屈曲约束支撑钢框架设计及抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
屈曲约束支撑(Buckling-Restrained Braces)是一种新型耗能构件,它解决了普通支撑经常失稳和刚度突然下降的弊端,其在拉压状态下均能屈服而不屈曲并且在屈服后能够提高结构阻尼耗散输入到结构的地震能量。目前屈曲约束支撑应用较为广泛,在日本、美国、加拿大、我国台湾地区及大陆都有较好应用。
     首先对屈曲约束支撑的作用机理,屈曲约束支撑的有效约束比及芯材与外套管之间的间隙进行理论分析,并取不同间隙的构件进行有限元分析。
     其次分别选取不同的刚度比进行屈曲约束支撑钢框架的设计。利用ANSYS有限元软件对10层单榀屈曲约束支撑钢框架进行弹塑性时程分析。比较不同刚度比下结构的底部剪力、顶层加速度及顶层位移,并建立其在地震作用下的最大层间位移角随抗侧刚度比变化的关系曲线及不同刚度比下最大层间位移角分布均匀程度的关系曲线。最终提出屈曲约束支撑和钢框架刚度比的合理取值范围,为屈曲约束支撑框架的设计提供依据。
     再者利用有限元软件SAP2000对合理刚度比的屈曲约束支撑框架进行静力弹塑性分析。考虑高阶振型影响求解能力谱曲线并引进不同的位移延性系数绘制需求谱曲线,然后将两者曲线绘制在同一坐标系求解性能点。初步探讨了合理刚度比下屈曲约束支撑钢框架的结构影响系数及位移放大系数。
     最后,为了比较不同屈曲约束支撑布置形式对屈曲约束支撑钢框架的抗震性能影响,本文设计出4种不同布置形式的屈曲约束支撑钢框架,分别采取底部剪力法、振型分解反应谱法、动力时程分析、静力弹塑性的分析方法对其进行抗震性能分析,为屈曲约束支撑设计提供依据。
Buckling Restrained Braceds (BRBs) now are new type of energy dissipation components.They can solve the problem that the lateral stiffness of ordinary braces falls suddenly under instability. In the state of tension and compression, the BRBs not only can yield, but also can improve the structure damping which dissipates the seismic energy of the structure under the state of yield. Recently, BRBs are used popularly, which have been used in Japan, the US, Taiwan and China.
     Firstly, the theory analysis is conducted to the mechanism of BRBs, the restraint stiffness ratio of BRBs, and the gap between the buckling-restraining unit and core segment. And the BRBs with different gaps are analysised by finite element software.
     Secondly, the BRBFs are designed according to the different rigidity ratios. Nonlinear time history analysis is conducted to10-story plane BRBFs by finite element software AYSYS. And the base shears, top floor accelerations and top floor displacements are compared under different rigidity ratios. The relationships of maximum story drift ratios and the uniformity of maximum story drift ratios with different rigidity ratios are established. At last a reasonable range of rigidity ratio is recommended, which is the reference for the design of BRBFs.
     Furthermore, nonlinear static analysis is conducted to the BRBFs under reasonable rigidity ratio by finite element software SAP2000. The influence of high-order modes are considered when solving the capacity spectrum curve. And the demand spectrum curves are drawn under different displacement ductilities. Then, the two curves are drawn in the same coordinate system to solve performance point.The response modification factor and the displacement amplification factor of BRBFs are discussed under reasonable rigidity ratio.
     Finally, to comparing seismic behaviors under the different layout of BRBs, four types of the structure models are designed. The bottom of the shear method, response spectrum method, linear time history analysis, nonlinear time history analysis and pushover analysis are conducted to the structure models, and seismic behaviors under the different layout of BRBs are compared, which are the reference for the design of BRBFs.
引文
[1]李宏男等.结构振动与控制[M].北京:中国建筑工业出版社,2005.
    [2] Yoshino T., Karino Y. Experimental study on shear wall with braces Part2 Summaries of technical papers of annual meeting[C].Architectural Institute of Japan. Structural Engineering Section, 1971,11:403-404.
    [3] Wakabayash I M., Nakamura T., Kashibara A., Morizono,T and Yokoyama,H. Experiment entail study of elastic-plastic properties of recast concrete wall panels with built-in insulating braces[J].Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, 1973, 31(4):1041-1044.
    [4] P. Clark., I. Aiken., K. Kasai., E.Ko and I. Kimura. Design Procedures for Buildings Incorporating hysteretic damping devices[C].Proceeding of 69th annual convention, SEAOC, 1999, Sacramento,CA.
    [5] M. Iwata., T. Kato and A. Wada. Buckling-Restrained Braces as Hysteretic Dampers[C]. Proceedings, STESSA, 2000, Quebec, Canada: 33-38.
    [6] W.Lopez. A Design of Unbonded Braced Frames[C].In Proceedings 70th Annual convention SEAOC, Sacramento, CA 2002.
    [7] C. Black, N. Makris and I. Aiken. Component Testing, Stability Analysis and Characterization of Bucking-Restrained Braces[R]. Report No. PEER-2002/08, Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA.2002:7-25.
    [8] C. Higgins and J. Newell. Confined Steel Brace for Earthquake Resistant Design [J]. Engineering Journal, AISC, 2004, 41(4):187~202.
    [9] C. C. Chen., S. Y. Chen and J. J. Liaw. Application of Low Yield Strength Steel on Controlled Plastification Ductile Concentrically Braced Frames[J]. Canadian Journal of Civil Engineering, 2001,28:823-836.
    [10]蔡克铨,赖俊维.钢骨消能支撑构架之耐震行为[J]. Civil and Hydraulic Engineering. 2001,28(2):73~85.
    [11]邓长根.日本建筑结构耗能减震研究和应用的若干新进展[J].四川建筑科学研究,2003,29(2):84-87.
    [12]王华琪,丁洁民,何志军.防屈曲支撑的应用与设计[J].结构工程师,2007,23(4):6-11.
    [13]王仁华,俞铭华,谢步瀛.屈曲约束支撑的缺陷影响分析[J].结构工程师,2008,24(l):21-25.
    [14]李国强,胡宝琳.屈曲约束支撑滞回曲线模型和刚度方程的建立[J].地震工程与工程振动,2007,27(2):26-31.
    [15]周峰,谢强,陈海斌,赵亮.屈曲约束支撑在结构抗震加固中的应用[J].四川建筑科学研究,2007,33:8-11.
    [16]张耀春,丁玉坤.防屈曲约束支撑、普通支撑和特殊支撑钢框架结构抗震性能[J].建筑钢结构进展,2009,11(5):8-14.
    [17]郭彦林,江磊鑫.型钢组合装配式防屈曲支撑性能及设计方法研究[J].建筑结构,2010,40(1):31-37.
    [18]赵俊贤,吴斌.防屈曲支撑的工作机理及稳定性设计方法[J].地震工程与工程振动,2009,29(3):131-139.
    [19]陈骥.钢结构稳定理论与设计(第四版)[M].北京:科学出版社,2008.
    [20] Watanabe, A., Hitomi, Y., Saeki, E. etal. Properties of brace Encased in buckling restraining concrete and steel tube[C].Proceeding of Ninth World Conference on Earthquake Engineering,Japan,1998,vol.IV, PP. 719-724.
    [21]刘建彬.防屈曲支撑及防屈曲支撑钢框架设计理论研究[D].北京:清华大学硕士论文,2005.
    [22]王华琪,丁洁民,姚兴华.防屈曲约束支撑理论分析及有限元模拟[J].沈阳建筑大学学报,2008,24(2):191-195.
    [23]博弈创作室. Ansys9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006.
    [24]殷占忠,王秀丽,李晓东.双钢管屈曲约束支撑的有限元模型分析[J].甘肃科学学报,2010,22(1) :109-113.
    [25]罗开海,程绍革,白雪霜,荣维生.屈曲约束耗能支撑力学性能[J].工程抗震与加固改造,2007,29(2):24-27.
    [26]苏成江.约束屈曲支撑性能分析及在钢框架中的应用研究[D].兰州:兰州理工大学硕士论文,2007.
    [27] KIM J., SEO Y. Seismic design of low-rise steel frames with buckling-restrained braces[J]. Engineering Structures, 2004,26(5): 543-551.
    [28] CHOI H., KIM J. Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum [J]. Engineering Structures, 2006, 28: 304-311.
    [29]郭小康,李国强.用可靠度理论确定屈曲约束支撑钢框架的设计原则[J].工程抗震与加固改造,2010,32(2):91-95.
    [30] GB50011-2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.
    [31] R.克拉夫,J.彭津.结构动力学(第二版)[M].北京:高等教育出版社.
    [32]杨溥,李英民,赖明.结构时程分析法输入地震波的选控控制指标[J].土木工程学报,2000,33(6):33-37.
    [33]郭继武.建筑抗震设计(第一版)[M].北京:中国建筑工业出版社,2002.
    [34]赵瑛郭彦林.防屈曲支撑框架设计方法研究[J].建筑结构,2010,40(1):38-43.
    [35]王新敏. Ansys工程结构数值分析[M].北京:中国水利水电出版社,2007.
    [36]张金海.钢结构地震作用取值的建议与分析[D].哈尔滨:哈尔滨工业大学,2005.
    [37]翟长海,谢礼立.抗震规范应用强度折减系数的现状及分析[J].地震工程与工程振动,2006,26(2):1-7.
    [38] Kapposa J. Evaluation of behaviour factor on the basis of ductility and overstrength studies [J]. Engineering Structures, 1999, 21.
    [39] Balendra T., Huang X. Overstrength and ductility factors for steel frames designed according to BS5950[J]. Journal of Structural Engineering, 2003,129(8):1019-1035.
    [40] Dong Guen Lee., etal. Estimation of system-level ductility demands for multi-story structures[J]. Engineering Structures, 2003,25.
    [41]建筑工程抗震性态设计通则(试用)(CECS160:2004)[S].北京:计划出版社,2004.
    [42]何若全,顾强,孙国华.关于钢结构抗震设计中结构影响系数的讨论[J].苏州科技学院学报,2004,17(4):29-32.
    [43]李成.多层抗弯钢框架的结构影响系数与位移放大系数[D].西安:西安建筑科技大学博士学位论文,2008.
    [44] Helmut Krawinkler., GD.P.K. Senerviraina. Pros and cons of Pushover analysis of seimic performance evaluation [J]. EngineeringStruetures,1998,20(4):452-464.
    [45] Applied Teehnology Couneil (ATC-40). Seismic evaluation and retrofit of concrete buildings[R]. Redwood City.USA, 1996.
    [46]李应斌.钢筋混凝土结构基于性能的抗震理论与应用研究[D].西安:西安建筑科技大学博士学位论文,2004.
    [47]汪大绥,贺军利等.静力弹塑性分析中若干问题的研究与探讨[J].建筑结构, 2007,37(5):96-99.
    [48]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.
    [49]姚谦峰,苏三庆.地震工程[M].陕西:陕西科学技术出版社,2001.
    [50] Chopra A K., Goel R K. Capacity-demand-diagram method for estimating seismic deformation of inelastic structures SDOF system[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA,1999.
    [51]叶献国,周锡元.建筑结构地震反应简化分析方法的进一步改进[J].合肥工业大学学报,2000,23(2):149-153.
    [52]梁仁杰,吴京,孟少平.两种不同需求谱曲线的能力谱评价方法比较[J].东南大学学报,2009,39:169-173.
    [53] Wittaker A., Constantinous M., Tsoplas P. Displacement estimation for performance-baseed seismic design [J].Structural Engineering, ASCE.1998, 124:905-912.
    [54]肖明葵.基于性能的抗震结构位移及能量研究分析研究[D].重庆,重庆大学博士论文,2004.
    [55]何浩祥,李宏男.基于规范弹性谱建立需求谱的方法[J].世界地震工程, 2002, 9(3):57-63.
    [56] T. Vidic., P. Fajfar&M. Fischinger. Consistent inelastic design spectra strength and displacement[J].Earthquake Enginnering and Structural Dynamics, 1994,23(3):507-521.
    [57]北京金土木软件技术有限公司,中国建筑标准设计研究院.SAP2000中文版使用指南[M].北京:人民交通出版社,2006.
    [58]罗开海,孔祥雄,程绍革.一种新型屈曲约束支撑的研制与实验研究[J].建筑结构.2010,40(10):1-6.
    [59] Xiang Rong C., Lin Z., Xiao Song L. Research on Application of BRBs in Steel Frame Structures [J], Advanced Materials Research 2011 (163-167),730-733.
    [60]周学军,陈鲁,曲慧.多高层钢结构支撑的布置方式对框架侧向刚度的影响[J].钢结构,2003,18(4):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700