地面沉降的三维虚拟表达技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以苏锡常地区为例,将虚拟现实技术应用到地面沉降的研究中。在系统分析了该地区的地质、水文地质、环境地质条件后,提出了地面沉降虚拟现实系统的总体设计方案、开发模式,并对作为数据支持的SQL数据库中的表格进行了结构设计。
     全文重点研究了三维水文地质结构、地下水面、地面沉降动态过程以及地面沉降的诱发后果——地裂缝的虚拟建模方法以及三维表达方式。对比虚拟的地面沉降和地下水位动态过程,直观地对地面沉降机理进行分析,与此同时,在虚拟环境中,耦合了主要开采层的地下水位和地面累计沉降量间的相关模型,利用该模型实现了给定地下水位条件下,进行地面累计沉降量的预报。
     最终建立了包括三维水文地质结构模块、地下水面模块以及地面沉降模块的虚拟现实系统,利用该系统,用户可对地面沉降的形成机制、发生发展过程和诱发后果有全面、直观的了解,进而为地面沉降的机理分析提供一个虚拟平台。本次研究不仅拓宽了虚拟现实技术的应用范围,而且为地面沉降研究提供一种新的方法。
Land subsidence is a delayed geological disaster, which attracts more attention because of its wide influences and severe consequences. The Yangtze River delta is one of areas occurring serious land subsidence in China. While Suxichang area is in the middle of Yangtze River delta, in which land subsidence is induced by overpumping groundwater continuously. Many institutes have carried out a lot of researches, such as investigation and evaluation of this geological disaster, analysis of the geological and environmental conditions that induce the land subsidence, the mechanism of subsidence, and so on. Though, fruitful results have been achieved. The expressions of these results are normally text, two-dimensional graphs or profiles. Although these can supply a theoretical basis for geological workers or decision makers to correctly learn current situations of land subsidence and enact proper countermeasure of land subsidence control measures, they still have some shortages as follows.
     ①Three-dimensional dynamic expression of land subsidence has not been realized.
     ②Mutual relation between land subsidence and diversified factors has not been directly visually expressed.
     ③Forecasts of land subsidence are difficult to make, namely, they are unpractical. Virtual Reality Technology (VRT) is a potent new tool to resolve these problems mentioned above. It utilizes computer technology to simulate the real world or imaginary environment, in which researchers can roam naturally and operate virtual objects in an interactive means. On account of the above understanding, the paper is unfolded from the following parts:
     Firstly, according to the present problems exiting in expression ways of land subsidence achievement and combining the current situation and tendency of reach upon VRT, this technology is used to simulate process of land subsidence. The carrying out research not only broadens the scope of the application of virtual reality technology, but also provides a virtual platform to analyze subsidence mechanism.
     Secondly, the main study contents are determined and the related technology route is developed. Virtual module, developing mode and physical configuration of the land subsidence virtual reality system are designed. Taking into account of the strong VC + + interface developmental functions and the graphics visualization functions of OpenGL, VC++ and OpenGL are adopted as a developing-mode of Virtual reality. During the course of the study, vividly simulate the occurrence and development process of land subsidence is the emphasis. Because 3D hydro-geological structure is the material of occurring land subsidence, groundwater level is the main affecting factor and ground fissures are induced consequences of land subsidence, 3D hydro-geological structure, groundwater surface and ground fissures land subsidence should be expressed when land subsidence is simulated. So the land subsidence virtual reality system includes three modules of 3D hydro-geological structure, groundwater surface and land subsidence. Then the function of each module is described in detail. At the same time the format and table name of data source to build model and producing model data are regulated respectively, when they are stored into SQL database.
     Thirdly, elaborate discussion is given to data preparation, modeling process, the principal arithmetic and interactive operations of the virtual 3D hydro-geological structure, groundwater surface, land subsidence and its inducing consequence, respectively. In the course of studying, 3D hydro-geological model, which is the basis of virtual groundwater surface module and land subsidence model, is constructed by hybrid modeling algorithm. All of three items are exhibited by Triangulated Irregular Network and locations of the three Triangulated Irregular Network models projected on the plan are the same. However, the representing attributes of triangle vertexes of the three Triangulated Irregular Network models are stratum elevation, groundwater level and stratum elevation after land subsidence, respectively.
     Virtual 3D hydro-geological structure: Researchers are able to learn spatial distribution and mutual relationship of stratum of 3D hydro-geological structure from various manners. Besides, attribute information in arbitrary position of this model can be got by the tool of information inquiry.
     Virtual groundwater surface: Groundwater surface virtual model is built based on 3D hydro-geological model. Researchers can learn undulation of groundwater surface in Suxichang area and learn hydro-geological attributions on the surface by using information inquiry. Meanwhile, a new method-cutting by equivalence plane method, used to generate groundwater contours, is discussed.
     Virtual land subsidence: The process of land subsidence is virtually expressed. Due to the rate of land subsidence is the largest in the west of Wuxi city, land subsidence process of each stratum is simulated in this area. The dynamic process can be observed by kinds of styles. At the same time, the correlation model between groundwater level and accumulative land subsidence is built, by which the value of accumulative land subsidence can be calculated when the groundwater level is given. Function of forecasting land subsidence is realized.
     Virtual ground fissures: Adopting polygon cutting surface moedel to construct ground cracks and using dynamic texture binding technology to simulate the fissures of house wall, the whole process of ground fissures are simulated. Researcher can understand this process from random point of view.
     Finally, Mechanism of land subsidence and ground fissures are analyzed. From the dynamic process of groundwater level and land subsidence, it can be directly obtained that land subsidence has a close relevance with groundwater level. That is the lower dewatered groundwater level is, the bigger of the value of land subsidence is. What is more, it can be discerned from the virtually dynamic process that land subsidence is not only the result of consolidation of aquitard but also releasing a certain amount of water of aquifer. Meanwhile, by comparing the spatial distribution of ground fissure, bedrock surface shape, the distribution of groundwater and cumulative sediment, it is known that in the west of Wuxi, the ground cracks generated in which the accumulative value of land subsidence is about 1000mm, the groundwater level is about 70 meters and the slope of rising part of bedrock surface is bigger.
引文
[1] 张永波等,水工环研究的现状与趋势,地质出版社,北京,2001,130-134
    [2] 郑铣鑫,武 强,侯艳声等,关于城市地面沉降研究的几个前沿问题,地球学报,2002,23(3):279-282
    [3] 殷跃平,张作辰,张开军,我国地面沉降现状及防治对策研究,中国地质灾害与防治学报,2005,16(2):1-8
    [4] 段永侯,我国地面沉降研究现状与 21 世纪可持续发展,中国地质灾害与防治学报,1998,9(2):1-5
    [5] 于军,苏锡常地区地面沉降监测网络体系建设初探,中国地质灾害与防治学报,2000,11(3):82-85
    [6] 于军,王晓梅,苏小四,苏锡常地区地裂缝地质灾害形成机理分析,吉林大学学报(地球科学版),2004,34(2):236-241
    [7] 陈永康,陈锁忠,苏锡常地区地裂缝分形的初步研究[J],江苏地质,1999,23(3):176-179
    [8] 邹湘军,孙健 ,何汉武等,虚拟现实技术的演变发展与展望,系统仿真学报,2004,16(9):1905-1909
    [9] D. Foley. Interfaces for Advanced Computing [J]. Scientific American, 1987, 257(4): 127-135.
    [10] Burdea, G. and P. Coiffet. Virtual Reality Technology [M]. New York, USA: John Wiley & Sons, 1994.
    [11] 朱淼良,分布式虚拟环境系统的研究,1999 年,浙江大学博士学位论文
    [12] Steve Benford et al, Supporting Cooperative Work in Virtual Environments, The Computer Journal, Vol, 37, No. 8, 1994
    [13] Y.B.Luo, D.F. Chen, T. Y.Xiao, A Distributed Image-based Virtual Prototyping Systemwith Novel Rendering Tactics, The International Journal of Advanced Manufacturing Technology, 2005, 26(3): 239-242
    [14] 许妙忠,虚拟现实中三维地形建模和可视化技术及算法研究,武汉大学博士学位论文,2003,
    [15] 姜学智,李忠华,国内外虚拟现实技术的研究现状,辽宁工程技术大学学报,2004,23(2):238-240
    [16] Antonio Riganelli et al, A Multi-scale Virtual Reality Approach to Chemical Experiments, Computer Science, 2003(2658): 324-330
    [17] Richard A. Klein, Virtual Reality Exposure Therapy in the Treatment of Fear of Flying, Journal of Contemporary Psychotherapy, 2000, 30 (2): 195-207
    [18] Akihiko Shirai et al, Entertainment Applications of Human-ScaleVirtual Reality Systems, Computer Science, 2004(3333):31-38
    [19] W. Akl et al, Efficient Virtual Reality Design of Quiet Underwater Shells, Virtual Reality, 2005,9(1): 57-69
    [20] M. Patricia Martínez-Vargas et al, Quality of Service on a Distributed Virtual Reality System for Robots Tele-operation over the Internet, Computer Science, 2006(3473): 69-78
    [21] Pilar Herrero et al, Intelligent Virtual Agents Keeping Watch in the Battlefield, Virtual Reality, 2005, 8(3): 185-193
    [22] David Walters, Combining Strategic, Operational and Financial Performance in the Virtual Organization, IFIP International Federation for Information Processing, 2005(186): 321-328
    [23] Anton Jezernik et al, A solution to integrate computer-aided design (CAD) and virtual reality (VR) databases in design and manufacturing processes, 2003, 22(11-12): 768-774
    [24] Ayman Ammoura et al, Towards a Novel OLAP Interface for Distributed Data Warehouses, Computer Science, 2001(2214): 174-185
    [25] Kaas LM, Computer graphics: a new tool for exploration and mining. The AmericanInstitute of Mining, Metallurgical, and Petroleum Engineers, New York, 1969, 9-22
    [26] E. J. Sides, Geological modeling of mineral deposits for prediction in mining, Geologische Rundschau, 1997,86(2):342-353
    [27] Gibbs BL , Mineral industry software, Mining Journal Publications, London, 1993: 57-63
    [28] David Koller, Peter Lindstrom, William Ribarsky, et al. Virtual GIS: A Real-Time 3D Geographic Information System. In Proceedings of Visualization'95. GVU Technical Report: 95-14
    [29] Faust N L. The virtual reality of GIS. Environment and Planning B, Planning and Design, 1995(22): 257-268
    [30] 陈静,分布式虚拟 GIS 关键技术研究,2004 年,武汉大学博士学位论文
    [31] 段福洲,地质体三维模型和数据结构的研究及实现,2004 年,首都师范大学硕士学位论文
    [32] Schofield D, Denby B, McClaron D, Computer graphics and Virtual Reality in the mining industry, Mining Mag, 1994: 284-286
    [33] Julio J. Valdés, Virtual Reality Representation of Information Systems and Decision Rules: An Exploratory Technique for Understanding Data and Knowledge Structure, Computer Science, 2003(2639): 615-618
    [34] John B. Thurmond et al, Building simple multiscale visualizations of outcrop geology using virtual reality modeling language (VRML), Computers & Geosciences, 2005(31): 913-919
    [35] Martin Ross, Michel Parent and Rene Lefebvre, 3D geologic framework models for regional hydrogeology and land-use management: a case study from a Quaternary basin of southwestern Quebec, Canada, Hydrogeology Journal,2005, 13(5-6): 690-707
    [36] Aki Artimo, Joni M?kinen, Richard C. Berg et al, Three-dimensional geologic modeling and visualization of the Virttaankangas aquifer, southwestern Finland, HydrogeologyJournal,2003, 13(3): 378-386
    [37] 许云,任爱珠,潘国帅,基于 GIS 和 VR 的消防指挥系统研究,土木工程学报,2003,36(5):92-96
    [38] 洪炳熔,李华忠,薄喜柱,基于 VR 的空间站地面实验综合平台仿真系统研究,计算机应用研究,1999,51-54
    [39] 顾浩,刘光勇,朱士龙,虚拟现实技术及其在分布交互式仿真系统中的应用,系统仿真学报,2000,12(3):197-200
    [40] 冯德俊、张献州,张文君,VR 技术在城市地籍信息系统中的应用,测绘工程,2001,10(4):33-35
    [41] 袁小泉,杨德华,Web 虚拟现实技术在电子商务中的应用,电脑开发与应用,2003,16(11):44-47
    [42] 谢波,李力军,林岚,基于 GIS 和 VR 技术的三维城市规划系统的研究,计算机信息,20(10):126-127
    [43] 梁民,梁兵,虚拟现实在水坝系统中的实现,计算机应用,1999,19(8):43-45
    [44] 刘进,虚拟现实技术的算法基础,2001 年,复旦大学博士学位论文
    [45] 石教英,虚拟现实基础及实用算法,2002 年,科学出版社,北京
    [46] 王建宇,基于图象的虚拟环境生成关键技术研究,2003 年,南京理工大学博士学位论文
    [47] 淮永建,虚拟场景中实时图形绘制关键技术研究,2002 年,西北工业大学博士学位论文
    [48] 胡少林,吴玲达,张茂军,3D 虚拟战场环境构造技术研究,小型微型计算机系统,2002,23(12):1510-1513
    [49] 李敏君,纪庆革,三维几何数据压缩与简化,宇航学报,2002,23(3):85-88
    [50] 刘新国,鲍虎军,彭群生,增量几何压缩,软件学报,2000,11(9):1167
    [51] 马小虎,潘志庚,石教英,基于三角形移去准则的多面体简化方法,计算机学报,1998,21(6):492
    [52] 马小虎,虚拟现实中多细节层次模型的研究,1997 年,浙江大学博士学位论文
    [53] 高俊,游雄,虚拟现实及其在军事测绘与作训模拟中的应用,解放军测绘学院学报,1996,13(2):133-137
    [54] 李德仁,朱庆,李霞飞,数码城市:概念、技术支撑和典型应用,武汉测绘科技大学学报,2000,25(4):283-288
    [55] 林宗坚,刘先林,张续贤等,精确时空立体景观虚拟现实的构建与应用方法研究,2005,30(2):16-18
    [56] 孙九林,资源环境科学虚拟创新环境的探讨,资源科学,1999,21(1):1-8
    [57] 林珲,龚建华,论虚拟地理环境,测绘学报,2002,31(1):1-6
    [58] 夏秋勤,张宏,闾国年,没有围墙的 GIS 实验室,地球信息科学,2002(2):17-22
    [59] 许妙忠,虚拟现实中三维地形建模和可视化技术及算法研究,2003 年,武汉大学博士学位论文
    [60] 王岳群,虚拟现实技术在淹城原貌再现中的应用研究,东南文化,2004(5):76-78
    [61] 唐权,姜永发,张雷,基于数码技术的大比例尺城市三维景观虚拟现实技术,江苏测绘,2001,24(2):42-48
    [62] 路兴昌、薄立群,信息城市中虚拟可视化的研究,地球信息科学,2001,3:32-35
    [63] 徐志胜,冯凯,冯春莹等,VR-GIS 技术在小城镇洪水淹没模拟分析中的应用,防灾减灾工程学报,2004,24(3):247-251
    [64] 张瑞新,虚拟现实技术及其在采矿工程中的应用,中国矿业大学学报,1998,27(3):230-234
    [65] 张瑞新,任廷祥,虚拟现实技术在矿山安全工程中的研究进展,煤炭学报,1999,24(1):70-73
    [66] 王玲,谈晓军,王乘,虚拟现实技术在数字流域中的应用初探,水利与建筑工程学报,2004,2(2):9-12
    [67] 张尚弘,曲兆松,郑钧,王兴奎,虚拟现实技术在都江堰三维信息系统中的应用,水科学进展,2004,15(5):643-649
    [68] 卢玲,程国栋,VRML 技术在黑河水资源决策支持系统中的应用,遥感技术与应用,1999,14(2):15-20
    [69] 朱晓光,王东木,面向对象的虚拟环境数据模型框架,计算机工程与应用,1999,24-29
    [70] 李胜,大规模室外地形场景加速绘制技术,2004 年,中国科学院软件研究所博士学位论文
    [71] 初东,许娅娅,赵永平,公路环境仿真系统中三维地面模型简化,长安大学学报,2003,23(1):19-22
    [72] 潘华伟,邹北骥,一种圆柱形全景图生成新算法及其实现,计算机工程与科学,2003,25(6):13-16
    [73] 梁秀娟,林学钰,于军,虚拟现实技术在水文地质研究中的应用,吉林大学学报,2005,35(5):636-640
    [74] 汪家权,陈众,武君,河流水质模拟及其发展趋势,安徽师范大学学报,2004,27(3):242-247
    [75] 于军,地下水流面三维实体模型制作系统(V1.00),江苏地质,2001,25(1):27-32
    [76] 颜辉武,祝国瑞,徐智勇等,地下水资源的三维体视化研究,水利学报,2004(7):114-118
    [77] 林晨,张建立,潘懋,基于 OpenGL 的地下水位动态模拟,勘察科学技术,2002,13-16
    [78] 陈永康, 黄家柱, 闾国年,三维可视化集成技术在地下水研究中的应用, 南京师大学报(工程技术版), 2001, 1(2): 30-35
    [79] 杨旭, 黄家柱, 杨树才, 地下水动态监测的三维可视化初步研究[J], 水文,2006, 26(4): 47-50
    [80] 苏锡常地区地面沉降预警系统工程下水文地质建模研究报告,2003,5-25
    [81] 张茂军,虚拟现实系统[M],北京:科学出版社,2002,
    [82] 闪四清,Microsoft SQL Server2000 实用教程[M],北京:人民邮电出版社,2000,1-14
    [83] 李志林,朱庆,数字高程模型[M],武汉:武汉测绘科技大学出版社,2000,34-43
    [84] 李国敏,陈崇希,克立格法在地下水数值模型中的应用[J],地质科技情报,1995,14(3):95-98
    [85] 孙洪泉,康永尚,杜惠芝著,实用地质统计学程序集[M],北京:地质出版社,1997
    [86] 潘云,地下水三维信息提取与可视化研究,首都师范大学硕士学位论文,2006
    [87] Richard S. Wright, Jr Michael Sweet,OpenGL 超级宝典[M],Waite Group PRESS,北京:人民邮电出版社,2001
    [88] 于军, 武健强, 王晓梅等, 基于“区域分解”思想的苏锡常地区地面沉降相关预测模型研究, 水文地质工程地质,31(4):92-95, 2004
    [89] “苏锡常地区地面沉降模型研究”子专题研究报告,南京大学,2006
    [90] 刘聪、袁晓军、朱锦旗等,苏锡常地裂缝,中国地质大学出版社,武汉,2004
    [91] 朱旭阳,李思昆,动态纹理合成技术研究综述,系统仿真学报,2001,13 增刊:23-25
    [92] 王大纯,张人权,史毅虹等,水文地质学基础,北京,地质出版社,1995:24-25
    [93] 伍洲云,余勤,张云,苏锡常地区地裂缝形成过程,水文地质工程地质,2003(1):67-72
    [94] 于军,王晓梅,苏小四等,苏锡常地区地裂缝地质灾害形成机理分析,吉林大学学报(地球科学版),2004,34(2):236-241

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700