屈曲约束支撑的动力性能研究及其在钢拱结构中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
屈曲约束支撑在轴压荷载作用下屈服而不屈曲,具有良好的滞回性能和耗能特性,已在不少工程中应用,是一种很具有发展潜力的耗能减震元件,具有良好的发展应用前景。但屈曲约束支撑的核心技术属私人所有,且国外核心构件一般采用极低屈服点钢材,这种钢材在我国尚未大量生产。本文基于屈曲约束支撑的基本原理,结合我国国情,采用国产钢材作为支撑构件,基于经典理论对屈曲约束支撑构件研究了其静力和动力性能,进行了6个构件的模型试验,验证了相应的理论,同时采用ANSYS软件进行数值模拟,探讨了相关参数的影响,最后提出在大跨度钢拱和网壳结构中采用,分析了此类结构的减震效果。研究结果表明,本文提出的新型屈曲约束支撑具有良好的力学性能,可直接用于实际工程,同时带有屈曲约束支撑的大跨度钢拱和网壳结构较常规的同类结构具有明显的减震效果,提高了大跨度结构的安全度。
     本文主要进行了以下工作:
     (1)基于屈曲约束支撑的基本原理,提出新型的纯钢型支撑型式,推导了多点支承型和连续支承型屈曲约束支撑整体稳定承载力计算公式,得到了对侧向支承的数量及刚度限值;利用MATLAB软件分析了加强区的刚度和长度对内核构件临界荷载的影响,给出了初始几何缺陷、宽厚比、长细比、支座条件对其稳定性的影响公式。
     (2)首次进行了屈曲约束支撑的动力稳定性研究,分析了不同类型屈曲约束支撑的动力稳定性、耗能能力和纵向振动性能,得到侧向支承的刚度及动力稳定性相关的结论。
     (3)进行不同类型的构件的试验研究,提出带圆弧翼缘十字板式和双管式纯钢型屈曲约束支撑型式,进行模型试验。研究了构件的滞回性能与单向加载时的力学性能,试验结果表明,连续支承型屈曲约束支撑具有较好的耗能能力。同时,在本试验中,也对混凝土屈曲约束支撑进行了对比试验分析,结果表明,连续支承能够增强构件的耗能能力。
     (4)利用ANSYS有限元软件,对带圆弧翼缘十字式和双管式纯钢型屈曲约束支撑进行数值模拟,验证该元件的力学性能,表明理论分析与试验研究结果规律相同。此外,通过ANSYS进行大量参数分析,探讨了侧向支承的数量、外包构件的刚度、加强区的刚度、宽厚比、长细比等参数的影响。计算结果表明,侧向支承的数量及外包构件与内核构件的刚度比是影响屈曲约束支撑临界承载力的关键因素。
     (5)提出在大跨度钢拱结构中采用屈曲约束支撑的减震体系,计算了大跨度钢拱结构在三维地震激励下,在不同布置方式时结构的地震响应,分析了不同的抗震设防烈度、不同的地震波输入、矢跨比变化对减震效果的影响;考察了结构在不同长宽比、不同支承条件、是否有无下部结构等参数变化对减震效果的影响。计算结果表明,当屈曲约束支撑为混合布置时,恰当地选择钢拱结构的矢跨比,减震效果最佳。
Buckling Restrained Brace (BRB) yield but not buckling under axial compression loads, performs good hysteretic properties and energy dissipation. Now it is applied to new buildings and reinforcement of existing buildings. However, all core technologies of BRB are private; the core components of BRB generally use low-yield point of steel, it has not yet been produced in China; based on the current principle of BRB, researchers design this braces by domestic steel, but lack of a large number of system testing and research; in addition, the main research of BRB focus on the framework and less on the large-span structure, the applied research on the large-span steel arch structure is still not found. Therefore, based on the research by domestic and international, this paper study the mechanical properties of BRB using theoretical analysis and experimental methods, conduct a comprehensive analysis in the large-span steel arch structure the first, perform parametric analysis. Four parts are study as follows: (1) The mechanical properties of BRB is comprehensive analyzed. The global stability for pure steel and concrete type of BRB is studied, the number of lateral stiffness and requirements of BRB are obtained with the calculation formula; compare the stiffness requirements of outer tube for two different types BRB; by use of MATLAB software, the influence of stiffness and length of stiffen regions under the critical load for core member are given; the stability of the formula are given, in which the initial geometric defect, width-to-thickness ratio, slenderness ratio; boundary conditions are considered; the hysteretic curve of the simulation equation is conducted; the dynamic stability is analyzed combined with the components that used in the experiment, the results shown that the bigger of lateral rigidity, the better of its dynamic stability. In additional, reliability problem of BRB is discussed. (2) The FEM simulation of BRB. By ANSYS software, 17 entities finite element model is selected, under pure steel and concrete type of BRB, the hysteretic curve and load-displacement curve of axial compression are investigated; the mechanical properties of BRB under different parameters, including the number of lateral braces, the stiffness of outer tube, the stiffness of stiffen regions, width-to-thickness ratio, slenderness ratio. Comparison with the test results, it shows that theoretical analysis and experimental has the same tendency, but there are certain differences in values. (3) The experiment research. Four pure steel and one concrete components were selected, the hysteretic curve and load-displacement curve of axial compression are researched, the results of theoretical analysis and ANSYS analysis is compared, it is showed that generally difficult to achieve the design requirements for the single point-support of BRB because of stiffiiess degradation, however, the continuous support of BRB has a good hysteretic performance and better energy dissipation, also verified the construction of concrete BRB used in this test meet the requirements. (4) the vibration analysis in large-span steel arch structure with BRB. Under 3-D seismic excited, the effect of different arrangement of BRB, seismic fortification intensity, seismic waves, height-span ratio, length-width ratio, boundary conditions, substructure influence are studied. The results showed it has some influence on the vibration of large-span steel arch structure with BRB, but its effect subject to a greater impact on these parameters.
引文
[1]李爱群.工程结构减振控制[M].北京:机械工业出版社,2007.
    [2]吴波,李惠.建筑结构被动控制的理论及与应用[M].哈尔滨:哈尔滨工业大学出版社,2006.
    [3]T.T.Soong,G.F.Dargush,董平,译.结构工程中的被动消能系统[M].北京:科学出版社,2005.
    [4]李宏男,李忠献.结构振动与控制[M].北京:中国建筑工业出版社,2005.
    [5]Wakabayashi M,Nakamura T,Kashibara A.Experimental Study of Elasto-Plastic Properties of Precast Concrete Wall Panels with Built-in Insulating Braces[A].Summaries of Technical Papers of Annual Meeting[C].Architectural Institute of Japan,1973,1041-1044.
    [6]Fujimoto M,Wada A,Sacki E.A Study on The Unbonded Brace Encased in Buckling-restrained Concrete and Steel Tube[J].Journal of Structural Engineering,Architectural Institute of Japan,1988,No.034B:249-258.
    [7]Clark P,Aiken L,Kasai K.Design Procedures for Buildings Incorporating Hysteretic Damping Devices[A].Proceedings 69th Annual Convention[C].SEAOC,1999,355-372.
    [8]Black C,Makris N,Aiken L.Component Testing,Seismic Evaluation and Characterization of Buckling-Restrained Braces[J],Journal of Structural Engineering,2004,130(6):880-894.
    [9]汪家铭,中岛正爱,陆烨,译.屈曲约束支撑体系的应用与研究进展(Ⅰ)[J].建筑钢结构进展,2005,7(1):1-12.
    [10]汪家铭,中岛正爱,陆烨,译.屈曲约束支撑体系的应用与研究进展(Ⅱ)[J].建筑钢结构进展,2005,7(2):1-11.
    [11]钱洪涛,褚洪民,邓雪松.防屈曲支撑的研究与应用进展[J].防灾减灾工程学报,2007,27(增):225-233.
    [12]谢强,赵亮,屈曲约束支撑的研究进展及其应用[J].钢结构,2006,21(1):46-48.
    [13]哈敏强.普通和新型抑制屈曲支撑的力学性能及应用研究[D].上海:同济大学硕士学位论文,2004.
    [14]Qiang Xie.State of the Art of Buckling-Restrained Braces in Asia[J].Journal of Construction Steel Research,2005,61:727-748.
    [15]郭彦林,刘建彬,蔡益燕,邓科.结构的耗能减震与防屈曲支撑[J].建筑结构,2005,35(8):18-23.
    [16]刘建彬.防屈曲支撑及防屈曲支撑框架设计理论研究:北京:清华大学硕士学位论文,2005.
    [17]李妍,吴斌,王倩颖.约束屈曲钢支撑阻尼器的试验研究[J].土木工程学报,2006,39(7):9-14.
    [18]李国强,胡宝琳.屈曲约束支撑滞回曲线模型和刚度方程的建立[J].地震工程与工程振动,2007,27(2):26-31.
    [19]王秀丽,陈祥勇,殷占忠.约束屈曲支撑对K6型球面网壳减震效果的分析[J].甘肃科学学报,2007,19(1):122-126.
    [20]王秀丽,苏成江.约束屈曲支撑受力性能及高阶模态分析[J].兰州理工大学学报,2007,33(5):105-108.
    [21]王秀丽,王磊.新型椭球网壳减震体系性能分析[J].工程抗震与加固改造,2007,29(4):31-36.
    [22]王秀丽,高森,潘霞.约束屈曲支撑(BRBs)在单层柱壳振动控制中的应用研究[J].建筑科学,2007,23(7):34-38.
    [23]王秀丽,陈明.一种适用于杆系结构的屈曲约束支撑的有限元分析[J].兰州理工大学学报,2007,33(3):124-127.
    [24]王秀丽,高森,潘霞.四边支承单层柱面网壳减震体系性能分析[J].兰州理工大学学报,2007,33(2):120-124.
    [25]Black C,Makris N,Aiken L.Component Testing,Stability Analysis and Characterization of Buckling-Restrained Unbonded Braces.Report No.PEER 2002/08,Pacific Earthquake Engineering Research Center,University of California,Berkeley,CA.
    [26]叶列平,马千里,程光煜,等.西部机电科技商务中心钢结构消能减震计算分析[J].工程抗震与加固改造,2005,27(3):20-25.
    [27]芮明倬,李立树,贺军利,等.屈曲约束支撑在古北财富中心高层钢结构中的应用研究[J],建筑结构,2007,37(5):25-28.
    [28]李培彬,娄宇,赵广鹏,等.屈曲约束支撑在北京银泰中心结构抗震设计中的应用.建筑结构,2007,37(11):5-7.
    [29]陈绍蕃.钢结构稳定设计指南[M],北京:中国建筑工业出版社,2004.
    [30]刘光栋,罗汉泉.杆系结构稳定[M].北京:人民交通出版社,1988.
    [31]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.
    [32]吴明德.弹性杆件稳定理论[M].北京:高等教育出版社,1988.
    [33]费志中.弹性稳定[M].北京:煤炭工业出版社,1989.
    [34]程昌钧,朱正佑.结构的屈曲与分叉[M].兰州:兰州大学出版社,1991.
    [35]王俊奎,张志民.板壳的弯曲与稳定[M].北京:国防工业出版社,1980.
    [36]吕烈武,沈世钊,沈祖炎,等.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [37]崔德刚.结构稳定性设计手册[M].北京:航空工业出版社,2006.
    [38]李存权.结构稳定和稳定内力[M].北京:人民交通出版社,2000.
    [39]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005.
    [40]童根树.钢结构的平面外稳定[M].北京:中国建筑工业出版社,2007.
    [41]沈祖炎.钢结构稳定、抗震与非线性分析理论[M].北京:中国建筑工业出版社,2005.
    [42]GB50017-2003,钢结构设计规范[S].
    [43]ANSI/ANSI 341-05,Seismic Provisions for Structure Steel Buildings[S].
    [44]鲍洛金.弹性体系的动力稳定性[M].北京:高等教育出版社出版,1960.
    [45]孙强.具有弹性支座杆件的动力稳定性研究[J].力学与实践,2004,26(1):29-31.
    [46]孙强.杆系结构的动力稳定性及桩基基础动力非线性研究进展[J].安徽建筑工业学院学报,2003,11(1):1-5.
    [47]孙强,杨大军.弹性介质中杆的动力稳定性研究[J].工程力学,1997,14(1):87-91.
    [48]《钢结构设计规范》编制组.《钢结构设计规范》应用讲解[M],北京:中国计划出版社,2003.
    [49]张骏华.结构可靠度设计与分析[M],北京:宇航出版社,1989.
    [50]劭文蛟.不完整结构的可靠性分析[M],北京:国防工业出版社,1997.
    [51]康渊,陈信吉.Ansys入门[M].北京:中国电力出版社,2007.
    [52]张朝晖.ANSYS8.0结构分析及实例解析[M].北京:机械工业出版社,2005.
    [53]郝文化.ANSYS土木工程应用实例[M],北京:中国水利水电出版社,2005.
    [54]姜勇,张波.ANSYS7.0实例精解[M].北京:清华大学出版社,2004.
    [55]祝效华,余志祥.ANSYS高级工程有限元分析范例精选[M].北京:电子工业出版社,2004.
    [56]徐鹤山.ANSYS在建筑工程中的应用[M].北京:机械工业出版社,2005.
    [57]邵蕴秋.ANSYS8.0有限元分析实例导航[M].北京:中国铁道出版社,2004.
    [58]李皓月,周田朋,刘相新.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003.
    [59]赵海峰,蒋迪.ANSYS8.0工程结构实例分析[M].北京:中国铁道出版社,2004.
    [60]盛和太,喻海良,范训益.ANSYS有限元原理与工程应用实例大全[M],北京:清华大学出版社,2006.
    [61]Chen,C.C.,Chen,S.Y.and Liaw,J.J.Application of Low Yield Strength Steel on Controlled Plastification Ductile Concentrically Braced Frames.Canadian Journal Of Civil Engineering[J],2001,28:823-836.
    [62]Chen C.C.,Wang C.H.,and Hwang T.C.Buckling Strength of Buckling Inhibited Braces[A].Proceedings 3rd Japan-Korea-Taiwan Joint Seminar on Earthquake Engineering for Building Structures[C],Taipei,Taiwan,2001,265-271.
    [63]蔡克铨,赖俊维.挫屈束制支撑之原理及应用[A].全国首届防震减灾工程学术研讨会论文集[C].广州:科学出版社,2004,25-32.
    [64]蔡克铨,黄彦智,翁崇兴.双管式挫屈束制(屈曲约束)支撑之耐震行为与应用[J].建筑钢结构进展,2005,7(3):1-8.
    [65]程光煜,叶列平,许秀珍,崔鸿超.防屈曲耗能钢支撑的试验研究[J].建筑结构学报,2008,29(1):31-39.
    [66]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005.
    [67]R.克拉夫,J.彭津.结构动力学[M].北京:高等教育出版社,2006.
    [68]蓝天,张毅刚.大跨度屋盖结构抗震设计[M].北京:中国建筑工业出版社,2000.
    [69]曹资,薛素铎.空间结构抗震理论与设计[M].北京:科学出版社,2005.
    [70]李宏男.结构多维抗震理论[M].北京:科学出版社,2006
    [71]Higgins,C.Newell,J.Confined Steel Brace for Earthquake Resistant Design[J].Engineering Journal,AISC,2004,41(4):187-202
    [72]Kalyanaraman,V,Sridhara,B.N.,Mahadevan,K.Sleeved Column System.Proceedings SSRC Task Group Meetings and Task Force Sessions,1994,Lehigh University,Bethlehem,PA.
    [73]Prasad,B.Experimental Investigation of Sleeved Column[A].Proceedings 33~(rd)Structural Dynamics and Material Conference[C],1992,American Institute of Aeronautics And Astronautics,Dallas.
    [74]Sridhara,B.N.Sleeved Column as a Basic Compression Member[A].Proceedings 4th International Conference on Steel Structure & Space Frames[C],1990,Singapore,181-183.
    [75]Timoshenko S P,Gere J M.Theory of Elastic Stability[M].Mcgraw-Hill,17th Printing,1985.
    [77]Cameron John Black.Experimental Evaluation and Characterization of Yielding and Viscious Devices for the Seismic Protection of Structures[M].2004
    [78]徐芝纶.弹性力学简明教程[M].北京:人民教育出版社,1981
    [79]Sabelli,R.Research On Improving The Design and Analysis of Earth-Quake-Resistant Steel-Braced Frames.The 2000 NEHRP Professional Fellowship Report,EERI,Oakland,CA
    [80]Sabelli,R.Recommended Provisions for Buckling-Restrained Braced Frames[J].Engineering Journal,AISC,41(4):155-175.
    [81]Sabelli,R.Mahin,S.&Chang,C.Seismic Demands on Steel Braced Frame Buildings with Buckling-Restrained Braces[J].Engineering Structures,25(2003),655-666.
    [82]FEMA.NEHRP Recommended Provisions for Seismic Regulations of Buildings and Other Structures.Federal Emergency Management Agency,Washington,DC,1997.
    [83]ICC,International Building Code,International Code Council,2000.
    [84]Chen,C.H,Hsiao,P.C,Lai,J.W.Pseudo-Dynamic Test of A Full-Scale CFT/BRB Frame.Part2 Construction and Testing.Proceedings 13th World Conference on Earth quake Engineering,Vancouver,B.C,Canada.
    [85]Tsai,K.C,Hwang,Y.C,Weng,C.S,Shirai,T.Experimental Tests of Large Scale Buckling Restrained Braces and Frames.Proceedings Passive Control Symposium,December,Tokyo Institute of Technology,Tokyo,Japan.
    [86]黄宗明,白绍良,赖明.结构地震反应时程分析的阻尼问题评述[J].地震工程与工程振动,1996,16(2):95-105.
    [87]GB50009-2001,建筑结构荷载规范[S].
    [88]吕西林,周德源,李思明,等.建筑结构抗震设计理论与实例[M].上海:同济大学出版社,2002.
    [89]丰定国,王社良.抗震结构设计[M].武汉:武汉工业大学出版社,2001.
    [90]周学军,陈鲁,曲慧.多、高层钢结构支撑的布置方式对框架侧向刚度的影响[J].钢结构,2003,18(66):51-54.
    [91]黄乐平.钢结构框架支撑构件抗侧移效率的探讨[J].山西建筑,2005,31(15):56-57.
    [92]黄怡,王元清,石永久.支撑布置方式对多高层钢结构抗震性能的影响分析[J].钢结构,2005,20(81):41-44.
    [93]范峰,沈世钊.单层球壳模拟地震振动台试验及结构减振试验研究[J].哈尔滨建筑大学学报,2000,33(3):18-22.
    [94]叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计[J].振动工程学报,2000,13(3):376-384.
    [95]周晓峰,陈福江,董石麟.粘弹性阻尼材料支座在网壳结构减震控制中的性能研究[J],2000,6(4):21-28.
    [96]瞿伟廉,徐幼麟.ER/MR智能阻尼器对空间网壳结构地震反应的半主动控制[J].地震工程与工程振动,2001,21(4):24-31.
    [97]范峰,沈士钊.网壳结构的粘弹性阻尼器减振分析[J].地震工程与工程振动.2003,23(3):156-159.
    [98]徐赵东,李爱群,叶继红.大跨空间网壳结构减震控制的研究与发展[J].振 动与冲击,2005,24(3):59-61.
    [99]严慧,董石麟.板式橡胶支座节点的设计与应用研究[J].空间结构,1994,1(2):33-30.
    [100]倪军,青传喜.空间网架结构的振动控制研究[J].世界地震工程,1998,13(3):39-43.
    [101]高博青,董石麟.折板式网壳结构的抗震及减震研究[J].浙江大学学报,2002,29(4):489-493.
    [102]肖建春,聂建国,马克俭等.预应力网壳结构中加劲板式橡胶支座的计算模型及设计[J].建筑结构学报,2001,22(3):43-49.
    [103]薛素铎,周乾.SMA橡胶复合支座的设计与隔震性能[J].世界地震工程,2003,19(3):33-38.
    [104]胡少伟,苗同臣.结构振动理论及其应用[M].北京:中国建筑工业出版社,2005.
    [105]闻邦椿,李以农,徐培民等.工程非线性振动[M].北京:科学出版社,2007.
    [106]陈予恕.非线性振动[M].北京:高等教育出版社,2002.
    [107]Dogruoglu A.N,Gurgoze M.On the Eigencharacteristics of a Longitudinally Vibrating Rod Restrained by a Linear Spring in span[J],Journal of Sound and Vibration,1998,216(5),805-810.
    [108]王奎华,谢康和,曾国熙.变截面阻抗桩受迫振动问题解析解及应用[J].建筑结构学报,1998,31(6):56-67.
    [109]王奎华.变截面阻抗桩纵向振动问题积分变换解[J].力学学报,2001,33(4):479-491.
    [110]王腾,王奎华,谢康和.成层土中桩的纵向振动理论研究及应用[J].土木工程学报,2002,35(1):83-87.
    [111]许兆棠,朱如鹏.刚性多支点传动轴的纵向振动分析[J].武汉大学学报(工学版),2006,39(5):110-115.
    [112]胡昌斌,王奎华,谢康和.考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用[J].工程力学,2003,20(2):146-154.
    [113]张义民,刘巧伶,闻邦椿.随机连续杆纵向振动系统的频率可靠性分析[J].力学与实践,2003,25(6):46-48.
    [114]Yamada Motohiko,Guo Lu,etc.Vibration Control of Large Space Structure Using TMD System[A].Proceeding of International IASS Conference[C],B eijing,1996.
    [115]Onoda,H.U.Oh and K.Minesugi.Semiactive Vibration Suppression of Truss Structures by ER Fluid Damper[A].Collection of Technical Paper-AIAA/ASME/ASCE/AHS Structures,Structural Dynamics & Materials Conference[C], 1996,3:1569-1577.
    [116]Mamoru Iwata,Masanori Fujita,Akira Wada.Energy Absorbing Mechanism for Spaceframe Support[A].Proceeding of the Second World Conference on St ructural Control.Kyoto,1999.
    [117]叶继红.网壳结构振动控制理论.哈尔滨建筑大学博士后研究工作报告.1998.
    [118]叶继红,沈世钊.网壳结构TMD振动控制研究.国家自然科学基金重大项目专题年度研究报告(6.3).1999.
    [119]叶继红,陈月明,沈世钊.TMD减震系统在网壳结构中的应用[J].哈尔滨建筑大学学报,2000,33(5):10-14.
    [120]叶继红,陈月明,沈世钊.TMD系统在单层柱壳振动控制中的适用性分析[J].工程抗震,2000(3).12-16.
    [121]叶继红,陈月明,沈世钊.TMD系统在单层球壳振动控制中的参数分析[J].空间结构,1999,5(2):10-17.
    [122]叶继红,陈月明,沈世钊.TMD系统在单层柱壳振动控制中的参数分析[J].工业建筑,2000,30(4):9-13.
    [123]叶继红,沈世钊.TMD系统在单层鞍壳振动控制中的适用性分析[J].工业建筑,2000,30(4):14-17.
    [124]朱镜清.关于复阻尼理论的两个基本问题[J].固体力学学报,1992,13(2):113-118.
    [125]王建平,刘宏昭,原大宁等.含复阻尼振动系统的对偶原则及其数值方法研究[J].振动工程学报,2004,17(1):62-65.
    [126]田坤,李鹏,王元丰.结构等效复阻尼模型对钢梁及钢框架结构动力响应影响分析[J].振动与冲击,2008,27(7):118-121.
    [127]周向阳,张其林.组合结构等效阻尼比的确定及在有限元计算中的应用[J].计算机辅助工程,2007,16(3):6-9.
    [128]文捷,王元丰.钢筋混凝土轴压构件材料阻尼计算及应用公式[J].振动与冲击,2007,26(6):14-16.
    [129]吕刚,陆锋,李俊宝等.桁架结构的阻尼设计[J],振动工程学报,1998,11(2):144-151.
    [130]Lazan B J.Damping of material and members in structural mechanics[M].London:Pergamon Press,1968.
    [131]阳光,周岱,黄真.空间网格结构风振抑制的阻尼器位置与数量寻优[J].上海交通大学学报,2007,41(6):955-959.
    [132]徐宗本.计算智能—模拟进化计算[M].北京:高等教育出版社,2004.
    [133]Holland J H.Adaptation in Natural and Artificial Systems[M].Ann Arbor: Univ of Michigan,1975.
    [134]徐宗本,聂赞坎,张文修.父代种群参与竞争遗传算法的几乎必然收敛性[J].应用数学学报,2002,25(1):167-175.
    [135]云庆夏.进化算法[M].北京:冶金工业出版社,2000.
    [136]吴志远,邵惠鹤,吴新余.新的进化过程遗传算法[J].上海交通大学学报,1997,31(12):65-68.
    [137]尚晓江,邱峰,赵海峰等.Ansys结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2006.
    [138]邢小东,侯飞.轴向冲击载荷下圆柱壳动力屈曲的计算机仿真[J].机械管理开发,2008,23(1):77-78.
    [139]Fangqi Chen,Jianshu Liang,Yushu Chen.Bifurcation Analysis of an Arch Structure with Parametric and Forced Excitation[J].Mechanics Research Communications,2007(34):213-221.
    [140]郑波,王安稳.弹性压应力波下直杆分叉动力失稳特征值有限元分析[J].工程力学,2006,23(12):36-40.
    [141]贺远松,唐文勇,张圣坤.含初缺陷裂纹损伤梁的冲击动力屈曲[J].计算力学学报,2006,23(6):743-748.
    [142]贺远松,唐文勇,张圣坤.含初缺陷损伤圆拱的动力屈曲[J].船舶力学,2006,10(5):68-75.
    [143]陈永涛,申智春,郑钢铁.基于有限元仿真的薄壁圆柱壳轴向动力屈曲实验研究[J].宇航学报,2006,27(6):1178-1181.
    [144]朱荣成,唐文勇,张圣坤.脉冲载荷下裂纹损伤梁的动力屈曲[J].振动与冲击,2006,25(6):13-16.
    [145]杜永峰,李慧,赵国藩.地震作用下结构振动最优控制的一种一般算法[J].大连理工大学学报,2004,44(6):864-869.
    [146]杜永峰,刘彦辉,李慧.地震作用下结构振动瞬时最优控制的一种改进算法[J].工程抗震与加固改造,2007,29(1):8-12.
    [147]杜永峰,刘彦辉,李慧.双向偏心结构扭转耦联地震反应的序列最优控制[J].地震工程与工程振动,2007,27(4):133-138.
    [148]杜永峰.滞变智能隔震结构的序列最优控制算法[J].计算力学学报,2007,24(1):57-63.
    [149]杜永峰.被动与智能隔震结构地震响应分析及控制算法[D].大连理工大学,2003.
    [150]杜永峰.一种严密的结构最优控制极值条件及算法实现[J].工程力学,2006,23(11):1-8.
    [151]宋彧,李丽娟,张贵文.建筑结构试验[M].重庆:重庆大学出版社,2001.
    [152]李敏霞.地震模拟振动台试验系统频率特性估计的研究及应用[J].世界地震工程,1996,11(4):19-24.
    [153]孟春光,丁洁民,吕西林等.带阻尼器高层方钢管混凝土框架结构模拟地震振动台试验研究[J].结构工程师,2005,21(5):57-62.
    [154]李昆,陈丽洁,王辉.振动台模型试验中的相对位移测量[J].传感器技术,2004,23(11):67-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700