a lot of research work about the mechanism and protection of the conductor galloping has been done. Based on the research results of the experts both at home and abroad, the mechanism of galloping and the adverse impact on the transmission tower and conductors are analyzed. The research work in this paper will be helpful to the in-depth understanding of the mechanism of the conductor galloping and the influence on the transmission lines. It is also of great reference values to the "West-to-East Power Transmission, South-and-North Transaction and Nationwide Electricity Interconnection" and the construction and operation of UHV and EHV transmission lines.
     In this paper, based on the“catenary curve”theory and the“parabolic”theory, the static property of the overhead transmission conductors is firstly analyzed, and then the influence of meteorological conditions (such as wind, temperature and so forth) on the static property is also analyzed. Based on the“catenary curve”theory, the software used for the analysis of the static property of the overhead transmission conductors is developed with VC++6.0. Based on the actual parameters of Hubei Zhongshankou large span, the tensile forces and shape of the conductors in different meteorological conditions are calculated, and the impacts of temperature, ice thickness, and wind speed on the tensile force of conductors are analyzed. The analysing results show that, compared with temperature and wind speed, the ice accretion has the greatest influence on the tensile force and configuration of conductors.
     According to the characteristics of the uneven ice accumulation and the non-contemporaneous ice shedding, the imbalance tensile forces of conductors in the same dead-end section are analyzed. As to the uneven ice accumulation, when the heavy icing spans are in two ends of the dead-end section, the straight-line towers near the dead-end tower bear the largest imbalanced tension. As to the non-contemporaneous ice shedding, when the light icing span is in the middle of the strain section, the arc altitude of the light icing span is the largest. Therefore, the key positions of new established transmission towers should be reinforced according to the meteorological conditions.
     Based on the the hydromechanical theory, the modelling method and the simulation method for the analysis of the aerodynamic properties of the typical iced conductor (crescent iced conductor) is put forward. The air flow map around the iced conductor is simulated. Besides, as to the iced conductors with different ice thickness, the lift coefficient, drag coefficient and torsion coefficient under different attack angles are calculated. The influence law of ice thickness and wind speed on the aerodynamic parameters of iced conductors can be obtained, which is consistent with that reported in existing related literatures. Consequently, the fluid calculation method can substitute the wind tunnel test to acquire the the aerodynamic parameter of the iced conductors, which can avoid massive test work and save the manpower and material resource.
     Considering the disadvantage of conventional one-degree-of-freedom galloping mechanism, the three-degree-of-freedom mechanical model considering the iced conductor’s coupling vibration in the direction of vertical, horizon and torsion is put forward. The three-degree-of-freedom control equation is established, and the solving method of combining analysis and Simulink simulation is put forward. The solving method can not only solve the three-degree-of-freedom control equation, but also immediately obtain the time-history curve and galloping track. Take the Hubei Zhongshankou Yao-Shuang transmission line as example, the time-history curve and galloping trace is analyzed. The results show that, under steady galloping state, the time-history curves of the horizontal and vertical directions are approximately simple harmonic waves. The frequency of the transverse vibration is consistent with that of the torsional vibration. It can be seen from the galloping track that, the main vibration is in the vertical direction, the amplitude in the horizontal direction is small, and the galloping track is approximately an oblique ellipse.
     Based on the existing tensile force calculation method, the calculation formula of the maximum varing quantity of the horizontal tension and the vertical tension component at the suspension poin are deduced. And the influences of the galloping parameter and the line parameter on the tension varing quantity are analyzed. The calculation formula can be used to estimate the maximum varing quantity of the tension in the two directions, which can provide foundation for the design of the supporting structures (such as transimission tower). Based on the balance equation of the vibration, taking the vibration displacement as the constraint and taking the vibration frequency as the random variable, the safe boundary equation of the vibration problem of the transmission tower is deduced, and then the reliability design method is proposed.
引文
[1]郭应龙,李国兴,尤传永.输电线路舞动[M].北京:中国电力出版社, 2003.
    [2]王藏柱,杨晓红.输电线路导线的振动和防振[J].电力情报, 2002, (1): 69-70.
    [3]刘连睿.我国高压架空线路舞动情况及分析[J].华北电力技术, 1989, (9): 40-43.
    [4]黄经亚. 500kV输电线路中山口大跨越5次导线舞动的分析及探讨[J].电力技术, 1990, (4): 14-20.
    [5]李国兴,李裕彬,等.中山口大跨越舞动的分析与防治[C].湖北超高压输变电局, 1992.
    [6] C.B. Rawlins. Research on vibration of overhead ground Wires [J]. IEEE Transaction on Power Delivery, 1988, 3(2): 769-775.
    [7] Gupta, S., Wipf, T., et al. Structural failure analysis of 345 kV transmission line [J]. IEEE Transaction on Power Delivery, 1994, 9(2): 894-903.
    [8]杨勇.恶劣天气挑战电网安全[J].中国电力企业管理, 2005, (4): 30-33.
    [9] Burns, M.R. Distribution line hazards that affect reliability and the conductor repairs and solutions to avoid future damage [C]. 2003 IEEE Rural Electric Power Conference, May 4-6, 2003: C1/1-C1/13.
    [10] Baenziger, M.A., James, W. D. Dynamic loads on transmission line structures due to galloping conductors [J]. IEEE Transactions on Power Delivery, 1994, 9(1): 40-49.
    [11]刘连睿.我国高压架空线路导线舞动情况及分析[J].华北电力技术, 1989, (9): 40-43.
    [12]况月明,刘正云,崔秋菊. 500kV龙斗线、斗双线舞动及其防治措施[J].湖北电力, 2004, 28(增刊): 8-10.
    [13]宋伟,闫东,卢明,等.河南电网220kV线路导线舞动问题的研究[J].河南电力, 2001, (3): 1-3.
    [14]孙渭清,刘振铎.葛岗云500千伏线路防导线舞动问题[J].湖南电力技术, 1990, (6): 24-29.
    [15]何隆华.高压输电线路导线舞动[J].贵州电力技术, 1993, (1): 26-36.
    [16]张宏志.大面积导线覆冰舞动事故的调查与分析[J].东北电力技术, 2001, (12): 15-19.
    [17]黄经亚.架空送电线路导线舞动的分析研究[J].中国电力, 1995, (2): 21-26.
    [18]王丽新.输电线路静平衡及动力响应的有限元分析[硕士学位论文].华中科技大学, 2004.
    [19]王鹏举.导线舞动的原因及对策[J].东北电力技术, 2005, (7): 13-16.
    [20]黄经亚.架空送电线路导线舞动的分析研究[J].中国电力, 1995, (2): 21-26.
    [21]马建国.湖北省电网舞动区域划分及防舞对策的研究[J].湖北电力, 2002, 26(4):100-101.
    [22]马建国.湖北省电网导线舞动区域划分[J].电力建设, 1999, (5): 39-40.
    [23]邵德民,张维,何珍珍,等.利用灰色聚类分析方法进行安徽省导线舞动气象区划[J].中国电力, 1996, 29(7): 39-42.
    [24] Den. Hartog. Transmission line vibration due to sleet [J]. AIEE Transmission, 1932: 1074-1086.
    [25] O. Nigol. Conductor galloping Part I-Den. Hartog mechanism. IEEE Trans. PAS, 1981, 100(2): 708-719.
    [26] O. Nigol. Conductor galloping Part II-Torsional mechanism. IEEE Trans. PAS, 1981, 100(2): 699-707.
    [27] Hwan-Seong KIM, Gi-Sig BYUN. A study on the analysis of galloping for power transmission line [J]. International Society for Industrial Ecology, 2001: 973-978.
    [28] Orawski, G. Overhead lines-the state of the art [J]. IEE Power Engineering Journal, 1993, 7(5): 221-231.
    [29] G. Diana, F. Cheli, A. Manenti, et al. Oscillation of bundle conductors in overhead lines due to turbulent wind [J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1910-1922.
    [30] J. L. Lilien, D. G. Havard. Galloping database on single and bundle conductors prediction of maximum amplitudes [J]. IEEE Transactions on Power Delivery, 2000, 15(2): 670-674.
    [31] Wareing J. B. The effects of wind, snow and ice on optical fiber systems on overhead line conductors [C]. The 14th International Conference and Exhibition on Electricity Distribution Part 1-Contributions, June 2-5, 1997: 35/1-35/5.
    [32] Sier, R.J., Riggio, J.C. Analysis of factors contributing to conductor failures on a 345 kV line[C]. IEEE/PES Transmission and Distribution Conference and Exposition, September 7-12, 2003: 904-908.
    [33] Diana G., Bocciolone M., Cheli F., et al. Large wind-induced vibrations on conductor bundles: laboratory scale measurements to reproduce the dynamic behavior of the spans and the suspension sets [J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1617-1624.
    [34] Guido Morgenthal. Aerodynamic analysis of structures using high-resolution vortex particle methods [D]. University of Cambridge, October, 2002.
    [35]李国兴,李裕彬,刘兴胜.中山口大跨越的分析与治理.湖北省超高压输变电局, 1992, 3.
    [36]侯镭.架空输电线路非线性力学特性研究[博士学位论文].清华大学, 2008.
    [37]程志军.架空输电线路静动力特性及风振研究[博士学位论文].浙江大学, 2000.
    [38]陈晓明.大跨越输电线舞动及其控制研究[博士学位论文].同济大学, 2002.
    [39]张忠河,王藏柱.舞动研究现状及其发展趋势[J].电力情报, 1998, (4): 6-8.
    [40]赵作利.导线舞动因素分析[J].东北电力技术, 1994, (9): 12-15.
    [41]刘世新.导线舞动的起因分析及预防[J].东北电力技术, 1996, (2): 36-38.
    [42]马建国.三峡输电工程防导线舞动的探讨[J].华中电力, 1988, 11(2): 47-51.
    [43]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社, 2002.
    [44]龙小乐,鲍务均,郭应龙,等.输电导线覆冰研究[J].武汉水利电力大学学报, 1996, 29(5): 102-107.
    [45]徐中年.大气湍流对输电线舞动的影响[J].中国电力, 1995, (11): 50-53.
    [46]尤传永,卢明良等.架空输电线路舞动的防止措施[J].中国电力, 1993, (8): 41-43.
    [47]张明升.架空线路单导线舞动与分裂导线舞动的异同[J].河北电力技术, 1990, (1): 29-33.
    [48]卢明良,尤传永.架空输电线路分裂导线舞动的非线性分析[J].电力建设, 1994, 15(13): 26-31.
    [49]关根志. 500 kV输电线路中的导线舞动[J].电气时代, 1990, (12): 2.
    [50]尤传永.导线舞动的扭转机理与失谐摆[J].电力建设, 1989, 10(11): 1-6.
    [51]电力建设研究所.导线舞动译文集[M].电力建设研究所, 1988.
    [52]邵天晓.架空送电线路的电线力学计算[M].北京:中国电力出版社, 2003.
    [53] K. F. Jones. Coupled vertical and horizontal galloping [J]. Journal of Engineering Mechanics, 1992, 118(1): 92-107.
    [54] O. Nigol, G. J. Clarke. Conductor galloping and control based on torsional mechanism [J]. IEEE Paper, 1974,16(2): 31-41.
    [55] O. Nigol, G. J. Clarke, D. G. Havard. Torsional stability of bundle conductors [J]. IEEE Transactions on Power Apparatus and Systems, 1977, 96(6): 1666-1674.
    [56]蔡廷湘.输电线舞动新机理研究[J].中国电力, 1998, 31(10): 62-66.
    [57]尤传永.导线舞动稳定性机理及其在输电线路上的应用[J].电力设备, 2004, 5(6): 13-17.
    [58]苑舜.电网导线舞动研究方法的探讨[J].东北电力技术, 2005, (5): 22-23.
    [59] Keutgen, R., Lilien, J. L. Benchmark cases for galloping with results obtained from wind tunnel facilities validation of a finite element model [J]. IEEE Transactions on Power Delivery, 2000, 15(1): 367-374.
    [60]徐中年.输电线舞动的风洞试验研究[J].电力技术, 1992, (4): 7-11.
    [61]徐中年.内共振系统发生舞动实例的分析[J].电力建设, 1997, (5): 7-9.
    [62] Baker, G. C. ACSR twisted pair overhead conductors[C]. 2000 IEEE Rural Electric Power Conference, May 7-9, 2000: B4/1-B4/4.
    [63] Vogt, M.W. T2 ACSR conductors: lessons learned[C]. 1997 IEEE Rural Electric Power Conference, April 20-22, 1997, Minneapolis: C1/1-C1/5.
    [64] Vogt, M.W. T2 ACSR conductors: lessons learned [J]. IEEE Industry Application Magazine, 1998, 4(3): 37-39.
    [65] J. L. Lilien, A. A. Vinogradov. Full-scale tests of torsional damper and detuner (TDD) antigalloping device [J]. IEEE Transactions on power delivery, 2002, 17(2): 638-643.
    [66] Keutgen, R., Lilien, J. L. A new damper to solve galloping on bundled lines. Theoretical background, laboratory and field results [J]. IEEE Transactions on Power Delivery, 1998, 13(1): 260-265.
    [67] Takashi Nojima, Masao Shimizu, et al. Development of galloping endurance design for extra large 6-conductor bundle spacers by the experience of the full scale 500 kV test line [J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1824-1829.
    [68]胡红春.冰害、冰闪和舞动的防治措施[J].电力建设, 2005, 26(9): 31-33.
    [69]张扬建,高建和,郑先章.对架空输电线舞动控制的研究[J].扬州工学院学报, 1996, 8(2): 45-50.
    [70]丁锡广,陶文秋.减轻送电线路导线舞动灾害的措施[J].高电压技术, 2004, 30(2): 54-55.
    [71]赵作利.输电线路导线舞动及其防治[J].高电压技术, 2004, 30(2): 57-58.
    [72]朱宽军,尤传永,赵渊如.输电线路舞动的研究与治理[J].电力建设, 2004, 25(12): 18-21.
    [73]黄龙奇.超高压输电线路防冰害技术-浅谈超高压线路分裂导线覆冰舞动[R].电力工业部科技司, 1997.
    [74]李国兴,杨肇成,李莫川,等.中山口大跨越舞动的防治与研究[J].中国电力, 1995, (5): 59-61.
    [75]孙一德,纪志刚. 66 kV送电线路导线舞动、混线事故分析及防止对策[J].东北电力技术, 1996, (2): 33-35.
    [76]汪国骏. 220 kV南石线紧凑型线路舞动的防治建议[J].华中电力, 1999, (4): 36-37.
    [77]马建国,金涛,谭章英等. 220kV公笔线紧凑型线路导线舞动事故分析及其防治对策[J].电网技术, 2002, 26(4), 81-84.
    [78]杨保东.线路舞动跳闸分析及抑制措施的探讨[J].华北电力技术, 2001, (1): 22-24.
    [79]郑江.输电线路导线舞动的分析[J].华东电力, 1992, (7): 12-14.
    [80]郭应龙,恽俐丽,鲍务均,等.输电导线舞动研究[J].武汉水利电力大学学报, 1995, 28(5): 506-509.
    [81] Sanders, E.T. Motion resistant bare overhead conductor development review[C]. 1997 IEEE Rural Electric Power Conference, April 20-22, 1997, Minneapolis: C2/1-C2/10.
    [82] Akagi, Y., Koyama, S., Ohta, H., et al. Development of anti-galloping device for UHV transmission line[C]. IEEE/PES Transmission and Distribution Conference and Exhibition2002: Asia pacific, October 6-10, 2002, 3(3): 2158-2161.
    [83] Pohlman, J.C., Rawlins, C.B. Field testing an antigalloping concept on overhead lines[C]. IEEE/PES Transmission and Distribution Conference and Exposition, April 1-6, 1979: 68-71.
    [84] Tomita, S., Kawase M., Shinohara H., et al. Suppression of galloping oscillation for a self-supporting optical fiber cable [J]. Journal of lightwave technology, 1988, 6(2): 186-190.
    [85]程应奋.一种解决分裂导线舞动问题的新型阻尼器[J].电力金具, 1999, (1): 32-40.
    [86]石永海,马晋韬,祁学红.架空输电线路复冰导线失谐装置[J].华北电力学院学报, 1991, (1): 24-30.
    [87]樊社新.结冰分裂导线挂有失谐摆的运动方程[J].广西大学学报(自然科学版), 1996, 21(2), 139-142.
    [88]蔡廷湘.分裂导线安装失谐摆防舞动效果探讨[J].电力技术, 1990, (6): 10-15.
    [89]卢明良.失谐摆的防舞设计与计算.电力建设, 1990, 11(l3).
    [90]郭应龙.失谐摆的配置方式与效果[J].电力建设, 1992, 12(9): 5-9.
    [91]尤传永,卢明良.扭转抑制型防舞器浅析[J].电力技术, 1991, (3): 16-20.
    [92]肖晓晖,郭应龙,吴晶.压重防舞器配置方案有效性的仿真计算[J].电力建设, 1998, (6): 25-28.
    [93]樊社新.间隔棒对舞动的影响[J].电力建设, 1997, (8): 16-17.
    [94]王黎明,殷禹,梁曦东,等.高压架空线路应用间隔棒防止舞动的研究[C].第三届北京输配电技术国际会议, 2001: 327-333.
    [95]姜广东.防舞间隔棒的研制[J].电力金具, 2004, (2): 16-20.
    [96] Hwan-Seong KIM, Tuong-Long NGUYEN. Analysis of galloping amplitude for conductors with interphase spacers[C]. The 30th Annual Conference of the IEEE Industrial Electronics Society, November 2-6, 2004, Susan, Korea: 1520-1525.
    [97] Liming Wang, Yu Yin, Xidong Liang, et al. Study on air insulator strength under conductor galloping condition by phase to phase spacer[C]. 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena: 617-619.
    [98]孙渭清.防舞动金具的研制、试运行和失谐摆锤的设计计算[J].电力金具, 1993, (2): 7-14.
    [99]徐中年,赵作利.气流干扰线抑制导线舞动的机理与实验[J].线路通讯, 2002, (1): 57-59.
    [100]付正江.架空输电导线覆冰防舞装置——扰流防舞器[J].电力设备, 2005, 6(1): 77-78.
    [101]邵天晓.架空送电线路的电线力学计算.北京:中国电力出版社, 2003.
    [102]周振山.高压架空送电线路机械计算.北京:水利电力出版社, 1984.
    [103]刘延柱.非线性振动.北京:高等教育出版社, 2001.
    [104]丁文镜.工程中的自激振动.吉林:吉林教育出版社, 1988.
    [105] Blevins, R.D.著,吴恕三,王觉等译.流体诱发振动[M].北京:机械工业出版社, 1982.
    [106]黄河,刘建军,李万平.覆冰导线绕流的数值模拟[J].辽宁工程技术大学学报, 2004, 23(6): 767-769.
    [107]李万平,黄河,何锃.特大覆冰导线气动力特性测试[J].华中科技大学学报, 2001, 29(8): 84-86.
    [108]徐元利,徐元春,梁兴,等. FLUENT软件在圆柱绕流模拟中的应用[J].水利电力机械, 2005, 27(1): 39-41.
    [109]王福军.计算流体力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004.
    [110]章梓雄,董曾南.粘性流体力学[M].北京:清华大学出版社, 1998.
    [111]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社, 2005.
    [112]陈矛章.粘性流体力学基础[M].北京:高等教育出版社, 1993.
    [113]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004.
    [114]李人宪.有限体积法基础[M].北京:国防工业出版社, 2005.
    [115]杨茉,李学恒,陶文铨,等. QUICK与多种差分方案的比较与计算[J].工程热物理学报, 1999, 20(1): 593-597.
    [116] R.Weber, B.M.Visser, F. Boysonan. Assesment of turbulence modeling for engineering prediction of swirling vortices in the near burner zone [J]. Heat and Fluid Flow, 1990, 11: 225-235.
    [117] W.D.Hsieh, K.C.Chang. Turbulent flow calculation with orthodox QUICK scheme[J]. Numerical Heat Transfer (Part A), 1996, 30(2): 589-604.
    [118]李勇,刘志友,安亦然.介绍计算流体力学通用软件——FLUENT[J].水动力学研究与发展, 2001(2): 254-258.
    [119]陈旭.计及动态失速影响的水平轴风力机设计和性能预估[硕士学位论文].上海交通大学, 2003.
    [120] M.A. Baenziger, W.A. James, B. wouters, et al. Dynamic loads on transmission line structures due to galloping conductors. IEEE Transactions on Power Delivery, 1994, 9(1): 40-49.
    [121]段树乔.导线舞动时悬垂绝缘子串的动力特性.中国电力, 1994, 27(12): 17-21.
    [122]吕震宙,冯元生.工程结构振动可靠性分析方法初探[J].机械强度, 1993, 15(2): 1-3.
    [123] Haugen E. B.著,汪一麟等译.机械概率设计.北京:机械工业出版社, 1985.
    [124]王延荣,田爱梅.结构振动可靠性设计方法研究[J].航空动力学报, 2003, 18(2): 191-194.
    [125]国家基本建设委员会建科院.高耸构筑物风振讨论会资料汇编. 1972.
    [126]何晓聪.单自由度系统振动可靠性计算方法初探[J].昆明理工大学学报, 1998, 23(2):50-52, 57.
    [127]田爱梅,王延荣.构件振动可靠性设计方法初探[J].航空动力学报, 1999, 14(3): 320-322.
    [128]段树乔.导线舞动时输电铁塔的振动可靠性设计方法[J].中国电力, 1999, 32(6): 48-50.
    [129]雷川丽,段炜佳,侯镭等.架空输电线舞动的计算机仿真[J].高电压技术, 2007, 33(10): 178-182.
    [130]韩爱芝,刘莘昱,曾定文等.输电线路舞动综合治理与评估[J].河南电力, 2008, (1): 31-33.
    [131]韩爱芝.输电线路舞动综合治理[J].电力安全技术, 2008, 10(6): 59-60.
    [132]沈亚红,骆坚,陈欣,等.输电线路防舞动措施初探[J].江西电力职业技术学院学报, 2008, 21(1): 1-2.
    [133]卢明,孙新良,阎东. 500kV姚邵线舞动倒塔事故分析及对策[J].电瓷避雷器, 2008, (3): 1-5, 9.
    [134]王磊,李建胜,何峰.输电线路舞动跳闸事故分析[J].电气应用, 2007, (4): 38-41.
    [135]朱宽军,付东杰,王景朝等.架空输电线路的舞动及其防治[J].电力设备, 2008, 9(6): 8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700