小金海棠转录因子MxFIT、MxIRO2的克隆及其与启动子关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺铁是限制果树特别是苹果树生长和果实品质的重要因素之一。多年来,人们围绕植物抗缺铁机理开展了许多研究,然而苹果抗缺铁的分子机理仍然不清楚。在实验室筛选到苹果铁高效基因型砧木小金海棠的基础上,本研究以小金海棠为试材,从中克隆到了两个受缺铁诱导表达的转录因子,命名为MxFTT和MxIRO2,分析及验证了其特性和功能,并研究了其与小金海棠铁吸收相关的两个重要功能基因MxIRT1和MxFRO2启动子之间的关系。研究结果为小金海棠铁吸收机制的深入挖掘奠定了基础。
     根据苹果金冠基因组和已报道的与铁吸收相关转录因子的信息,克隆到了小金海棠MxFIT基因,其开放阅读框为966bp,编码321个氨基酸,属于螺旋-环-螺旋(bHLH)结构的转录因子,亚细胞定位分析表明MxFIT定位在细胞核,酵母单杂交表明MxFTT在酵母细胞中具有较强的激活能力。通过将MxFIT纯化蛋白注射新西兰大白兔获得了MxFIT抗体,利用实时荧光PCR和Western Blot分析了其在转录和翻译水平的表达,MxFIT主要在小金海棠根系中表达,在叶片中几乎不表达。在根中,缺铁不仅可以强烈诱导MxFIT基因表达,而且可以诱导MxFIT蛋白积累,说明MxFTT在转录和翻译水平上均受缺铁调控。在拟南芥中过表达MxFIT可使转基因植株在缺铁条件下增强铁的吸收应答反应,提高了植株的抗缺铁能力。因此,MxFIT在缺铁应答反应中起着重要的作用。
     同时克隆到了另一个bHLH家族转录因子MxIRO2,该转录因子基因的开放阅读框为762bp,编码253个氨基酸。亚细胞定位显示MxIRO2定位在细胞核,MxIRO2和GAL4DNA结合域的融合蛋白在酵母中能激活LacZ报告基因的表达,其激活能力较弱,可被1mM3-AT抑制。通过将纯化的MxIRO2蛋白注射新西兰大白兔获得了MxIR02的抗体,利用实时荧光PCR和Western Blot分析了其在转录和翻译水平的表达,结果表明MxIRO2在小金海棠的根部和叶部均受缺铁诱导表达,在转录和翻译水平的表达均先升高后降低。
     酵母双杂交表明MxFIT和MxIRO2之间存在互作关系,利用烟草注射瞬时表达方法发现MxFIT和MxIR02同时注射烟草时可激活MxIRT1和MxFRO2启动子;将含启动子删除片段的农杆菌注射烟草表明MxIRTl启动子在-485~-236bp处存在与MxFIT和MxIRO2转录因子结合的序列,MxFRO2启动子在-813~-564bp处存在与MxFIT和MxIR02转录因子结合的序列。通过转化原生质体方法检测了MxIRT1和MxFRO2启动子的活性, MxIRT1启动子在-764~-485bp处存在增强启动子活性的元件,MxFRO2启动子在-1704~-1228bp和-564--329bp处存在增强启动子活性的元件。
     本研究从转录因子与功能基因启动子的关系入手证明了MxFIT和MxIRO2互作后可调控MxIRTl和MxFRO2,同时利用转基因拟南芥也证明了IRT1和FRO2是FIT调控的下游功能基因。因此,MxFTT和MxIRO2是小金海棠铁吸收调控过程中的重要转录因子。
Iron deficiency is one of the important factors that affect the yield and quality in fruit trees, especially for apple tree. People have conducted a lot of researches about the mechanism of resistance to iron deficiency for years. However, the molecular mechanism of resistance to iron deficiency in apple tree is still not very clear. Malus xiaojinensis (Cheng et Jiang) is the first apple genotype identified as being resistant to iron deficiency by our research team. In this study, two iron-deficiency-induced transcription factors, MxFIT and MxIRO2, were cloned in M. xiaojinensis and the characteristics and functions were also analysed. MxIRTl and MxFRO2had been proved as two major genes related to iron uptake. The relationship of the promoters of MxIRTl and MxFR02with MxFIT and MxIR02transcription factors was studied in this paper. This work offers an important basis for further investigating the mechanism of fruit tree adaptation to iron-deficiency stress.
     According to the genome of Golden Delicious and the transcriptome sequencing of M. xiaojinensis, an iron deficiency response transcription factor gene, MxFIT, was cloned from M. xiaojinensis. MxFIT encoded a basic helix-loop-helix protein and contained a966bp open reading frame. MxFIT protein was targeted to the nucleus in onion epidermal cells and showed strong transcriptional activation in yeast cells. The antibody was obtained by injecting a New Zealand rabbit with the purified MxPIT-His fusion protein. Real-time PCR and Western blot analysis revealed that MxFIT was up-regulated in roots under iron deficiency at both mRNA and protein levels, while almost no expression was detected in leaves irrespective of iron supply. Ectopic expression of MxFIT resulted in enhanced iron deficiency responses in Arabidopsis under iron deficiency and stronger resistance to iron deficiency. Thus, MxFIT might be involved in iron uptake and plays an important role in iron deficiency response.
     In this study, another bHLH iron-related transcription factor IRO2, containing a762bp open reading frame and encoding253amino acids, had been cloned from M. xiaojinensis. The MxIRO2protein was targeted to nucleus in onion epidermal cells and had weaker transcription activation ability in yeast cells. The activation degree was restrained by1mM3-AT. The antibody was obtained by injecting a New Zealand rabbit with the purified MxIR02-His fusion protein. The spatiotemporal expression of MxIR02under iron deficiency was then assayed. The results indicated that MxIR02was induced in both roots and leaves when subject to iron deficiency. The expression model in transcription and translation level was increased at first and then decreased with iron deficiency stress.
     Yeast two-hybrid analysis proved that MxFIT could interact with MxIRO2. The promoters of MxIRTl and MxFRO2were activated in the tobacco leaves by coinfiltrated with agrobacterium containing MxFIT and MxIRO2. The binding sequences with MxFIT and MxIRO2transcription factor might locate-485~-236bp in MxIRT1promoter and-813~-564bp in MxFR02promoter. There might be reinforcing elements in-764~-485bp of MxIRT1promoter and-1704~-1228bp and-564~-329bp of MxFOR2promoter.
     Therefore, based on the relationship between transcription factors and functional gene promoters, we proved that MxFIT and MxIRO2could regulate MxIRTl and MxFRO2after interactions. Meanwhile, we found IRT1and FRO2were regulated by FIT in transgenic Arabidopsis. MxFTT and MxDRO2were two important transcription factors in regulation of iron absorption in Malus xiaojinensis.
引文
曹冬梅.苹果铁高效基因型生物技术的研究——缺铁胁迫相关基因的克隆和表达分析:[博士学位论文].北京:中国农业大学,2003
    陈正钢,李春俭,张福锁,等.缺铁条件下菜豆植株茎生长素(IAA)与根系Fe3+还原酶活性的关系.中国农业大学学报,1999,4(5):25-30
    郭函子.缺铁胁迫下小金海棠根特异蛋白的表达鉴定及MxSAMS基因克隆:[博士学位论文].北京:中国农业大学,2005
    韩德果.小金海棠MxCS1基因的克隆与功能分析及CA和NA在铁转运中的作用:[博士学位论文].北京:中国农业大学,2010
    韩振海.从苹果属(Malus)中筛选吸收和利用铁能力强的种:[博士学位论文].北京:北京农业大学,1990
    韩振海,沈隽.果树的缺铁失绿症—文献述评.园艺学报,1991,18(4):323-328
    韩振海,许雪峰.不同铁效率果树基因型研究的现状和前景.园艺学年评,1995,1:1-16
    韩振海,王忆,张新忠,等.苹果砧木新品种中砧1号.农学生物技术学报,2013,21(7):879-882
    李春俭,张福锁,谭祖卫.植物对缺铁的适应性反应及其调控.世界农业,1995,9:30-32
    卢彬彬.使用高通量测序技术对小金海棠进行转录组测序及缺铁胁迫下的表达谱分析:[硕士学位论文].北京:中国农业大学,2012
    平吉成.苹果属几个种的组织培养繁殖技术及组培苗缺铁胁迫反应研究:[硕士学位论文].北京:中国农业大学,1994
    戚金亮.苹果铁高效基因型生物技术的研究——MxNrampl和Mxlrtl基因的克隆:[博士学位论文].北京:中国农业大学,2003
    任玲.小金海棠Fe3+还原酶基因MxFRO2的克隆和功能初探:[硕士学位论文].北京:中国农业大学,2007
    王永章.铁高效与铁低效苹果基因型的铁离子吸收动力学的研究:[硕士学位论文].北京:北京农业大学,1994
    文静.小金海棠Fe3+螯合还原酶基因MxFRO2启动子的克隆与功能初探:[博士学位论文].北京:中国农业大学,2008
    吴平,印莉萍,张立平,等.植物营养分子生理学.北京:科学出版社,2001:257
    吴婷.苹果园碳循环及苹果碳铁代谢中信号物质初探:[博士学位论文].北京:中国农业大学,2013
    肖大双.不同园艺植物缺铁适应性反应信号来源及NO介导反应机理研究:[硕士学位论文].北京:中国农业大学,2011
    徐红梅.缺铁胁迫下苹果属小金海棠转录因子的克隆、表达和功能研究:[博士学位论文].北京:中国农业大学,2011
    杨娟.苹果属植物缺铁适应性反应中IAA的作用:[硕士学位论文].北京:中国农业大学,2004
    于青一.缺铁胁迫下苹果铁高效基因型特异蛋白的初步研究:[硕士学位论文].北京:中国农业 大学,2000
    张倩.小金海棠MxVHA-c, MxHA7基因的克隆及功能分析:[硕士学位论文].北京:中国农业大学,2012
    张学宁.小金海棠MxIRT1基因His-box编码区的功能研究:[博士学位论文].北京:中国农业大学,2007
    Bagnaresi P, Basso B, Pupillo P. The NADH-dependent Fe3+ -chelate reductases of tomato roots. Planta, 1997,202 (4):427-434
    Bashir K, Inoue H, Nagasaka S, et al. Cloning and characterization of deoxymugineic acid synthase genes from graminaceous plants. Journal of Biological Chemistry,2006,281:32395-32402
    Bauer P, Ling HQ, Guerinot ML. FIT, the FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR in Arabidopsis. Plant Physiology and Biochemistry,2007,45: 260-261.
    Bereczky Z, Wang HY, Schubert V, et al. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. Journal of Biological Chemistry,2003,278: 24697-24704
    Bienfait HF. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. Journal of Bioenergetics and Biomembranes,1985,17:73-83
    Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. Journal of Cellular Biochemistry,1994,55:32-58
    Bradford NM. A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-259
    Brown JC, Chaney RL, Ambler JE. A new mutant inefficient in the transport of iron. Physiology Planttrum,1971,25:48-53
    Brumbarova T, Bauer P. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Plant Physiology,2005,137:1018-1026
    Chaudhary J, Skinner MK. Basic Helix-Loop-Helix Proteins can act at the E-box within the serum response element of the c-fos promoter to inflence hormone-induced promoter activation in sertoli cells. Molecular Endocrinology,1999 13(5):774-786
    Cohen CK, Fox TC, Garvin DF, et al. The role of iron-deficiency stress responses instimulating heavy-metal transport in plants. Plant Physiology,1998,116:1063-1072.
    Colangelo EP, Guerinot ML. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell,2004,16:3400-3412
    Connolly EL, Fett JP, Guerinot ML. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell,2002,14(6):1347-1357
    Courey AJ, Tjian R. Analysis of Spl in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell,1988,55:887-896
    Damerval C, de Vienne D, Zivy M, et al. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat seedling proteins. Electrophoresis,1986,7: 52-54
    Dancis A, Klausner RD, Hinnebusch AG. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Molecular and Cellular Biology,1990,10:2294-2301
    Dehesh K, Smith LG, Tepperman JM, et al. Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2. The Plant Journal,1995,8:25-36
    DeMaria CT, Brewer G. AUF1 binding affinity to A+U-rich elements correlates with rapid mRNA degradation. Journal of Biological Chemistry,1996,271:12179-12184
    Dinneny JR, Long TA, Wang JY, et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science,2008,320:942-45
    Dynan WS, Tjian R. Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature,1985,316:774-778
    Eckhardt U, Marques AM, Buckhout TJ. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Molecular Biology,2001,45(4):437-448
    Eide D, Broderius M, Fett J, et al. A Novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences of the United Sates of America,1996,93:5624-5628
    Graziano M, Lamattina L. Nitric oxide and iron in plants:an emerging and converging story. Trends in Plant Science,2005,10:4-8
    Graziano M, Lamattina L. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant Journal,2007,52:949-960
    Grusak MA, Pezeshgi S. Shoot-to-root signal transmission regulates root Fe (Ⅲ) reductase activity in the dgl mutant of pea. Plant Physiology,1996,110:329-334
    Guarente L. UASs and enhancers:common mechanism of transcriptional activation in yeast and mammals. Cell,1988,52:303-310
    Guerinot ML, Ying Yi. Iron:nutritious, noxious, and not readily available. Plant Physiology,1994, 104:815-820
    Han ZH, Wang Q, Shen T. Comparison of some physiological and biochemical characteristics between iron-efficient and iron-inefficient species in the genus Malus. Journal of Plant Nutrition,1994, 17:1257-1264
    Harper JF, Surowy TK, Sussman MR. Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United Sates of America,1989,86:1234-1238
    Heim MA, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 2003,20:735-747
    Hindt MN, Guerinot ML. Getting a sense for signals:Regulation of the plant iron deficiency response. Biochimica et Biophysica Acta-Molecular Cell Research,2012,1823(9):1521-30
    Jakoby M, Wang HY, Reidt W, et al. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Letters,2004,577:528-534
    Kobayashi T, Nakanishi H, Takahashi M, et al. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2' -deoxymugineic acid to mugineic acid in transgenic rice. Planta,2001,212:864-871
    Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology,2012,63:131-152
    Kobayashi T, Nakayama Y, Itai RN, et al. Identification of novel cisacting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant Journal,2003,36:780-793
    Kobayashi T, Itai RN, Ogo Y, et al. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant Journal,2009,60:948-961
    Kobayashi T, Ogo Y, Aung MS, et al. The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Annals of Botany,2010,105:1109-1117
    Kobayashi T, Ogo Y, Itai RN, et al. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants. Proceedings of the National Academy of Sciences of the United Sates of America,2007,104:19150-19155
    Kobayashi T, Suzuki M, Inoue H, et al. Expression of iron-acquisitionrelated genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiencyresponsive elements. Journal of Experimental Botany,2005,56:1305-1316
    Landsberg EC. Hormonal regulation of iron-stress response in sunflower roots:a mor-phological and cytological investigation. Protoplasma,1996,194:69-80
    Landsberg EC. Fe-stress-induced transfer cell formation-regulation by auxin? Plant Physiology,1981, 67:563-566
    Landsberg, EC. Transfer cell formation in the root epidermis:a prerequisite for Fe-efficiency? Journal of Plant Nutrition,1982,5:415-432
    Landsberg EC. Regulation of iron-stress-response by whole-plant activity. Journal of Plant Nutrition, 1984,7:609-621
    Landsberg, EC. Function of rhizodermal transfer cells in Fe stress response mechanism of Capsicum annuum L. Plant Physiology,1986,82:511-517
    Li CJ, Zhu XP, Zhang FS. Role of shoot in regulation of iron deficiency responses in cucumber and bean plants. Journal of Plant Nutrition,2000,23:1809-1818
    Li L, Cheng X, Ling HQ. Isolation and characterization of Fe (III)-chelate reductase gene LeFRO1 in tomato. Plant Molecular Biology,2004,54:125-136
    Li XX, Duan XP, Jiang HX, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in Rice and Arabidopsis, Plant Physiology,2006,141:1167-1184
    Ling HQ, Bauer P, Bereczky Z, et al. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proceedings of the National Academy of Sciences of the United States of America,2002,99:13938-13943
    Lingam P, Mohrbacher J, Brumbarova T, et al. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell,2011, 23:1815-29
    Long TA, Tsukagoshi H, Busch W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell,2010,22:2219-2236
    Maas FM, van de Wetering DAM, van Beusichem ML, et al. Characterization of phloem iron and its possible role in the regulation of Fe-efficiency reaction. Plant Physiology,1988,87:167-171
    Massari ME, Murre C. Helix-loop-helix proteins:regulators of transcription in Eucaryotic organisms. Molecular and Cellular Biology,2000,20:429-440
    Meiser J, Lingam S, Bauer P. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiology,2011,157: 2154-2166
    Mermod N, O' Neill EA, Kelly TJ, et al. The proline-rich transcriptional activator of CTF-NF1 is distinct from the replication and DNA binding domain. Cell,1989,58:741-753
    Michelet B, Lukaszewicz M, Dupriez V, et al. A plant plasma membrane proton-ATPase gene is regulated by development and environment and shows signs of translational regulation. Plant Cell, 1994,6:1375-1389
    Morsomme P, Boutry M. The plant plasma membrane H+-ATPase:Structure, function and regulation. Biochimica et Biophysica Acta-Biomembranes,2000,1465:1-16
    Murgia I, Tarantino D, Soave C, et al. Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. Journal of Plant Physiology,2011,168:894-902
    Murre C, McCaw PS, Vaessin H, et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell,1989,58(3):537-544
    Niebur WS, Fehr WR. Agronomic evaluation of soybean genotypes resistant to iron deficiency chlorosis. Crop Science,1981,21:551-554
    Niu X, Guiltinan MJ. DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Research,1994,22:4969-4978
    Ogo Y, Kobayashi T, Itai RN, et al. A novel NAC transcription factor IDEF2 that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. Journal of Biological Chemistry,2008,283:13407-13417
    Ogo Y, Itai RN, Nakanishi H, et al. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. Journal of Experimental Botany,2006, 57:2867-2878
    Ogo Y, Itai RN, Kobayashi T, et al. OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Molecular Biology,2011,75:593-605
    Ogo Y, Itai RN, Nakanishi H, et al. The ricebHLHprotein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant Jounery,2007,51:366-377
    Palmgren MG. Plant plasma membrane H+-ATPases:powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology.2001,52:817-845.
    Qi JN, Yu SC, Zhang FL, et al. Reference gene seletion for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Molecular Biology Reporter,2010,28:597-604
    Robinson NJ Groom SJ, Groom QJ. The froh gene family from Arabidopsis thaliana:putative iron-chelate reductase. Plant and Soil,1997,196:245-248
    Robinson NJ, Procter CM, Connolly EL, et al. A ferric-chelate reductase for iron uptake from soils. Natrue,1999,397:649-697
    Romera FJ, Alcantara E, Guardia de la MD. Ethylene production by Fe-deficient roots and its involvement in the regulation of Fe-deficiency stress responses by strategy I plants. Annals of Botany,1999,83:51-55
    Romera FJ, Welch RM, Norvell WA, et al. Iron requirement for and effects of promoters and inhibitors of ethylene action or stimulation of Fe (III)-chelate reductase in roots of Strategy I species. Biometals,1996,9(1):45-50
    Romheld V, Marschner H. Mobilization of iron in the rhizosphere of different plant species. Journal of Plant Nutrition,1986,2:155-192
    Santi S, Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytologist,2009,183:1072-1084
    Schmidt W. Iron solutions:acquisition strategies and signaling pathway in plants. Trends in Plant Science,2003,8:188-193
    Sivitz A, Grinvalds C, Barberon M, et al. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses. Plant Journal,2011,66:1044-1152
    Staiger D. Chemical strategies for iron acquisition in plants. Angewandte Chemie International Edition, 2002,41(13):2259-2264
    Struhl K. Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends in Biochemical Sciences,1989,14:137-140
    Takahashi M, Yamaguchi H, Nakanishi H, et al. Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (Strategy II) in graminaceous plants. Plant Physiology,1999, 121:947-956
    Tang WH, Zhang JL, Wang ZY, et al. The cause of deviation made in determining the molecular weight of His-tag fusion proteins by SDS-PAGE. Acta Phytophysiologica Sinica,2000,26:64-68
    Tjaden G, Coruzzi GM. A novel AT-rich DNA binding protein that combines an HMG-like DNA binding domain with a putative transcription domain. Plant Cell,1994,6:107-111
    Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus×domestica Borkh.). Nature genetics,2010,42:833-839
    Vert G, Grotz N, Dedald6champ F,et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell,2002,14:1223-1233
    Vorwieger A, Gryczka C, Czihal A, et al. Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. Planta,2007,226:147-158
    Walker EL, Connolly EL. Time to pump iron:iron-deficiency-signaling mechanisms of higher plants. Current Opinion in Plant Biology,2008,11:1-6
    Wang HU, Klatte M, Jakoby M, et al. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta,2007,226:897-908
    Yang TJW, Lin WD, Schmidt W. Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiology,2010,152:2130-2141
    Yuan YX, Wu HL, Wang N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Research,2008,18:385-397
    Yuan YX, Zhang J, Wang DW, et al. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Research,2005,15: 613-621
    Zheng L, Ying Y, Wang L, et al. Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biology,2010,10:1471-1480

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700