生物大分子NMR光谱的量子化学计算以及金属蛋白力场的开发和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着理论方法不断的发展以及计算机能力的持续提高,量子化学(Quantum Chemistry)计算越来越多的成为研究生物大分子结构和功能的重要手段。然而,由于量化计算在处理大体系时需要极高的计算量,它只能处理生物体系内的一部分,直至今日也无法直接应用到生物大分子的研究,因此人们不得不致力于发展各种近似方法以拓宽其应用。本论文的工作主要集中于2个方面的研究:(1),进一步发展了针对生物大分子的NMR化学位移进行全量化计算的AF-QM/MM (Automated Fragmentation Quantum Mechanics/Molecular Mechanics)方法在溶液中的应用;(2),发展了基于量子化学计算的包含电荷转移及静电极化效应的分子力场QPCT (Non-bonded quantum-calibrated polarizable-charge transfer force field)>用来准确描述含锌蛋白的结构和动力学性质。
     在AF-QM/MM方法中,我们把蛋白质分子在肽键位置切开,得到若干个氨基酸片段,作为核心(core)区域,将核心区域附近一定距离内,对核心区域原子的化学位移有影响的化学基团,如氢键供体/受体,芳香环,带电基团等,选为缓冲区(buffer),核心区和缓冲区的原子采用量子化学计算,体系内其他原子对核心区的影响用分子力学(Molecular mechanics, MM)来模拟,最后将每个核心区域上原子的化学位移收集起来就得到了整个蛋白的化学位移。在此基础上我们将AF-QM/MM方法和泊松-波尔兹曼溶剂化模型(PB Model)以及显式溶剂模型结合起来,实现了非均匀介质中和溶液中的蛋白质化学位移的全量子化学计算。采用AF-QM/MM方法我们可以把含有N个残基的蛋白划分为N个片段来分别处理,从而实现了线性标度,大大提高了计算效率。大量的测试和研究表明,采用该方法后我们可以精确地计算蛋白质中所有主要原子的化学位移,并且可以将其应用到蛋白的结构预测以及优化中。AF-QM/MM方法首次系统的将从头算或DFT方法引入到化学位移的计算中来,不依赖于现有经验数据,适用性更广,可信度也更高。该方法还适用于非蛋白体系,如DNA,RNA等,这是目前的经验程序无法胜任的工作。
     大量的理论研究已经证明,采用现有的经典力场来研究金属蛋白的动力学性质是极其不可靠的。尽管人们都认为这是因为力场中缺乏极化和电荷转移等量化效应,但是鲜有更加精确的力场参数被提出来。在本文的工作中,我们提出了一种处理含锌离子蛋白的新的分子力场:QPCT。在该方法中,蛋白中所有极性较强的化学键的极化态都可以根据整个蛋白以及溶剂的静电环境来调整,因此整个体系的长程静电相互作用可以很好的被处理。此外,锌离子和它的配体之间的相互作用采用了量化计算进行校正,电荷转移效应也被考虑了进来。该方法在多个含锌体系以及锌离子的多种配位模式下都进行了测试,计算结果清晰的表明考虑极化和电荷转移效应后,QPCT可以在模拟过程中正确的稳定锌离子配位区域的结构,并可以用来研究含锌蛋白的结构优化以及计算金属蛋白和配体的相互作用。QPCT方法在考虑量子效应的同时,其函数形式跟现有力场高度相关,因此非常容易参数化,计算效率也可以得到保证,实际的测试表明,采用该力场对含锌蛋白进行分子动力学模拟只比传统力场多消耗不过1%的计算时间。
Recently, in the wake of developments in theory and computer science, quantum chemistry calculation is more and more used to explore the structure and function of bio-molecules. However, the quantum calculation needs massively computer resources, thus cannot be applied on large systems like proteins directly. Therefore, people have to develop variously approximation methods to expand its application limits. The main work of this study completed as follows:first, we introduced the solvent effect into the AF-QM/MM (Automated Fragmentation Quantum Mechanics/Molecular Mechanics) model based on Divide&Conquer theory, which can calculate the protein chemical shifts using quantum chemistry method, and then, we proposed a new force field for study of zinc protein:QPCT (Non-bonded quantum-calibrated polarizable-charge transfer force field).
     In the AF-QM/MM approach, the entire protein is divided into non-overlapping fragments termed core regions. The residues within a certain range from the core region are included in the buffer region. Both the core and the buffer regions are treated by quantum mechanics, while the remainder of the protein is described using an empirical point-charge model to account for the electrostatic effect. Each core-centric (core+buffer) QM/MM calculation is carried out separately and only the chemical shifts of the atoms in the core region are extracted from individual QM/MM calculation. By using PB model and explicit waters, the solvation effects are also included in AF-QM/MM method. Using this scheme, we can divide the entire protein into undependable fragments, thus the calculation is totally linear-scaling. Our calculated chemical shifts of1H and13C and15N atoms of proteins are in remarkable agreement with experimentally measured values and also can be used to predict and refine protein structures. The applications may also be extended to more general biological systems, such as nonstandard residues, metalloproteins, protein-ligand, protein-DNA/RNA and membrane protein-lipid complexes.
     Although making great improvement over the past two decades, most today's force fields do not always have appropriate parameters for metal atoms, which has become a practical obstacle for the molecular modeling studies of metalloproteins. In the current work, the QPCT force field was proposed to capture the polarization and charge transfer contributions to the interatomic interactions for zinc-proteins. These parameters were validated extensively in molecular dynamic simulations of hydration shell of zinc ion and five proteins containing most common zinc-binding sites as well as one protein-ligand complex. The calculated results of QPCT show excellent agreement with the experimental measurements and QM/MM MD simulations, demonstrating that the present approach can provide enough accuracy to maintain the integrity of the zinc binding pocket during extended molecular dynamic simulations. The QPCT method is easily to parameterize and transfer to other systems having the same coordinate geometry, and it can also be extended to study the interaction of other metals that have large charge transfer and polarization effects.
引文
[1]Bieri M, Kwan AH, Mobli M, King GF, Mackay JP, Gooley PR. "Macromolecular NMR spectroscopy for the non-spectroscopist:beyond macromolecular solution structure determination" [J]. Febs Journal,278,704 (2011).
    [2]Kwan AH, Mobli M, Gooley PR, King GF, Mackay JP. "Macromolecular NMR spectroscopy for the non-spectroscopist"[J]. Febs Journal,278,687 (2011).
    [3]林克江,尤启东,林东海.”药物设计中的生物核磁共振技术”[J].中国药科大学学报,5,387(2004).
    [4]Spera S, Ad B. "Empirical correlation between protein backbone conformation and Calpha and Cbeta 13C nuclear magnetic resonance chemical shifts"[J]. JAm Chem Soc,113, (1991).
    [5]Xu XP, Case DA. "Automated prediction of (15)N, (13)C(alpha), (13)C(beta) and (13)C 1 chemical shifts in proteins using a density functional database"[J]. J. Bio. NMR,21,321 (2001).
    [6]Shen Y, Bax A. "SPARTA plus:a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network"[J]. J. Bio. NMR,48,13 (2010).
    [7]Han B, Liu Y, Ginzinger SW, Wishart DS. "SHIFTX2:significantly improved protein chemical shift prediction."[J].J. Bio. NMR,50,43 (2011).
    [8]He X, Wang B, Merz KM. "Protein NMR chemical shift calculations based on the automated fragmentation QM/MM approach."[J]. J. Phys. Chem. B.,113,10380 (2009).
    [9]Zhu T, He X, Zhang JZH. "Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation"[J]. Phys. Chem. Chem. Phys.,14,7837 (2012).
    [10]Frisch MJT, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamao, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. C02 ed; Gaussian, Inc:Wallingford, CT, (2010).
    [11]Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA, Jr. "General atomic and molecular electronic structure system"[J]. J. Comput. Chem.,14,1347 (1993).
    [12]Shao Y, Gan Z, Kong J. "Q-Chem 4.0"[J]. Abstracts of Papers of the American Chemical Society,241, (2011).
    [13]Im W, Beglov D, Roux B. "Continuum Solvation Model:computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation"[J]. Cmput. Phys. Commu., 111,59 (1998).
    [14]Auld DS. "Zinc coordination sphere in biochemical zinc sites"[J]. Biometals,14,271 (2001).
    [15]王英杰,明镇寰宇.”锌在酶中发挥功能的几种方式”[J].生命的化学(中国生物化学会通知),1,550(1994).
    [16]孙苗.”几类重要蛋白质的分子模拟”[D].吉林:吉林大学,(2005).
    [17]欧阳芳平,徐慧,何红波,李义兵.”蛋白质分子量子化学计算方法的研究进展”[J].生物信息学2,42(2004).
    [18]段莉莉.”量子化学方法对生物体系的研究以及蛋白质折叠”[D].济南:山东师范大学,(2010).
    [19]陈建中.“HIV-1蛋白酶与抑制剂相互作用的理论计算研究”[D].济南:山东师范大学,(2009).
    [20]Wishart DS. "Interpreting protein chemical shift data"[J]. Prog. Nucl. Mag. Res. Sp.,58, 62(2011).
    [21]Facelli JC. "Chemical shift tensors:Theory and application to molecular structural problems"[J]. Prog. Nucl. Mag. Res. Sp.,58,176 (2011).
    [22]Arnautova YA, Vila JA, Martin OA, Scheraga HA. "What can we learn by computing (13)C(alpha) chemical shifts for X-ray protein models?"[J]. Acta Crystallogry D,65,697 (2009).
    [23]Saito H, Ando I, Ramamoorthy A. "Chemical shift tensor-The heart of NMR:Insights into biological aspects of proteins"[J]. Prog. Nucl. Mag. Res. Sp.,57,181 (2010).
    [24]Selvaratnam R, Chowdhury S, VanSchouwen B, Melacini G. "Mapping allostery through the covariance analysis of NMR chemical shifts."[J]. Proc. Nat. Acad. Sci. U.S.A., 108,6133(2011).
    [25]Sgrignani J, Pierattelli R. "Nuclear magnetic resonance signal chemical shifts and molecular simulations:a multidisciplinary approach to modeling copper protein structures."[J]. J. Bio. Inorg. Chem.39,287 (2011).
    [26]Facelli JC, de Dios AC. "Modeling NMR chemical shifts:gaining insights into structure and environment" [B]. Oxford University Press:Oxford, (1999).
    [27]Shen Y, Bax A. "Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology."[J]. J. Bio. NMR,38,289 (2007).
    [28]Shen Y, Bax A. "Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts."[J]. J. Bio. NMR,46,199 (2010).
    [29]Auer Aa, Gauss Jr, Stanton JF. "Quantitative prediction of gas-phase [sup 13]C nuclear magnetic shielding constants"[J]. J. Chem. Phys.,118,10407 (2003).
    [30]Wang L, Markley JL. "Empirical correlation between protein backbone 15N and 13C secondary chemical shifts and its application to nitrogen chemical shift re-referencing."[J]. J. Bio. NMR,44,95 (2009).
    [31]Wang B, Brothers EN, van der Vaart A, Merz KM. "Fast semiempirical calculations for nuclear magnetic resonance chemical shifts:a divide-and-conquer approach."[J]. J. Chem. Phys.,120,11392(2004).
    [32]De Simone A, Cavalli A, Hsu S-TD, Vranken W, Vendruscolo M. "Accurate Random Coil Chemical Shifts from an Analysis of Loop Regions in Native States of Proteins"[J]. J Am Chem Soc,131,16332 (2009).
    [33]Dios ACD, Pearson JG, Oldfield E. "Secondary and Tertiary Structural Effects on Protein NMR Chemical Shifts:An ab Initio Approach Published by:American Association for the Advancement of Science Stable URL:http://www.jstor.org/stable/2881519"[J]. Adv. Sci.260,1491 (2008).
    [34]Shu I, Stewart JM, Scian M, Kier BL, Andersen NH. "β-Sheet 13C structuring shifts appear only at the H-bonded sites of hairpins."[J]. J Am Chem Soc,133,1196 (2011).
    [35]Fesinmeyer RM, Hudson FM, Olsen Ka, White GWN, Euser A, Andersen NH. "Chemical shifts provide fold populations and register of beta hairpins and beta sheets."[J]. J. Bio. NMR,33,213 (2005).
    [36]Borkar A, Kumar D, Hosur RV. "AUTOBA:Automation of backbone assignment from HN(C)N suite of experiments."[J]. J. Bio. NMR,50,285 (2011).
    [37]Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A. "Consistent blind protein structure generation from NMR chemical shift data."[J]. Proc. Nat. Acad. Sci. U.S.A.,105,4685 (2008).
    [38]Shi P, Wang H, Xi Z, Shi C, Xiong Y, Tian C. "Site-specific 19F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid."[J]. Proteins.,20,224 (2011).
    [39]Simmerling C, Strockbine B, Roitberg AE. "All-atom structure prediction and folding simulations of a stable protein. "[J]. J Am Chem Soc,124,11258 (2002).
    [40]Baskaran K, Brunner K, Munte CE, Kalbitzer HR. "Mapping of protein structural ensembles by chemical shifts."[J]. J. Bio. NMR,48,71 (2010).
    [41]Cavalli A, Salvatella X, Dobson CM, Vendruscolo M. "Protein structure determination from NMR chemical shifts."[J]. Proc. Nat. Acad. Sci. U.S.A.,104,9615 (2007).
    [42]Berjanskii MV, Wishart DS. "Application of the random coil index to studying protein flexibility."[J]. J. Bio. NMR,40,31 (2008).
    [43]Cioffi M, Hunter jECA, Packer MJ, Pandya/EMJ, Williamson MP. "Use of quantitative 1 H NMR chemical shift changes for ligand docking into barnase"[J]. JAm Chem Soc,132, 11 (2009).
    [44]Sinha K, Jen-Jacobson L, Rule GS. "Specific Labeling of Threonine Methyl Groups for NMR Studies of Protein-Nucleic Acid Complexes "[J]. Biochemistry,4,111 (2011).
    [45]Sebastiani D, Rothlisberger U. "Nuclear Magnetic Resonance Chemical Shifts from Hybrid DFT QM/MM Calculations"[J]. J. Phys. Chem. B.,108,2807 (2004).
    [46]Beer M, Kussmann J, Ochsenfeld C. "Nuclei-selected NMR shielding calculations:a sublinear-scaling quantum-chemical method."[J]. J. Chem. Phys.,134,074102 (2011).
    [47]Borkowski EJ, Suvire FD, Enriz RD. "Advances in correlation between experimental and DFT/GIAO computed (13)C NMR chemical shifts:A theoretical study on pentacyclic terpenoids (fernenes)"[J]. J. Mol. Struc. THEOCHEM,953,83 (2010).
    [48]Buhl M, van Mourik T. "NMR spectroscopy:quantum-chemical calculations"[B]. Wiley Interdisciplinary Reviews:Computational Molecular Science,1,634 (2011).
    [49]Cui Q, Karplus M. "Molecular properties from combined QM/MM methods.2. Chemical shifts in large molecules"[J]. JPhys Chem B,104,3721 (2000).
    [50]de Dios AC. "Ab initio calculations of the NMR chemical shift"[J]. Prog. Nucl. Mag. Res. Sp.,29,229 (1996).
    [51]de Dios AC, Oldfield E. "Methods for computing nuclear magnetic resonance chemical shielding in large systems. Multiple cluster and charge field approaches"[J]. Chem. Phys. Lett.,205,108(1993).
    [52]de Dios AC, Pearson JG, Oldfield E. "Secondary and tertiary structural effects on protein NMR chemical shifts:an ab initio approach"[J]. Science (New York, NY),260,1491 (1993).
    [53]Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. "A comparison of models for calculating nuclear magnetic resonance shielding tensors"[J]. J. Chem. Phys.,104, (1996).
    [54]Cheng F, Sun H, Zhang Y, Mukkamala D, Oldfield E. "A solid state 13C NMR, crystallographic, and quantum chemical investigation of chemical shifts and hydrogen bonding in histidine dipeptides."[J]. J Am Chem Soc,127,12544 (2005).
    [55]Helgaker T, Jaszunski M, Ruud K. "Ab initio methods for the calculation of NMR shielding and indirect spin-spin coupling constants"[J]. Chem. Rev.,99,293 (1999).
    [56]Hinton JF, Guthrie P, Pulay P, Wolinski K. "Ab initio quantum mechanical calculation of the chemical shift anisotropy of the hydrogen atom in the (H 20) 17 cluster"[J]. J Am Chem Soc,114, (1992).
    [57]Frank A, Moeller HM, Exner TE. "Toward the Quantum Chemical Calculation of NMR Chemical Shifts of Proteins.2. Level of Theory, Basis Set, and Solvents Model Dependence" [J], J. Chem. Theory. Comput,8,1480 (2012).
    [58]Frank A, Onila I, Moller HM, Exner TE. "Toward the quantum chemical calculation of nuclear magnetic resonance chemical shifts of proteins."[J]. Proteins,19,2189 (2011).
    [59]Gao Q, Yokojima S, Fedorov DG, Kitaura K, Sakurai M, Nakamura S. "Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems"[J]. J. Chem. Theory. Comput.,6,1428 (2010).
    [60]Gao Q, Yokojima S, Kohno T, Ishida T, Fedorov DG, Kitaura K, Fujihira M, Nakamura S. "Ab initio NMR chemical shift calculations on proteins using fragment molecular orbitals with electrostatic environment"[J]. Chem. Phys. Lett.,445,331 (2007).
    [61]Avbelj F, Kocjan D, Baldwin RL. "Protein chemical shifts arising from alpha-helices and beta-sheets depend on solvent exposure"[J]. Proc. Nat. Acad. Sci. U.S.A.,101,17394 (2004).
    [62]Dracinsky M, Bour P. "Computational Analysis of Solvent Effects in NMR Spectroscopy"[J]. J. Chem. Theory. Comput.,6,288 (2010).
    [63]Cammi R. "Nuclear magnetic shieldings in solution:Gauge invariant atomic orbital calculation using the polarizable continuum model"[J]. Chem. Phys.,110, (1999).
    [64]Mennucci B. "Hydrogen bond versus polar effects:an ab initio analysis on n --> pi* absorption spectra and N nuclear shieldings of diazines in solution."[J]. JAm Chem Soc,124, 1506(2002).
    [65]Mennucci B, Martinez JM, Tomasi J. "Solvent effects on nuclear shieldings:Continuum or discrete solvation models to treat hydrogen bond and polarity effects?"[J]. J. Phys. Chem. A,105,7287(2001).
    [66]Mogelhoj A, Aidas K, Mikkelsen KV, Kongsted J. "Solvent effects on the nitrogen NMR shielding and nuclear quadrupole coupling constants in 1-methyltriazoles"[J]. Chem. Phys. Lett.,460,129 (2008).
    [67]Cai L, Fushman D, Kosov DS. "Density functional calculations of 15N chemical shifts in solvated dipeptides."[J]. J. Bio. NMR,41,77 (2008).
    [68]Cai L, Fushman D, Kosov DS. "Density functional calculations of chemical shielding of backbone 15N in helical residues of protein G."[J]. J. Bio. NMR,45,245 (2009).
    [69]Cai L, Kosov DS, Fushman D. "Density functional calculations of backbone (15)N shielding tensors in beta-sheet and turn residues of protein G"[J]. J. Bio. NMR,50,19 (2011).
    [70]Moon S, Case Da. "A new model for chemical shifts of amide hydrogens in proteins."[J]. J. Bio. NMR,38,139 (2007).
    [71]Moon S, Case DA. "A comparison of quantum chemical models for calculating NMR shielding parameters in peptides:Mixed basis set and ONIOM methods combined with a complete basis set extrapolation"[J]. J. Comput. Chem.,27,825 (2006).
    [72]Sindhikara DJ, Yoshida N, Hirata F. "Placevent:An algorithm for prediction of explicit solvent atom distributionuApplication to HIV-1 protease and F-ATP synthase"[J]. J. Comput. Chem.,33,1536(2012).
    [73]Imai T, Hiraoka R, Kovalenko A, Hirata F. "Locating missing water molecules in protein cavities by the three-dimensional reference interaction site model theory of molecular solvation"[J]. Proteins.,66,804 (2007).
    [74]Barfield M. "Structural dependencies of interresidue scalar coupling (h3)J(NC), and donor H-1 chemical shifts in the hydrogen bonding regions of proteins" [J]. J Am Chem Soc, 124,4158(2002).
    [75]Barneto JL, Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC. "A new model for mapping the peptide backbone:predicting proton chemical shifts in proteins"[J]. J. Comput. Chem.,303,1336(2012).
    [76]Parker LL, Houk AR, Jensen JH. "Cooperative hydrogen bonding effects are key determinants of backbone amide proton chemical shifts in proteins"[J]. J Am Chem Soc,128, 9863 (2006).
    [77]Ji Changge, Mei Y., Zhang JZH. "Developing polarized protein-specific charges for protein dynamics:MD free energy calculation of pKa shifts for Asp 26/Asp 20 in thioredoxin"[J]. Biophys. J.,95,101 (2008).
    [78]Duan LL, Mei Y, Zhang QG, Zhang JZH. "Intra-protein hydrogen bonding is dynamically stabilized by electronic polarization"[J]. J. Chem. Phys.,130,75 (2009).
    [79]Ji CG, Zhang JZH. "NMR scalar coupling constant reveals that intraprotein hydrogen bonds are dynamically stabilized by electronic polarization."[J]. J. Phys. Chem. B.,113, 13898(2009).
    [80]Ji CG, Zhang JZH. "Electronic Polarization Is Important in Stabilizing the Native Structures of Proteins"[J]. JPhys Chem B,113,16059 (2009).
    [81]Li D-w, Br R. "Iterative Optimization of Molecular Mechanics Force Fields from NMR Data of Full-Length Proteins"[J].J. Chem. Theory. Comput,1773 (2011).
    [82]Li D-W, Brueschweiler R. "Certification of Molecular Dynamics Trajectories with NMR Chemical Shifts"[J]. J. Phys. Chem. Lett.,1,246 (2010).
    [83]Li D-W, Bruschweiler R. "NMR-based protein potentials."[J]. Angew. Chem. Int. Ed., 49,6778(2010).
    [84]Eghbalnia HR, Wang L, Bahrami A, Assadi A, Markley JL. "Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements."[J].J. Bio. NMR,32,71 (2005).
    [85]Schmitz C, Bonvin AMJJ. "Protein-protein HADDocking using exclusively pseudocontact shifts."[J]. J. Bio. NMR,50,263 (2011).
    [86]Schumann FH, Riepl H, Maurer T, Gronwald W, Neidig K-P, Kalbitzer HR. "Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions."[J]. J. Bio. NMR,39,275 (2007).
    [87]Banci L. "Molecular dynamics simulations of metalloproteins"[J]. Current Opinion in Chemical Biology,7,143 (2003).
    [88]Calimet N, Simonson T. "Cys(x)His(y)-Zn2+interactions:Possibilities and limitations of a simple pairwise force field"[J]. J. Mol. Graph. Modell.,24,404 (2006).
    [89]Hoops SC, Anderson KW, Merz KM, Jr. "Force field design for metalloproteins"[J]. J. Am. Chem. Soc,113,8262 (1991).
    [90]Hu L, Ryde U. "Comparison of Methods to Obtain Force-Field Parameters for Metal Sites"[J]. J. Chem. Theory. Comput.,7,2452 (2011).
    [91]Lee Y-m, Lim C. "Physical basis of structural and catalytic Zn-binding sites in proteins"[J]. J. Mol. Bio.,379,545 (2008).
    [92]Lee Y-M, Lim C. "Factors Controlling the Reactivity of Zinc Finger Cores"[J]. J. Am. Chem. Soc.,133,8691(2011).
    [93]Li W, Zhang J, Su Y, Wang J, Qin M, Wang W. "Effects of zinc binding on the conformational distribution of the amyloid-beta peptide based on molecular dynamics simulations"[J]. J. Phys. Chem. B., 111,13814 (2007).
    [94]Li W, Zhang J, Wang J, Wang W. "Metal-coupled folding of Cys(2)His(2) zinc-finger"[J]. J. Am. Chem. Soc.,130,892 (2008).
    [95]Pang YP. "Novel zinc protein molecular dynamics simulations:Steps toward antiangiogenesis for cancer treatment"[J]. J. Mol. Modell.,5,196 (1999).
    [96]Pang YP. "Successful molecular dynamics simulation of two zinc complexes bridged by a hydroxide in phosphotriesterase using the cationic dummy atom method"[J]. Proteins., 45,183 (2001).
    [97]Burger SK, Lacasse M, Verstraelen T, Drewry J, Gunning P, Ayers PW. "Automated Parametrization of AMBER Force Field Terms from Vibrational Analysis with a Focus on Functionalizing Dinuclear Zinc(II) Scaffolds"[J]. J. Chem. Theory. Comput,8,554 (2012).
    [98]Chakravorty DK, Wang B, Lee CW, Giedroc DP, Merz KM, Jr. "Simulations of Allosteric Motions in the Zinc Sensor CzrA"[J]. J. Am. Chem. Soc,134,3367 (2012).
    [99]Chang S, Jiao X, Hu J-P, Chen Y, Tian X-H. "Stability and Folding Behavior Analysis of Zinc-Finger Using Simple Models"[J]. Int. J. Mol. Sci.,11,4014 (2010).
    [100]Lin F, Wang R. "Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems"[J]. J. Chem. Theory. Comput.,6,1852(2010).
    [101]Diaz N, Suarez D, Merz KM. "Hydration of zinc ions:theoretical study of Zn(H2O)(4) (H2O)(8)(2+) and Zn(H2O)(6) (H2O)(6)(2+)"[J]. Chem. Phys. Lett,326,288 (2000).
    [102]Dixit PD, Asthagiri D. "An Elastic-Network-Based Local Molecular Field Analysis of Zinc Finger Proteins"[J].J. Phys. Chem. B.,115,7374 (2011).
    [103]Stote RH, Karplus M. "Zinc binding to proteins and solution:A simple but accurate nonbonded representation"[J]. Proteins.,23,12 (1995).
    [104]Maret W. "Metals on the move:zinc ions in cellular regulation and in the coordination dynamics of zinc proteins"[J]. Biometals,24,411 (2011).
    [105]Maret W. "New perspectives of zinc coordination environments in proteins"[J]. J. Inorg. Biochem., 111,110 (2012).
    [106]Maret W, Li Y. "Coordination Dynamics of Zinc in Proteins"[J]. Chem. Rev.,109,4682 (2009).
    [107]Dal Peraro M, Spiegel K, Lamoureux G, De Vivo M, DeGrado WF, Klein ML. "Modeling the charge distribution at metal sites in proteins for molecular dynamics simulations"[J].J. Struc. Bio.,157,444 (2007).
    [108]De Courcy B, Dognon J-P, Clavaguera C, Gresh N, Piquemal J-P. "Interactions Within the Alcohol Dehydrogenase Zn(II)-Metalloenzyme Active Site:Interplay Between Subvalence, Electron Correlation/Dispersion, and Charge Transfer/Induction Effects"[J]. Int. J. Quantum. Chem.,111,1213 (2011).
    [109]de Courcy B, Piquemal J-P, Gresh N. "Energy Analysis of Zn Polycoordination in a Metalloprotein Environment and of the Role of a Neighboring Aromatic Residue. What Is the Impact of Polarization?"[J].J. Chem. Theory. Comput., A,1659(2008).
    [110]Gresh N, Stevens WJ, Krauss M. "Mono-and poly-ligated complexes of Zn 2+:an ab initio analysis of the metal-ligand interaction energy"[J]. J. Comput. Chem.,16,843 (1995).
    [111]Gresh N, de Courcy B, Piquemal J-P, Foret J, Courtiol-Legourd S, Salmon L. "Polarizable Water Networks in Ligand-Metalloprotein Recognition. Impact on the Relative Complexation Energies of Zn-Dependent Phosphomannose Isomerase with D-Mannose 6-Phosphate Surrogates"[J].J. Phys. Chem. B.,115,8304 (2011).
    [112]Gresh N, Piquemal JP, Krauss M. "Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations"[J]. J. Comput. Chem.,26,1113 (2005).
    [113]Dudev T, Lim C. "Effect of Carboxylate-Binding Mode on Metal Binding/Selectivity and Function in Proteins"[J]. Acc. Chem. Res.,40,85 (2006).
    [114]Dudev T, Lim C. Metal binding affinity and selectivity in metalloproteins:Insights from computational studies. Ann. Rev. Biophy.6,97 (2008).
    [115]Dudev T, Lin YL, Dudev M, Lim C. "First-second shell interactions in metal binding sites in proteins:A PDB survey and DFT/CDM calculations"[J]. J. Am. Chem. Soc.,125, 3168(2003).
    [116]Sakharov DV, Lim C. "Zn protein simulations including charge transfer and local polarization effects"[J]. J. Am. Chem. Soc.,127,4921 (2005).
    [117]Sakharov DV, Lim C. "Force fields including charge transfer and local polarization effects:Application to proteins containing multi/heavy metal ions"[J]. J. Comput. Chem.,30, 191 (2009).
    [118]Zhang J, Yang W, Piquemal J-P, Ren P. "Modeling Structural Coordination and Ligand Binding in Zinc Proteins with a Polarizable Potential"[J]. J. Chem. Theory. Comput.,8,1314 (2012).
    [119]Li YL, Mei Y, Zhang DW, Xie DQ, Zhang JZH. "Structure and Dynamics of a Dizinc Metalloprotein:Effect of Charge Transfer and Polarization"[J]. J. Phys. Chem. B.,115, 10154(2011).
    [120]Ji CG, Xiao X, Zhang JZH. "Studying the Effect of Site-Specific Hydrophobicity and Polarization on Hydrogen Bond Energy of Protein Using a Polarizable Method"[J]. J. Chem. Theory. Comput.,8,2157 (2012).
    [121]Babu CS, Lim C. "Empirical force fields for biologically active divalent metal cations in water"[J].J. Phys. Chem. A,110,691 (2006).
    [122]Fatmi MQ, Hofer TS, Randolf BR, Rode BM. "An extended ab initio QM/MM MD approach to structure and dynamics of Zn(II) in aqueous solution"[J]. J. Chem. Phys.,123, (2005).
    [123]Patel K, Kumar A, Durani S. "Analysis of the structural consensus of the zinc coordination centers of metalloprotein structures"[J]. Biochem. Biophys., 1774, 1247 (2007).
    [124]Peters MB, Yang Y, Wang B, Fuesti-Molnar L, Weaver MN, Merz KM, Jr. "Structural Survey of Zinc-Containing Proteins and Development of the Zinc AMBER Force Field (ZAFF)"[J]. J. Chem. Theory. Comput.,6,2935 (2010).
    [125]Kuppuraj G, Dudev M, Lim C. "Factors Governing Metal-Ligand Distances and Coordination Geometries of Metal Complexes"[J]. J. Phys. Chem. B.,113,2952 (2009).
    [126]Levy R, Sobolev V, Edelman M. "First-and Second-Shell Metal Binding Residues in Human Proteins are Disproportionately Associated with Disease-Related SNPs"[J]. Human Mutation,32,1309 (2011).
    [127]Donini OAT, Kollman PA. "Calculation and prediction of binding free energies for the matrix metalloproteinases"[J]. J. Med. Chem.,43,4180 (2000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700