方孔微通道板极紫外波段成像性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足未来空间探测计划需求,在极紫外波段的光学系统中,需要一种大视场、高分辨率、能够收集大量辐射并将其准直或聚焦的光学器件。基于全反射理论的方孔微通道板(microchannelplate,MCP)光学成像系统具有大视场、高分辩率、结构紧凑、重量轻、成本低等优点,因此,这种新型X射线光学元件在越来越多的领域中得到了应用和发展。
     本文首先从X射线全反射理论出发,讨论了平面方孔MCP和曲面方孔MCP的成像原理,以及散射表面对其成像质量的影响。
     然后基于Tracepro软件建立方孔MCP实体模型,利用Monte-Carlo光线追迹方法对具有不同结构缺陷的MCP模型进行了成像模拟,分别讨论了Taper型、Twist型和Nonsquare型结构缺陷对其成像质量的影响。然后以溴钨灯作为实验光源,对现有的四块平面方孔MCP在可见光波段进行了成像实验,并将实验结果与利用Monte-Carlo方法模拟的结果进行比对,二者基本吻合,验证了模拟结果的正确性。然后利用凹面反射光栅单色仪加激光等离子体光源组成一套极紫外波段单色系统,并在30.40nm波长位置上对平面方孔MCP进行了成像实验。从实验结果可以看出,中央光斑峰值强度有近四倍的增益,验证了方孔MCP光学系统的会聚特性。
     最后,根据曲面方孔MCP的成像特点,分别设计了超广角X射线望远镜和基于透射光栅加MCP的成像光谱仪。对曲面方孔MCP的应用做了初步的研究工作。
In order to continuously meet the requirements of future space exploration programs, a new optical element which has a large field of view, a high resolution, can collect large amounts of radiations and collimate or focus them is needed for the X-ray optical systems. Based on the theory of total reflection, the square-hole micro-channel plate (MCP) optical imaging system has a large field of view, high resolution, compact conformation, light in weight, low cost and other advantages. Therefore, the new X-ray optical element has been applied and developed in more and more areas.
     In this paper, starting from the X-ray total reflection theory, the imaging principles of the flat square-hole MCP and the curved square-hole MCP are discussed, and the influence of the surface scattering on the image quality is also discussed.
     Then the solid model of the flat square-hole MCP is setup with the software TRACEPRO, and imaging simulations are carried out for MCPs with different structural defects with Monte-Carlo ray tracing method. The Taper-type, Twist-type and Nonsquare-type structure defects are investigated. Using a bromine tungsten-arc lamp as light source, the imaging experiments are done for the four available flat square-hole MCPs in the visible band. The experimental results are compared with the simulation results the use of Monte-Carlo to compare the composition, and they are basically the same, further verifying the correctness of the simulation results. Then using the extreme ultraviolet monochrome system composed of a concave grating monochromator and a laser-produced plasma source, imaging experiments are done for the flat square-hole MCP at30.40nm. The experimental results show that the peak intensity of the central spot has a gain nearly four times and this verifies the focusing properties of the MCP optical system.
     Finally, the applications of curved square-hole MCP are investigated. According to the imaging properties of the curved square-hole MCP, a super wide angle X-ray telescope and an imaging spectrometer based on transmission gating and MCP are designed. Basic researches have been done for the applications of the curved square-hole MCP.
引文
[1]李保权,朱光武,林华安等.天基X射线掠入射式成像望远镜发展现状[J].空间科学学报,2004,24(4):302-311
    [2]Acton L et al. The soft X-Ray telescope for the Solar-Amission [J]. Solar phys,1991,13:37-67
    [3]Golub L. Solar-B X-ray telescope (XRT) concept study report. NASA/DRD867MA-001.
    [4]Walker D D,Beaucamp A T H, Bingham R G, et al. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation [J]. SPIE,2003,4842:73-84
    [5]马杰,曹磊峰,谢常春等.带支撑结构的大高宽比硬X射线波带片制作[J]光电工程2009年第10期
    [6]易涛,董建军,朱效立等.螺旋型波带片成像特性研究[J]光学学报2010年第3期
    [7]Land M F. Animal eyes with mirror optics [J]. Sci. Am.,1978,239(6),88-99.
    [8]Angel J R P. Lobster Eyes as X-Ray Telescopes [J]. Astrophy J,1979,233:364-373.
    [9]Chapman H N, Nugent K A, and Wilkins S W. X-ray focusing using square channel-capillary arrays [J]. Rev Instrum,1991,62,1542-1561.
    [10]Chapman H N, Rode A, Nugent K A, and Wilkins S. W. X-ray focusing using cylindrical-channel capillary arrays. Ⅱ. Experiments [J]. Appl Opt,1993,32,6333-6340.
    [11]Chapman H N, Nugent K A, and Wilkins S W. X-ray focusing using cylindrical-channel capillary arrays. I. Theory [J]. Appl Opt,1993,32, 6316-6332.
    [12]W. C. Priedhorsky, A. G. Peele, and K. A. Nugent,"An X-ray all-sky monitor with extraordinary sensitiveity," Mon. Not. R. Astron. Soc.279(3),733-750(1996)
    [13]V. Grubsky, M. Gertsenshteyn, K. Shoemaker, and T. Jannson,"Adaptive lobster-eye hard x-ray telescope with high-angular resolution and wide field of view," Proc. SPIE,6688,1-1(2007).
    [14]N. Bannister,"Sky coverage with Lobster-ISS," Science with Lobster meeting,(2002).
    [15]V. Tichy, L. Sveda, J. Marsik, J. Jakubek, V. Semencova, L. Pina, R. Hudec, and M. Hromcik," Capabilities of Medipix2and Timepix Devices as Detectors for Lobster Eye X-Ray Optics," in ICSO2008Conf. Proc.,2008.
    [16]Wolter H. Glancing Incidence Mirror Systems as Imaging Optics for X-rays [J]. AnnPhysik,1952,10:94-114.
    [17]Giacconi R, Branduardi G, Briel U, Epstein A, Fabricant D, Feigelson E. The Einstein/HEAO2/X-ray Observatory [J]. Astrophy J Part1,1979,230,540-550.
    [18]Giacconi R, Branduardi G, Briel U, Epstein A, Fabricant D, Feigelson E. The Einstein/HEAO2/X-ray Observatory [J]. Astrophy J Part1,1979,230,540-550.
    [19]Kirkpatrick P, and Baez A V. Formation of Optical Images by X-Rays [J]. J Opt Soc Am,1948,38,766-773.
    [20]Peele A G, Nugent K A, Rode A V, Gabel K, Richardson M C, Strack R, Siegmund W, X-ray focusing with lobster-eye optics:a comparison of theory with experiment [J]. Appl Opt,1996,35,22,4420-4425.
    [21]Weisskopf M C, Tananbaum H D, Speybroeck L D Van, O'Dell S L., Chandra X-ray Observatory (CXO):overview [J]. SPIE Proc,2000,4012,2-16.
    [22]de Korte P A J, Bleeker J A M, McKechnie S P, den Boggende A J F, Branduardi-Raymont G, Brinkman A C, Culhane J L, Gronenschild E H B M, Mason I, McKechnie S P, The X-ray imaging telescopes on EXOSAT [J]. Space Sci Rev,1981,30(1-4),495-511.
    [23]Trumper J, The ROSAT Mission [J]. Adv Space Res,1982,2(4):241-249.
    [24]Wells A, Stewart G C, Turner M J L, Watson D J, Whitford C H, Antonello E, Citterio O, Brauninger H, Cropper M S, Curtis W J, Peskett S, Eyles C J, Goodall C V, Mineo T, Sacco B, Terekhov O. The JET-X instrument for the USSR Spectrum-RG mission:its design and performance [C]. SPIE Conference on Multilayer and Grazing Incidence X-Ray/EUV Optics,1992,205-220.
    [25]Tanaka Y, Inoue H, Holt S S. The X-ray astronomy satellite ASCA [J]. Publications of the Astronomical Society of Japan,46(3), L37-L41.
    [26]Kunieda H, Ishida M, Endo T et al. Appl. Opt,2001,40:553
    [27]Citterio O, Ghigo M, Mazzolem F et al. Proc SPIE,2002,4496:23
    [28]Als-Nielsen J, Memorrow D. Elements of Modern X-ray Physics, John Wikey&Sons, Ltd, New York,2001,63.
    [29]Von Ballmoos P, Smither R K. Astrophys J S,1994,92:663
    [30]Ziegler E. Proc SPIE,1994,2253:248
    [31]Hayter J B, Mook H A. J Appl Cryist.1989,22:35.
    [32]Christensen F E, Hornstrup A, Westergraard N J et al. SPIE,1991,1546:160
    [33]Joensen K D, Christersen F E, Schnopper H W. SPIE,1992,1736:239
    [34]Tawara Y, Yamashita K, Ogasaka Y et al. Adv Space Res.2002,30:1313
    [35]Hailey C J. Abdali S, Christensen F E et al. Proc. SPIE,1997,3114:535
    [36]Joensen K D, Hoghoj P, Chriustensen F et al. Proc SPIE,1993,2011:360
    [37]Windt D L. Proc SPIE,1998,3448:280
    [38]White N E, Tananbaum H D. Nucl Instrum Methods in Physics Research A,1999,436:201
    [39]张众,王占山,秦树基等。光子学报,2003,32:253
    [40]张众,王占山,王凤丽等。光学精密工程,2003,11:49
    [41]Schmidt W H K. Nucl Instrum Methods in Physics Research,1975,127:285.
    [42]J.R.P.Angel. Lobster eyes as X-ray telescopes. Astrophys. J.233,364(1979).
    [43]Black J K, Brunton A N, Bannister N P et al. Nucl Instrum Methods in Physics Research A,2003,513:123
    [44]Harvey J E, Moran E C. Zmek W P. Transfer Function Characterization of Grazing Incidence Optical Systems[J]. Appl. Opt.1998,27:1527-1533.
    [45]Harvey J E, Light-Scattering Characteristics of Optical Surfaces[D]. Ph. D. Dissertation, U. Arizona:1976,35-45.
    [46]Harvey J E. Transfer Function Characterization of Scattering Surfaces [J]. J. Opt. Soc. Am.1976,66:1136.
    [47]Stefan Kraupl, Aldo Steinfeld. Monte Carlo Radiative Transfer Modeling of a Solar Chemical Reactor for The Co-Production of Zinc and Syngas. Journal of Solar Energy Engineering.2005,127(1):102-108
    [48]A. Steinfeld, M. Schubnell, Optimum aperture size and operating temperature of a solar cavity-receiver, Solar Energy.1993,50:19-25
    [49]G. D. Sootha, B. S. Negi, A compareative study of optical designs and solar flux concentrating characteristics of a linear Fresnel reflector solar concentrator with tubular absorber, Solar Energy Materials and Solar Cells.1994,32:169-186
    [50]Johnston, Focal region measurements of the20m2tiled dish at the Australian national university. Solar Energy.1998,63:117-124
    [51]W. Spirkl, A. Timinger, H. Ries, A. Kribus, J. Muschaweck, Non-axisymmetric reflectors concentrateing radiation from an asymmetric heliostat field onto a circular absorber, Solar Energy.1998,63:23-30
    [52]R. Leutz, A. Suzuki, A. Akisawa, T. Kashiwagi, Design of a nonimaging Fresnel lens for solar concentrateors. Solar Energy.1999.65:379-387
    [53]S. M. Rodriguez, J. B. Galvez, M.I.M. Rubio, P. F. Ibanez, D. A. Padilla, M. C. Pereira, J. F. Mendes, J. C. Oliveira, Engineering of solar photocatalytic collectors. Solar Energy.2004,77:513-524
    [54]K. Ryu, J. G. Rhee, K. M. Park, J. Kim, Concept and design of modular Fresnel lenses for concentrateion solar PV system. Solar Energy.2006,80:1580-1587
    [55]J. Nilsson, R. Leutz, B. Karlsson, Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrateor. Solar Energy Materials and Solar Cells.2007,91:525-533
    [56]R. Leutz, H. P. Ann en, Reverse ray-tracing model for the performance evaluation of stationary solar concentrateors. Solar Energy.2007,81:761-767
    [57]L. Pancotti, Optical simulation model for flat mirror concentrators, Solar Energy Materials and Solar Cells.2007,91:551-559
    [58]R. Muller, A. Steinfeld, Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide. Solar Energy.2007,81:1285-1294
    [59]S. Hatwaambo, H. Hakansson, J. Nilsson, B. karlsson, Angular characterization of low concentration PV-CPC using low-cost reflectors. Solar Energy Materials and Solar Cells.2008,92:1347-1351.
    [60]M. Souliotis, Y. Tripanagnostopoulos, Study of the distribution of the absorbed solar radiation on the performance of a CPC-type ICS water heater. Renewable Energy.2008,33:846-858
    [61]Y. Shuai, X. L. Xia, H. P. Tan, Radiation performance of dish solar concentrator receiver systems. Solar Energy.2008,82:13-21
    [62]K. K. Chong, F. L. Siaw, C. W. Wong, G. S. Wong, Design and construction of non-imaging planar concentrator for concentrator photovoltaic system. Renewable Energy.2009,34:1364-1370
    [63]C. F. Chen, C. H. Lin, H. T. Jan, Y. L. Yang, Design of a solar concentrator combining paraboloidal and hyperbolic mirrors using ray tracing method, Optics Communications.2009,282:360-366
    [64]H. I. Villafan-Vidales, C. A. Arancibia-Bulnes, U. Dehesa-Carrasco, H. Romero-Paredes, Monte Carlo radiative transfer simulation of a cavity solar reactor for the reduction of cerium oxide. International Journal of Hydrogen Energy.2009,34:115-124
    [65]N. Yeh, Optical geometry approach for elliptical Fresnel lens design and chromatic aberration. Solar Energy Materials and Solar Cells.2009,93: 1309-1317
    [66]K. K. Chong, Optical analysis for simplified astigmatic correction of non-imaging focusing heliostat. Solar Energy.2010,84:1356-1365
    [67]C. Chen, C. Lin, H. Jan, A solar concentrator with two reflection mirrors designed by using a ray tracing method. Optic.2010,121:1042-1051
    [68]D. Riveros-Rosas, Optical design of a high radiative flux solar furnace for Mexico. Solar Energy.2010,84:792-800
    [69]S. J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells. Solar Energy Materials and Solar Cells.2010
    [70]S. Ulmer, T. Marz, C. Prahl, W. Reinalter, B. Belhomme, Automated high resolution measurement of heliostat slope errors. Solar Energy.2010
    [71]张国玉,吕文华,贺晓雷,徐亮,徐熙平。太阳模拟器辐照均匀性分析。中国光学与应用光学.2009.2(1):41-45
    [72]齐立红.液体微流喷射靶激光等离子体软X射线一极紫外光源研究[D][博士学位论文]
    [73]SANSONETTIJE, MARTIN W C, YOUNG S L. Handbook of Basic Atomic Spectroscopic Data[M], National Institute of Standards and Technology, Gaithersburg, MD,2004.
    [74]Http://www.ird-inc.com/axuvope.html
    [75]李全臣,蒋月娟.光谱仪器原理[M].北京:北京理工大学出版社,1997.
    [76]ZHU X L, WANG D Q, XIE C Q, et al.Fabrication of X-ray diffractive optical elements for ICF target diagnosis[J]. SPIE,2007,6722:672208.
    [77]ZHU X L,XIE C Q,YE T C,et al.. Fabrication of200nm period X-ray transmission gratings using electron beam lithography [J].SPIE,2007,6832:68320V.
    [78]CHU Y S,YI J M,CARLO F D,et al.. Hard X-ray microscope with Fresnel zone plates reach40nm Rayleigh resolution[J]. Applied Physics Letters, 2008,92:103-119.
    [79]CHEN J,WU C Y,TIAN J P,et al. Three-dimensional imaging of a complex concaved cuboctahedron copper sulfide crystal by X-ray nanotomography[J]. Applied Physics Letters,2008,92:233104.
    [80]KITCHENA M J,PAGANINA D,LEWISA R A,et al.. Analysis of speckle patterns in phase-con-trast images of lung tissue[J].Nuclear Instruments and Methods in Physics Research A.2005,48:240-246
    [81]张耀举。阶梯透射光栅衍射效率的研究[J]中国激光2003,30(7)
    [82]程欣,任秀云,韩玉晶等。基于液晶空间光调制器的光栅衍射效率[J]光子学报2006,35(4)
    [83]刘绍锦,凌志华。紫外光诱导液晶相位光栅[J]光子学报2008,37(8)
    [84]TOMOYUKI S, HIROSHI O, NOBUHIRO K. Liquid crystal phase gratings using photo regulated photocrosslinkable polymer liquid crystals [J] Applied Physics Letters2005,87(16)
    [85]杨家敏,易荣清,陈正林等。透射光栅对软X射线衍射效率的研究[J]物理学报1998年04期
    [86]樊叔维。任意槽形光栅衍射特性的矢量理论分析与计算[J]光学精密工程20008(1)
    [87]Moharam M G, et al.. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings enhanced transmittance matrix approach[J] J Opt Soc Am,1995,12(5):1077-1085.
    [88]Moharam M G, et al.. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings [J] J Opt Soc Am A,1995,12(5):1068-1076
    [89]李跃林,白文安,陈时胜等。针孔透射式光栅光谱仪衍射效率的理论模拟[J]光学学报1989年06期
    [90]许蕾,张肇群。一种实用的全息图衍射效率测量方法[J]光学技术1995年05期
    [91]叶钧,许乔,侯西云等。二元光学元件衍射效率的逐层分析法研究[J]光学学报1996,16(10):1350-1355
    [92]杨亮亮,崔庆丰,刘涛等。衍射光学元件衍射效率的测量[J]光学学报2012,32(4)
    [93]Andrew P, Wood, Philip J. rogers. Diffractive optics in modern optical engineering [C]. SPIE,2005,5865:83-97
    [94]Michael D. Missig, G. Michael Morris. Diffractive optics applied to eyepiece design [J] Appl. Opt.,1995,34(14):2452-2461
    [95]J. Allen Cox. Application of diffractive optics to infrared imagers [C] SPIE,1995,2552:304-312
    [96]邹凯,邓晓鹏,李慎。衍射光学元件的效率研究[J]光学与光电技术,2005,3(4):46~49
    [97]Thomas Hessler, Markus Rossi, Rino E. Kunz et al.. Analysis and optimization of fabrication of continuous-relief diffractive optical elements[J] Appl. Opt.,1998,37(19):4069-4079
    [98]刘强,邬融,张晓波等。多台阶衍射光学元件的工艺优化[J]中国激光,2008,35(8):1165—1168
    [99]殷可为,黄智强,林妩媚等。二元光学元件横向加工误差对衍射效率的影响[J]光电工程,2011,38(9):46-49
    [100]裴雪丹,崔庆丰,冷家开。入射角对双层衍射光学元件衍射效率的影响[J]光学学报,2009,29(1):120~125
    [101]薛常喜,崔庆丰,潘春艳等。基于带宽积分平均衍射效率的多层衍射光学元件设计[J]光学学报,2010,30(10):3016-3020
    [102]杨家敏,丁耀南,曹磊峰,等.透射光栅衍射效率研究[J],强激光与粒子束,12(6),723-726,2000.YANG Jia-Min, DING Yao-Nan, CAO Lei-Feng, et al.. Study on Transmission Grating Diffraction Efficiencies [J]. High Power Laser and Particle Beams,12(6),723-726,2000(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700