大庆油田二类油层改善聚驱效果方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析了大庆油田二类油层的地质特点,针对目前大庆油田二类油层聚合物驱矿场应用普遍存在的问题,进行了以下几方面的研究。
     1.针对大庆油田二类油层聚合物驱实施分质分压注入技术,对流经分子量调节器的不同相对分子质量的剪切聚合物溶液以及未剪切的相同相对分子质量的聚合物溶液的黏弹性进行了实验研究,研究结果表明:剪切聚合物溶液与未剪切聚合物溶液的黏性符合幂律模式,稠度系数随相对分子质量的增大而增大,幂律指数随相对分子质量的增大而减小;剪切聚合物溶液的第一法向应力差随剪切速率的增大变化不大,低相对分子质量聚合物溶液的第一法向应力差较低,基本不变。测定了剪切、未剪切两种聚合物溶液的残余阻力系数,实验结果表明:剪切聚合物的残余阻力系数小于相同相对分子质量的未剪切聚合物溶液的残余阻力系数;随着聚合物相对分子质量的增大,残余阻力系数增大。
     2.开展了不同渗透率岩心与聚合物溶液的相对分子质量的适应性研究,将经过分子量调节器剪切的相对分子质量分别是600×10~4、800×10~4、1200×10~4和1600×10~4左右的聚合物溶液以及未剪切的相同相对分子质量的聚合物溶液在均质岩心上进行驱油实验,结果表明:无论相对分子质量高低,剪切聚合物溶液的聚驱采出程度均小于相同相对分子质量的未剪切聚合物溶液的聚驱采出程度;高相对分子质量的剪切聚合物溶液的聚驱采出程度大于未经剪切低相对分子质量聚合物溶液的聚驱采出程度;无论相对分子质量高低,剪切聚合物溶液的聚驱最高注入压力小于未剪切的相同相对分子质量的聚合物溶液的聚驱最高注入压力。采取三管并联的驱油方式,模拟聚合物驱油笼统注入和分质注入工艺,实验结果表明:多层同采时,分质注入的采出程度高于笼统注入方式,分质注入的最高注入压力低于笼统注入方式;对于渗透率是300×10~(-3)μm~2~200×10~(-3)μm~2的岩心,驱油聚合物应选择剪切后中等相对分子质量的聚合物溶液,渗透率100×10~(-3)μm~2左右的岩心,驱油聚合物应选剪切后低相对分子质量聚合物溶液。
     3.应用五点法井网的产量公式推导了聚合物驱注入压力公式,分析了影响聚驱注入压力的因素;以此开展了降低二类油层聚驱注入压力的方法研究,结果表明:注入表面活性剂、减小井距、降低注入速度、压裂、周期注聚等措施,在二类油层降低聚驱注入压力是可行的;表面活性剂与聚合物交替注入方式既可以降低注入压力又可以提高采出程度;周期注聚可以降低聚合物驱的注入压力,周期数越多,效果越好;周期注聚方式可以提高非均质岩心的采出程度,对均质岩心采收率影响不大。
     4.针对二类油层非均质性严重,注聚过程中同一单元内水、聚两驱共存现象进行了研究。以大庆油田北二西西块二类油层注聚开发区为例,采用数值模拟方法研究了水聚同驱情况下,水聚驱不同注入参数组合下的开采特征,研究结果表明:水聚接触区域各类油水井之间主要存在两类连通关系,一区主要连通关系为:“三次加密油井—三次加密水井—聚驱油井—聚驱水井”;二区主要连通关系为:“三次加密水井—三次加密油井—驱油井—聚驱水井”;聚水强度比对一区接触区域的影响较大,对二区接触区域影响较小;当存在水聚同驱时,应采用两口油井封边,水聚区接触区域的连通关系应采用“三次加密水井—三次加密油井—聚驱油井—聚驱水井”;对于一区连通关系,适合在注水强度较大的条件下开采,最佳方案的聚水强度比为聚:水=1:2;对于二区连通关系,适合在注聚强度较大的条件下开采,二区水聚驱接触区域最佳方案的聚水强度比为聚:水=3:1;对于一区的连通关系,当聚水强度比聚:水=1:2时,聚驱区域和水驱区域的合理的地层压力分别为11.7MPa、11.25MPa;对于二区的连通关系,当聚水强度比为聚:水=3:1时,聚驱区域和水驱区域的合理的地层压力分别为10.95MPa、10.42MPa。
This article analyzed geologic characteristic of sub-layers reservoir in Daqing Oil Field, and in the view of the prevalent problem of polymer flooding used of sub-layers in Daqing oil field, made some researches as bellow:
     1.Research on viscoelasticity of polymer solution with various molecular weights sheared by molecular weight regulator and which with same molecular weight (unsheared) was carried out , in the view of the different medium and pressure injected technique of polymer flooding used of sub-layers in Daqing oil field. It concludes that: The viscosity of polymer solution sheared or unsheared fits power law mode, consistency index increase with the increasing of molecular weight; while the power law index decrease with the increasing of molecular weight; the first normal stress different of polymer solution sheared does not change greatly with the increasing of shear rate, the first normal stress different of which with the low molecular weight is lower, nearly with no change. Through testing the residual resistance factor of polymer solution sheared and unsheared, results show that: Polymer solution with the same molecular weight, the residual resistance factor of unsheared is higher than that of which sheared; the residual resistance factor increase with the increasing of the molecular weight.
     2. Research on adaptiveness of core with different permeability and different molecular weights of polymer solution carried by doing flooding experiment of polymer solution which molecular weight is 600×10~4,800×10~4,1200×10~4 and 1600×10~4, which are sheared when flow through the molecular weight regulator, as well as which with the same molecular weight but unsheared on the core, the results show that: The recovery rate of polymer flooding unsheared is higher than which sheared with the same molecular weight, no matter the molecular weight is higher or not; the recovery rate of polymer flooding sheared with higher molecular weight is higher than the unsheared but with the lower molecular weight; the maximum injection pressure of polymer flooding unsheared is higher than which sheared with the same molecular weight, no matter the molecular weight is higher or not; when multi-zone produce, recovery rate of different medium injection is higher than commingled injection, and the maximum injection pressure is lower; for the core with the permeability from 200×10~(-3)μm~2 to 300×10~(-3)μm~2, polymer solution with medium molecular weight which was sheared is best for displacement, but for the core with the permeability 100×10~(-3)μm~2,which with the low molecular weight is the best.
     3. Fetched the injection pressure formula of polymer flood by using production formular of five-spot flood system,analysed the factors which impact on injection pressure of polymer, and on the basis of it, researched on the methods of decreasing polymer flooding injection pressure of sub-layers reservoir, the results show that: Injecting SAA, decreasing well spacing , dropping injection rate, fracturing bond gravel, injecting polymer periodically and so on are workable for decreasing polymer flooding injection pressure of sub-layers reservoir; injection pressure could be decreased greatly and recovery rate could be also increased by injecting SAA and polymer alternatively; injection pressure could be decreased by injecting polymer periodically, the more period, the better effect, it doesn’t have much effect on homogeneous core while it could improve recovery rate of inhomogeneous core.
     4. Heterogeneity of the sub-layers is serious, polymer and water flooding exist in the same unit for polymer injection, the coexistence make polymer flooding potential difficult to play. In this paper, take polymer flooding sub-layers of western North Block for example, research recovery feature of water and polymer displacement at the same time with different combination of injection parameters use numerical simulation method. Study results showed that: relation of the various types of oil and water wells statistics in water- polymer contact zone show that there are two mainly types of connection, first zone connection is oil well third infill- water well third infill-oil well polymer flooding-water well polymer flooding, second is water well third infill- oil well third infill-oil well polymer flooding-water well polymer flooding. When coexistence of water and polymer displacement, border should be sealed by two oil wells, connection of water and polymer contact zone is water well third infill- oil well third infill-oil well polymer flooding-water well polymer flooding. For first zone, it should be developed with high water injecting force,the best rate is 1:2 of polymer and water injection force;for second zone,it should be developed with high polymer flooding force,the best rate is 3:1 of polymer and water injection force.For the first zone, when the ratio of force between polymer and water is 1:2,the reasonable pressures of polymer and water zone are 11.7Mpa and 11.25Mpa, and For the second zone, when the ratio of force between polymer and water is 3:1,the reasonable pressures of polymer and water zone are 10.95Mpa and 10.42Mpa.
引文
[1] F.H.波特曼.提高采收率技术[M].北京:石油工业出版社,1985,35~38.
    [2]И.Л.马尔哈辛.油层物理化学机理[M].北京:石油工业出版社,1987,20~21.
    [3] Wang Demin, Zhang Zhenhua, Li Qun, et al. A Pilot Polymer Flooding of Saertu Formation SⅡ10-16 in the North of Daqing Oil Field. SPE, 37009, 1996, 28~31
    [4] Wang Demin, Liu Heng, et al.Application Results and Understanding of Several Problems of Industrial Scale Polymer Flooding in Daqing Oil Field.SPE, 50928, 1998, 477.
    [5]王德民.发展三次采油新理论新技术,确保大庆油田持续稳定发展(上)[J].大庆石油地质与开发,2001,29(3):1~5.
    [6]胡博仲,刘恒,李琳,等.聚合物驱采油工程[M].北京:石油工业出版社,1997,45~46.
    [7]杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1999,10~11.
    [8]许元泽.高分子结构流变学[M].北京:科学出版社,1988,60~61.
    [9] W.利特马恩.聚合物驱油[M].北京:石油工业出版社,1991,2~3.
    [10] K.S.Sorbie, L J. Roberts. A Model for Calculating Polymer Injectivity Including The Effects of Shear Degration[R].SPE/DOE12654, SPE/DOE Enhanced Oil Recovery Symposium held in Tulsa, Oklahoma, 15-18 April, 1984.
    [11] E.Allen, D. V. Boger. The Influence of Rheological Properties on Mobility Control in Polymer Augmented Water Flooding[R]. SPE18097, 63rd Annual Technical Conference and Exhibition of Society of Petroleum Engineering held in Houston, Texas, 2-5 October, 1988.
    [12] J. E. Mahfoudhi, R. M. Enick. Extemsion of The Generalized Dykstra-Parsons Technique to Polymer Flooding Instratified Porous Media[R]. SPE RE, 1990, (3):339~345.
    [13]韩显卿,蒲万芬.多孔介质中滞留聚合物分子的黏弹效应模型[J].西南石油学院学报,1989,11(2):50~56.
    [14]卢祥国,高振环,闫文华,等.聚合物驱油效果及其影响因素的实验研究[J].油气采收率技术,1995,2(4):1~5.
    [15]刘风歧,汤心颐.高分子物理[M].北京:高等教育出版社,1995,9~10.
    [16]许元泽.高分子结构流变学[M].北京:科学出版社,1988,17~18.
    [17]何平笙.高聚物的力学性能[M].合肥:中国科技大学出版社,1997,24~25.
    [18]岳湘安.非牛顿流体力学原理与应用[M].北京:石油工业出版社,1996,31~32.
    [19]王德辰,周辉,刘津桂,等.玉门石油沟油田油藏生物聚合物驱油技术研究[J].油田化学,1996,13(2):238~242.
    [20]赵颖,张华,朱金才.黄原胶溶液在油田开发中的应用[J].断块油气田,1996,13(2):238~242.
    [21]李卫东,郭雄华,陈跃章.孤东油田黄原胶驱先导试验黏度变化及影响因素[J].石油钻采工艺,1998,20(5):75~78.
    [22]张伯英,孙景民,康恒.孤东油田七区油井黄原胶驱应用效果分析[J].石油与天然气化工,1999,28(1):49~52.
    [23]张伯英,孙景民,康恒.黄原胶驱现场应用效果分析[J].钻采工艺,1999,22(2):70~71.
    [24]孙景民,王喜臣,张成玉.黄原胶在大港枣园油田的应用[J].石油勘探与开发,2000,27(5):90~92.
    [25]杨付林.聚合物驱油机理及高质量浓度聚合物驱油方法的研究[D].大庆石油学院博士学位论文,2004.4.
    [26]王德民,王刚,吴文祥.黏弹性驱替液所产生的微观力对驱油效率的影响[J].西安石油大学学报(自然科学版),2008,23(1):45~51.
    [27]黄延章,张慧敏,王为民,等.核磁共振成象技术在石油勘探开发中的应用[J].大庆石油地质与开发,1993,12(4):35~37.
    [28]黄延章,于大森,张桂芳.聚合物驱油微观机理研究[J].油田化学,1990,7(1):57~60
    [29]汪伟英.聚合物驱最佳驱油速度的选择[J].石油钻采工艺,1996,18(1):66~75.
    [30]夏惠芬,王德民,侯吉瑞,等.聚合物溶液的黏弹性对驱油效率的影响[J].大庆石油学院学报,2002,(6):109~111.
    [31] Xia Huifen, Ju Ye, Kong Fanshun, et al. Effect of Elastic Behavior of HPAM Solutions on Displacement.. Efficiency under Mixed Wettability Conditions. SPE, 90234, 2004.
    [32]夏惠芬,王德民,刘中春.黏弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60~65.
    [33] R. S. Seright. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutins[J]. SPE, 9297, 1983, 475~485.
    [34] Dunleavy. Process for Restoring the Permeability of a Subterranean Formation[J]. US5, 038, 1992, 864.
    [35] Ferrell. Polymer Flood Filtration Improvement[J]. US4, 212, 1991, 748.
    [36] Miller. Surfactant Enhanced Injectivity of Xanthan Mobility Control Solutions for Tertiary Oil Recovery[J]. US4, 406, 1991, 798.
    [37] Yang. Process for Reducing Polymer Plugging during Polymer Injectio into Oil Reservoir[J]. US4, 662, 1991, 444.
    [38]韩冬,韩大匡,杨普华.一种提高油藏聚合物注入能力的方法[P].中国:CN1144256A,1997.
    [39]朱焕来.二类油层非均质性评价方法研究[D].大庆石油学院硕士研究生学位论文.2004.2,15~30.
    [40]郑浚茂,于兴河,谢承强,等.不同沉积环境储层的层内非均质性[J].现代地质.1995,9(4):501~502.
    [41]吴元燕,陈碧珏.油矿地质学(第二版)[M].北京:石油工业出版社,1995,145~190.
    [42]周守信.单砂体非均质性性定量化描述新方法[J].河南石油,2003,17(2):1~4.
    [43]袁新强,许运新.砂岩油田开发常用知识汇集[M].北京:石油工业出版社,2002,45~49.
    [44]裘亦楠.开发地质方法(一)[J].石油勘探与开发,1996,23(2):43~47.
    [45]张红薇,赵翰卿,麻成斗.泛滥-分流平原相储层中河间砂体的精细描述[J].大庆石油地质与开发,1998,17(6):22~24.
    [46]俞启泰,罗洪,冯明生.我国油田河流相与三角洲相储层参数统计研究[J].大庆石油地质与开发,1999,18(1):28~31.
    [47]钱杰.大庆油田二类油层工业化聚合物驱油方案研究[D].成都理工大学博士学位论文.2006,5,19~21.
    [48]刘振宇,赵春森,殷代印.油藏工程基础知识手册[M].北京:石油工业出版.2002,21~26.
    [49]陈元千.油气藏工程实用方法[M].北京:石油工业出版社,1999,31~33.
    [50]龙胜祥,王果寿.含油气盆地分析与资源评价[M].北京:地质出版社.1999,38~42.
    [51]陆克政,朱筱敏.含油气盆地分析[M].大庆石油学院学报,2007,12(31)36~39.
    [52]钱杰,付尤春,叶佳根,等.精细地质研究在注水调整中的应用[J].国外油田工程:2001,17(9):34~35.
    [53]李洁,武力军,邵振波.大庆油田二类油层聚合物驱油技术要点[J].石油天然气学报.2005,4(27):2.
    [54]郭万奎.大庆油田首次聚合物驱油工业矿场试验设计与实施[M].北京:石油工业出版社,2001,14~19.
    [55]刘丁曾,王启民,李伯虎.大庆多层砂岩油田开发[M].北京:石油工业出版社,1996,99~101.
    [56]韦启新.大庆油田中新201站二类油层聚合物驱油特征研究[J].大庆石油地质与开发.2005,3(1):39~41.
    [57]刘洋.高浓聚合物驱提高采收率方法实验研究[J].大庆石油学院硕士研究生学位论文[D].2004.3.
    [58]王启民,冀宝发,隋军等.大庆油田三次采油技术的实践与认识[J].大庆石油地质与开发,2001,20(2):1~8.
    [59]ЗакироваЧ.СВладимировИ.В.Иследованиеэффективнрстигеолого-техническихмероприятийпововлечениювразработкурстаточныхзапасовнефтипластовЧищминскойплощадиРамашкинскогоместорождения[J].НефтепромысловоеДело, 1, 2001: 63~65.
    [60]ГазизовА.А.РазвизиетенологийкомплексногодействияэффективноерешениеПроблемыповышениянефтеотдачипластов[J].Нефтепромысловоедело, 11, 2001: 20~21.
    [61]В.И.КотельниковС.А.Иупиковф.ПрименениегеоинформациоггыхтехнологийВпланированииразвитиягидроэнергетикирешинанаримеререспубликитыва[J].Геоин-Форматика,Номерпервый2004: 35~38.
    [62]ТаранС.В.НовыетехнологииуправленияинформационнойинфраструктуройвГазовойотрасли[J].Газоваяпромышинность, 2004, (5):23.
    [63]ГерешР.В.Повышениеэффективностразработкиместорождениявпериодпо-Дающейдобычанефтя[J].Газоваяпромышинность, 2004, (5): 31~32.
    [64]ВафинР.В.ЗариповМ.С.Технико-технологическиесистемыреализацииполимерн-оговоздействаянапласты[J].Нефтепромысловоедело, 2004, (6): 56.
    [65]С.В.Амелькин.А.Т.Ахметов.А.В.Шнайдер.динамикадеструкцияпенывПористойсреде[J].Нефтьигаз. 2004. 23~26.
    [66]Р.Р.Заринпов.М.П.Круглов.Л.Ф.Ульмаскулов.Методывоздействиянапласт-Иповышениянефтеотдачи[J].Нефтепромысловоедело. 2004, (8): 8~23.
    [67]Астахова.А.Н.ОтехнологическойэффективностифизикохимическихметодовПовышениянефтеотдачипластов[J].Нефтепромысловоедело. 2004, 8: 24~28.
    [68]С.А.Сулима.В.П.Сонич.В.А.Мишарин.потокоотклоняющиетехнологииосновнойметодрегулированияразработкивысокозаводненныхзалежей[J].Нефтепромысловоедело.2004, (2): 44~50.
    [69]马广彦,左克珍,徐振峰.马岭低渗透高含盐油藏聚合物驱油试验[J].石油钻采工艺,1999,21(1):89~93.
    [70]刘义坤,文华.萨中开发区“二三结合’’开发实验数值模拟[J].大庆石油学院学报,2007,12,(31):26~27.
    [71]李华斌.大庆油田缔合聚合物提高驱油效率及机理研究[D].西南石油学院博士论文.2004,(4):8~9.
    [72] Meinzer 0. E. Compressibility and elasticity of artesian aquifers[J]. Econ Geol, 1928,(23): 263~271.
    [73] Davies J. P. , Holditch S A.Stress dependent permeability in low permeability gas reservoirs[J]. SPE 39917(1983).
    [74] Raghavan R., Scarer D. T. , Miller F.G.An investigation by numerical methods of theeffect of pressure-dependent rock and fluid properties on well flowests[J], Soc. Pet. Eng, 1972, 6: 267~76.
    [75]张晓芹,关恒.改善二类油层聚合物驱开发效果的途径[J].大庆石油地质与开发,2005,24(4),47~49.
    [76]廖广志,牛金刚.大庆油田工业化聚合物驱效果及主要做法[J].大庆石油地质与开发.2004,23(1):48~50.
    [77]计秉玉.对大庆油田进一步开展三次采油技术研究工作的几点意见[J].大庆石油地质与开发,2003,22(6):60~62.
    [78]刘恒,郝悦兴,李瑞章.大庆油田中区西部聚合物驱油试验研究成果集[M].上海:人民交通出版社,1995,51~54.
    [79]李子甲.大庆油田北一二排西部二类油层注入聚合物相对分子质量的确定[J].大庆石油地质与开发,2006,25(6):91~92.
    [80]岳鸿雁.喇嘛甸油田二类油层聚驱井网优化研究[J].大庆石油地质与开发2005,24(4):79~80.
    [81]林立.二类油层聚驱注采关系的做法及认识[J].大庆石油地质与开发.2006,25(4) :77~78.
    [82]肖书慧,刘启,刘士芹.二类油层注聚对象的确定与层系间隔层处理方法[J].大庆石油地质与开发,2004,23(4):68~69.
    [83]张立秋.南二区东部二类油层上返层系组合优化[J].岩性油气藏,2007,19(4):60~62.
    [84]邵振波,李洁.大庆油田二类油层注聚对象的确定及层系组合研究[J].大庆石油地质与开发,2007,19(4):60~62.
    [85]陈绍炳,李学军.部分水解聚丙稀酰胺的水溶液性质[J].油田地面工程,1991,10(5): 36~41.
    [86]冯连玉译.EOR聚合物的流动特性——低剪切速率下的流变性质(一)[J].国外油田工程,1992,(3):17~19.
    [87]李彩虹,张玉亮,王晓明,等.聚合物溶液流变性研究I—聚合物溶液黏滞特性[J].大庆石油学院学报,1994,18(2):129~132.
    [88]李彩虹,张玉亮,王晓明,等.聚合物溶液流变性研究II—不同浓度聚合物溶液的流变模式[J].大庆石油学院学报,1994,18(2):133~138.
    [89]李彩虹,张玉亮,韩成林.聚合物溶液流变模式研究[J].大庆石油地质与开发,1994,13(4):48~52.
    [90]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社.2004,24~27.
    [91]裴晓含,段宏,崔海清,等.聚合物驱偏心分质注入技术[J].大庆石油地质与开发,2006,25(5)65~70.
    [92]陈晓红,段宏.聚合物单管多层分注原理及应用[J].大庆石油地质与开发,24(4):53~55.
    [93]段宏,梁福民,刘兴君,等.三元复合驱偏心分注技术[J].石油钻采工艺,28(2)62~64.
    [94]孙忙忠,姜振海,焦艳丽.北二区西部聚合物驱注入速度影响因素及对策[J].大庆石油地质与开发,2001,20(3):60~63.
    [95]赵长久,韩培慧,李新峰.聚合物驱注入压力探讨[J].油气采收率技术,1997,4(2):17~21.
    [96]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999,91~93.
    [97]王德民.对大庆油田持续发展有影响的四项工艺技术与方法的探讨[J].大庆石油地质与开发,2002,21(1):10~19.
    [98]付天郁,邵振波,毕艳昌.注入速度对聚合物驱油效果的影响[J].大庆石油地质与开发,2002,20(2):63~65.
    [99]朱广社.三维地质建模及数值模拟技术在油藏开发中的应用[J].地质与资源,2005,(01):32~36.
    [100]刘国旗,尹朝伟.油藏数值模拟技术研究及应用[J].重庆石油高等专科学校学报,2002,(04):52~54.
    [101]郝上京,陈明强,翟亮亮,等.油藏数值模拟技术现状分析[J].内蒙古石油化工,2008,(01):101~104.
    [102]陈少军.木头油田精细油藏描述及高效开发技术研究[D].中国地质大学(北京),2006.4.
    [103]姚瑞香.开发中后期油藏描述技术的研究与应用[D].成都理工学院, 2001.
    [104]安艳明.在油藏数值模拟中按微相应用相对渗透率曲线[J].大庆石油地质与开发,2004,(04):25~27.
    [105]马春华,郑浩,王文军.应用精细数值模拟方法研究聚合物驱后剩余油分布[J].石油钻探技术,2007,(04):13~15.
    [106]陈兆芳,张建荣.油藏数值模拟自动历史拟合方法研究及应用[J].石油勘探与开发,2003,30(4):80~82.
    [107]韩大匡.油藏数值模拟基础[M].北京:石油工业出版社,1993年,77~79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700