多层衍射光学元件衍射效率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层衍射光学技术是衍射光学领域的前沿课题之一。多层衍射光学元件能够在很宽的光谱波段范围内获得很高的衍射效率,解决了传统单层衍射光学元件存在的偏离设计波长后衍射效率显著下降的问题。本文首先基于光波的标量衍射理论和位相光栅方程,对衍射光学元件的衍射效率问题进行了深入的研究。通过对单层衍射光学元件表面微结构、基底材料的选择等相关参数的讨论,分析了斜入射状态下单层衍射光学元件的衍射效率特性。讨论了衍射光学元件的消色差和消热差特性,以及衍射光学元件产生冷反射的计算分析方法。分析了衍射光学元件的初级像差特性。
     分析了谐衍射光学元件的设计方法,讨论了谐衍射光学元件的色散特性,以及谐衍射光学元件不同于传统单层衍射光学元件的衍射效率特性。基于单层衍射光学元件斜入射衍射效率的分析,研究了斜入射状态下多层衍射光学元件衍射效率与入射角的变化关系,并建立了描述这种关系的数学模型。分析了在不同方向斜入射时,衍射效率随入射角度的变化关系,不仅分析了双层衍射光学元件斜入射时的衍射效率特性,同时,也讨论了三层衍射光学元件斜入射的衍射效率和入射方向、基底材料的选择以及中间介质材料选择的关系。
     衍射光学元件的微结构高度、周期宽度等参数的加工误差会对衍射效率产生直接的影响。本文基于衍射光学元件的微结构高度、周期宽度等参数与衍射效率的关系,在对单层衍射光学元件的加工误差对衍射效率影响的分析基础上,研究了多层衍射光学元件的加工误差对其衍射效率影响的分析方法。针对多层衍射光学元件的微结构高度误差变化一致和相反的两种情况,给出了多层衍射光学元件的微结构高度误差对衍射效率的影响,当微结构高度误差变化趋于一致时,对应的衍射效率下降比较缓慢。这个结论可以用来指导衍射光学元件的加工,以及存在加工误差时如何实现衍射效率的最大化设计。
     本文讨论了衍射光学元件衍射效率的实验测量方法。以衍射光学元件衍射效率的定义为基础,分析了衍射效率的测量原理,进一步搭建了衍射效率的实验测量装置。通过合理地选择测量装置中针孔光阑的大小,能够精确地得到一级衍射的能量,并滤掉次级衍射对测量结果的影响,保证了测量结果的准确性。用这个测量装置对一个已经研制出的折衍射混合成像光学系统中的单层衍射光学元件进行了衍射效率的测量,分别选择了三个激光波长,测量了单层衍射光学元件的衍射效率,通过将衍射效率测量结果的拟合曲线与理论曲线进行对比可知,双光路测量装置能够以较高的精度测量衍射光学元件的衍射效率。
     为了验证多层衍射光学元件的衍射效率随入射角度的变化关系,设计并研制了一个含有多层衍射光学元件的光学系统,在O。-30.6。范围内对该多层衍射光学元件进行了衍射效率的测量,获得了多层衍射光学元件的衍射效率与入射角度对应关系的实验测量结果。该测量结果验证了通过理论计算得到的多层衍射光学元件衍射效率与入射角的变化关系,实际测量得到的多层衍射光学元件的衍射效率与入射角度关系的变化趋势与理论分析得到的变化趋势是一致的。
The technology of multilayer diffractive optical elements (MLDOEs) is one of the frontier subjects in the field of diffractive optics. MLDOEs can achieve very high diffraction efficiency within a wide spectrum, which can solve the problem of the traditional single layer diffractive optical elements with the diffraction efficiency decreases significantly when the wavelength deviates from the design wavelength. In this paper, based on the scalar diffraction theory and the phase grating equation, the diffraction efficiency of diffractive optical elements is analyzed. By discussing the relevant parameters such as the microstructure height, the choise of the substrate materials and so on, the diffraction efficiency of single layer diffractive optical elements with oblique incidence is analyzed. The achromatic and athermal properties of diffractive optical elements, the narcissus intensity evaluation for diffractive optical elements are analyzed. The third-order aberration theory of diffractive optical elements is discussed.
     The design method of harmonic diffractive optical elements is analyzed. The special dispersion property of harmonic diffractive optical elements and the diffraction efficiency of harmonic diffractive optical elements which is different from tradional single layer diffractive optical elements are discussed. Based on the diffraction efficiency with oblique incidence of single layer diffractive optical elements, the relationship and the mathematics model of the diffraction efficiency and incidence angle for MLDOEs are built up. The relationship of diffraction efficiency with different incident direction is also analyzed. The diffraction efficiency of MLDOEs, not only the doulble layer diffractive optical elements, but also the three layer diffractive optical elements is systematically studied with different incident directions, different substrate materials and different selection of the third materials with oblique incidence angle.
     The manufacturing errors of depth-scaling, periodic width and so on have a direct influence on diffraction efficiency of diffractive optical elements. Based on the analysis of single layer diffractive optical elements, the effect of the manufacturing errors on diffraction efficiency for MLDOEs is analyzed. The relationship of diffraction efficiency and depth-scaling errors are presented for two different cases, with the two relative depth-scaling errors change in the same sign and in the opposite sign. As the depth-scaling errors change consistently, the corresponding diffraction efficiency declines relatively slow. This conclusion can be used to guide the manufacturing of diffractive optical elements, realize the maximization of diffraction efficiency with the effect of manufacturing errors.
     The experiment method of measuring diffraction efficiency of diffractive optical element is studied. Based on the definition of the diffraction efficiency of diffractive optical elements, the measuring principle of diffraction efficiency is discussed, and the double path measurement device of diffraction efficiency is set up. The diffraction light of the main order can be obtained by the reasonable choice of the pinhole aperture of the measuring device, and the subprime diffraction light will be filtered out, ensuring the accuracy of the measuring results. The diffraction efficiency of the single layer diffractive optical elements in the designed hybrid refractive-diffractive optical system is measured at three laser wavelengths over the visible waveband. By comparing the measuring results with the theoretical calculating results, the double path measurement device can be used to measure the diffraction efficiency of diffractive optical elements with high accuracy.
     In order to verify the relationship of the diffraction efficiency and the incidence angle for MLDOEs, a MLDOEs and an optical system contained this MLDOEs are designed and manufactured. This optical system is used to measure the diffraction efficiency within the incidence angles in the ranges of0°to30.6°, and the measured diffraction efficiency of MLDOEs under different incidence angles are obtained which can be used to verify the theoretical diffraction efficiency. The relationship of the measured diffraction efficiency and the incidence angle is in correspondence with the relationship of the theoretical diffraction efficiency and incidence angle.
引文
[1]Andrew Wood, Mane-Si Laure Lee, Simone Cassette. Infrared hybrid optics with high broadband efficiency. SPIE, 58740G:1-12
    [2]Youngshik Yoon. Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems. Appl. Opt,2000,39(16):2551-2558
    [3]L. N. Hazra. Diffractive optical elements-past, present and future. SPIE,1999,3729:198211
    [4]Lord Rayleigh. Laboratory notebook entry of April 11 1987, quoted in R. W. Wood, Physical Optics.3rd. New York, Macmillan Co.,1934:37-38
    [5]R. W. Wood. Philos Mag.1898,45(5):511
    [6]D. Gabor. A new microscope principle. Nature, London,1948,161:777-779
    [7]D. Gabor. Microscope by reconstructed wavefronts:Ⅱ. Proc. R. Soc. London, Sect.1951, B64:49-469
    [8]G. L. Rogers. Gabor diffraction microscopy:the hologram as a generalized zone-plate. Nature,1954,166:237
    [9]E. N. Leith and J. Upatnieks. Reconstructed wavefronts and communication theory. J. Opt. Soc. Am.1962,52: 1123-1128
    [10]E. N. Leith and J. Upatnieks. Wavefront reconstruction with continuous-tone objects. J. Opt. Soc. Am.1963,53: 1377-1381
    [11]D. H. Close. Holographic optical elements. Opt. Eng.1975,14:408-419
    [12]John N. Latta. Computer-based analysis of holography using ray tracing. Appl. Opt.1971,10(12):2698-2710
    [13]L. Lesem, P. Hirsch, J. Jordon. Generation of discrete-point holograms. J. Opt. Soc. Am.,1968,58:29-736
    [14]L. Lesem, P. Hirsch, J. Jordon. The kinoform:A new wavefront reconstruction device. IBM J. Res. Dev,1969,13: 150-155
    [15]J. Jordon, Jr, P. Hirsch. Kinoform lenses. Appl. Opt,1970,9:1883-1887
    [16]L.d'Auria, J. Huignard, A. Roy, E. Spitz. Photolithographic fabrication of thin film lenses. Opt. Comm,1972, 5:232-235
    [17]G J. Swanson, W. B. Veldkamp. Binary lenses for use at 10.6 micrometers. Opt. Eng,1985,24:791 ■795
    [18]G J. Swanson. Binary optics technology:The theory and design of multi-level diffractive optical elements. MIT Lincoln Laboratory technical report,1989
    [19]W. B. Veldkamp, T. J. McHugh. Binary optics. Scient,1992:266 (11):50
    [20]A. P. Wood. Ahybrid refractive-diffractive lens for manufacture by diamond turning. SPIE,1991,1573,122-128
    [21]Andrew P. Wood, Philip J. Rogers. Diffractive optics in modern optical engineering. Proc. SPIE,2005,5865,58650B
    [22]H. P. Herzig, P. Ehbets, J. M. Teijido, K. J. Weible. Diffractive optical elements for space communication terminals. SPIE,1994,2210,104-111
    [23]Wayne Knapp, Gary Blough, Kumar Khajurivala, et al. Optical design comparison of 60° eyepieces:one with a diffractive surface and one with aspherics. Appl. Opt.,1997,36(20):4756-4760
    [24]J. Allen Cox. Application of diffractive optics to infrared imagers. SPIE,1995,2552,304-312
    [25]Hong Hua, Yonggang Ha, and Jannick P. Rolland. Design of an ultralight and compact projection lens. Appl. Opt., 2003,42:97-107
    [26]中井武彦,小川秀树.积层型回折光学素子の研究匕光学系/\の使用方法.日本写真学会志,2002,65(3):180-185
    [27]Thomas J. Suleski, Donald C. O'Shea. Gray-scale Masks for Diffractive-Optics Fabrication. Appl. Opt.,1995,34(32): 7507-7517
    [28]E. Pawlowski. Thin film deposition and alternative technique for the fabrication of binary optic of high efficiency. IEEE Conference Publication,1993,379:54-59
    [29]Himanshu Suyal, Andrew J. Waddie, Mohammed R. Taghizadeh. Direct laser-writing of complex photopolymer structures using diffractive optical elements. Proc. SPIE,2006,6185:6185C-1
    [30]Wataru Watanabe, Hiroyuki Mochizuki. Femtosecond laser direct writing of diffractive optical elements in polymers. Proc. SPIE,7585,75850B
    [31]Walter Daschner, M. Larsson, S. H. Lee. Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step. Appl. Opt.,1995,34:2534■ 2539
    [32]T. J. Suleski, D. C. Oshea. Gray-scale masks for diffractive-optics fabrication:I. Commercial slide imagers.1995,34: 7507-7517
    [33]C. Gary Blough et al. Single-point diamond turning and replication of visible and near-infrared diffractive optical elements. Appl. Opt.,1997,36(30):4648-4654
    [34]Mikael Karisson, F. Nikolajeff. Fabrication and evaluation of a diamond diffractive fan-out element for high power lasers. Optics Express,2003,11:191
    [35]M.T.Gale. Diffractive optics and micro-optics production technology in Europe. In OSA Trends in Optics&Photonics (TOPS) 75, Diffractive Optics and Micro-Optics, OSA Technical Digest, Postconference Edition (OSA, Washington D.C.,2002),18-20
    [36]Michael T. Gale. Replicated Diffractive Optics and Micro-Optics, Optics&Photonics News,2003,24-29
    [37]崔庆丰.折衍射混合成像光学系统设计.红外与激光工程,2006,35(1):12-15
    [38]孙强,卢振武,王肇圻.谐衍射/折射双波段光学系统设计.光学学报,2004.24(6):830-833
    [39]张慧娟,王肇圻,张春书.广角70。视场折/衍混杂目镜设计.光电子·激光,2002,13(9):913-919.
    [40]赵秋玲,王肇圻,母国光.用于LCOS微显示的折射—衍射目视系统设计.科学通报,2002,47(10):744-748
    [41]马韬,沈亦兵,杨国光.一种反射/折射/谐衍射三波段混合成像系统设计.光学仪器,2006,28(6):59-63
    [42]T. Stone, N. George. Hybrid diffractive-refractive lenses and achromats. Appl. Opt.,1988,27(14):2962-2966
    [43]D. A. Buralli, G M. Morris. Design of diffractive singlets for monochromatic imaging. Appl. Opt.,1991,30:2151 -2158
    [44]崔庆丰.用二元光学元件实现复消色差.光学学报,1994,14(8):877-881.
    [45]洪新华,杨建峰,陈立武等.衍/折射光学元件消二级光谱的设计.强激光与粒子束,2004,16(4):421-424
    [46]闫佩佩,樊学武,邹刚毅等.用于可见光波段的折/衍混合复消色差长焦物镜设计.激光与光电子学进展,2010,7,092201
    [47]Michael D. Missig and G Michael Morris. Diffractive optics applied to eyepiece design. Appl. Opt.,1995,34:2452-2461
    [48]张慧娟,.王肇圻,卢振武.折/衍混合微光夜视头盔显示器光学系统设计.光学学报,2004,24(10):1393-1396
    [49]杨新军,王肇圻,孙强等.折/衍混合透视型头盔显示器光学系统设计.光电工程,2005,32(1):9-12
    [50]Yang Xinjun, Wang Zhaoqi, Mu Guoguang. Hybrid diffractive-refractive 60°-diagonal field of view optical see-through head-mounted display. Acta Photonica Sinica,2006,35 (1):89-92
    [51]赵顺龙,王肇圻.超轻小型投影式头盔显示系统折衍混合物镜设计.光学学报,2006,26(2):249-253
    [52]J. S. Liu, M. R. Taghizadeh. Iterative algorithm for the design of diffractive phase elements for laser beam shaping. Optics Letters,2002,27 (16):1463
    [53]Yan Zhang, Bi-Zhen Dong, Ben-Yuan Gu, et al. Beam shaping in the fractional Fourier transform domain. J. Opt. Soc. Am. A,1998,15 (5):1114-1120
    [54]林勇,用于激光光束整形的衍射光学元件设计:[博士学位论文].大连:大连理工大学,2009
    [55]Andrew J. Waddie, Adam J. Caley, Mohammad R. Taghizadeh. Beam shaping diffractive optical elements for high power laser applications. Proc. SPIE,2008,7070,70700H
    [56]陶少华,田永红,陈培锋等.利用衍射光学元件增加出射光束的焦深.光学精密工程,1998,6(3):70-73
    [57]Donald W. Sweeney, Gary E. Sommargren. Harmonic diffractive lenses. Appl. Opt.,1995,34 (14):2469-2475
    [58]D. Fakilis, G M. Morris. Spectral properties of multiorder diffractive lenses. Appl. Opt.,1995,34(14):2462-2469
    [59]刘英,潘玉龙,王学进等.谐衍射,折射太赫兹多波段成像系统设计.光学精密工程.2008,16(11):2065-2071
    [60]A. P. Wood. Design of infrared hybrid refractive-diffractive lenses. Appl. Opt.,1992,31 (13):2256-2258
    [61]G P. Behrmann, J. P.Bowen. Influence of temperature on diffractive lens performance. Appl. Opt,1993,32:2483 -2489
    [62]J. Allen Cox. Application of diffractive optics to infrared imagers. SPIE,1995.2552,304-312
    [63]Yinan Zhang, Zhaoqi Wang. Passively athermalized hybrid Petzval objective for high resolution MWIR detector arrays. Optik,2004,115(4):169-172
    [64]Jean-Marie Bacchus-Thales-Angenieux. Using new materials and DOE in low-cost lenses for uncooled IR cameras. SPIE.2004,5249:425-432
    [65]刘峰,徐熙平,孙向阳等.折/衍射混合红外目标搜索/跟踪光学系统设计.光学学报,2010,30(7):2084-2088
    [66]孙强,王肇圻,李凤有等.含有谐衍射元件的红外双波段减热差系统设计.科学通报.2003,48(6):557-561
    [68]Takehiko Nakai,and Hideki Ogawa. Research on multilayer diffractive optical elements and their application to camera lenses. Optical Society of America,2002
    [69]范长江,王肇圻,孙强.双层衍射元件在投射式头盔光学系统设计中的应用.光学精密工程.2007,15(11):1639-1643
    [70]裴雪丹,崔庆丰,冷家开等.多层衍射光学元件设计原理与衍射效率的研究.光子学报,2009,38(5):1126-1131
    [71]薛常喜,崔庆丰,潘春艳等.基于带宽积分平均衍射效率的多层衍射光学元件设计.光学学报,2010,30(0):1-5
    [72]霍裕平,杨国桢,顾本源.用光学方法实现幺正变换及—般线性变换—用迭代法求解.物理学报,1976,25(1):31-46
    [73]谭峭峰,魏晓峰,向勇.YG算法设计分数傅里叶变换衍射光学光束整形器件.光子学报,2005,34(11):1724-1727
    [74]赵劲松,李立峰,吴振华.一种控制矩形光刻胶光栅槽深和占宽比的方法.光学学报,2004,24(9):1285-1291
    [75]崔庆丰,高士平等.高分辨率成像二元光学系统的研制与实验结果.光学精密工程,1997,5(5):17-20
    [76]张慧娟,王肇圻,张春书.广角70。视场折/衍混杂目镜设计.光电子·激光,2002,13(9):913-919
    [77]杨新军,王肇圻,孙强.穿透型折/衍混合头盔显示器的光学系统.光电子·激光,2004,15(11):1301-1304
    [78]赵秋玲,王肇圻,母国光.用于LCOS微显示的折射—衍射目视系统设计.科学通报,2002,47(10):744-748
    [79]范长江,王肇圻,吴环宝.红外双波段双层谐衍射光学系统设计.光学学报,2007.27(7):1266-1270
    [80]留浩飞,李晓彤,岑兆丰.衍射光学元件杂散光分析的数据结构及鬼像分析.光学仪器,2005,27(4):60-64
    [81]马韬,沈亦兵,杨国光.一种反射/折射/谐衍射三波段混合成像系统设计.光学仪器,2006,28(6):59-63
    [82]常军,刘莉萍,王涌天.大视场、大口径双波段红外非制冷光学系统.红外与毫米波学报,2006,25(3):170-172
    [83]米凤文,杨国光,沈亦兵.红外混合光学系统衍射效率的测量方法及其实现.光学技术,2006,32(3):353- 360
    [84]刘莉萍,王涌天,李荣刚.制作在非球面基底上的红外衍射光学元件.红外与毫米波学报,2004,23(4):308-312
    [85]候德胜,冯伯儒,张锦.激光直写系统制作掩模和器件的工艺.微细加工技术,1999,1:55-61
    [86]裴雪丹,崔庆丰,冷家开.入射角对双层衍射光学元件衍射效率的影响.光学学报,2009,29(01):120-125
    [87]Changxi Xue and Qingfeng Cui.Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency. Opt. Lett.,2010,35,(7):986-988
    [88]Changxi Xue, Qingfeng Cui, Tao Liu, et al. Optimal design of a multilayer diffractive optical element for dual wavebands. Opt. Lett.,2010,35(24):4157-4159
    [89]薛常喜,崔庆丰,杨亮亮等.基于柯西色散公式的多层衍射光学元件的设计和分析.光学学报,2011,31(06):253-257
    [90]Liangliang Yang, Qingfeng Cui, Tao Liu, et al. Effects of manufacturing errors on diffraction efficiency for multilayer diffractive optical elements. Appl. Opt.,2011,50(32):6128-6133
    [91]Tao. Liu, Qingfeng Cui, Liangliang Yang, et al. Evaluation of narcissus for multilayer diffractive optical elements in infrared systems. Appl. Opt,2011,50(33):6146-6152
    [92]杨亮亮,崔庆丰,刘涛等.衍射光学元件衍射效率的测量.光学学报,2012,32(4):0412007
    [93]杨国光.微光学与系统.杭州:浙江大学出版社,2008
    [94]金国藩,严瑛白,邬敏贤等.二元光学.北京:国防工业出版社,1998
    [95]Reference 75
    [96]Reference 76
    [1]J.W. Goodman, Introduction to Fourier Optics,2nd ed. McGraw-Hill, San Francisco,1996
    [2]E. G. Johnson, A. D. Kathman. Rigorous electromagnetic modeling of diffractive optical elements. SPIE,1991,1545: 209-216
    [3]W. C. Sweet. Describing holographic optical elements as lenses. JOSA,1997,64:803-808.M. G.
    [4]W. C. Sweet. Mathematical equivalence between a holographic optical element and an ultra-high index lens. JOSA, 1979,69:486-487.
    [5]崔庆丰.折衍射混合光学系统的研究:[博士学位论文].中国科学院长春光学精密机械研究所,1996
    [6]张康伟.多层衍射光学元件衍射效率特性的研究:[硕士学位论文].长春理工大学,2010
    [7]Code V Reference Manual, Version 10.2, Optical Research Associates
    [8]Warren J.Smith. Modern Optical Engineering.4th edition.SPIE,2008, chaperl6
    [9]赵丽萍,邬敏贤.折衍混合单透镜替代双胶合望远物镜的设计研究.光子学报,1998,18(2):223-227
    [10]Zhao Liping, Lam Yee Loy, Zhou Yan and Yun Zhisheng. Achromatic design strategies with diffractive optical elements. SPIE,1999,3897:624-631
    [11]焦明印.衍射光学元件在红外成像系统中的应用.应用光学.2000,21(6):17-20
    [12]A.P.Wood.Using refractive-diffractive elements in infrared Petzval objectives.Proc. SPIE,1990,1354:316-322
    [13]洪新华,杨建峰,陈立武等.高光谱成像仪衍/折射光学系统消二级光谱的设计.激光杂志,2007,28(1):21-23
    [14]Michael Bass, and Optical Society of America., Handbook of optics.New York:McGraw-Hill,2009
    [15]Carmina Londono. Design and fabrication of surface relief diffractive optical elements, or kinoforms, with examples for optical athermalization.1992
    [16]Howard J W, Abel I R. Narcissus:Reflections on retroreflections in thermal imaging systems. Appl. Opt.,1982,21: 3393-3397
    [17]Lloyd J M. Thermal Imaging Systems. New York:Plenum Press,1975,275-281
    [18]Cohen J B. Narcissus of diffractive optical surfaces. Proc. SPIE,1995,2426:380-385
    [19]Liu T, Cui Q, Xue C, et al. Calculation and evaluation of narcissus for diffractive surfaces in infrared systems. Appl. Opt.,2011,50:2484-2492
    [20]刘涛,崔庆丰,杨亮亮,薛常喜.红外光学系统中衍射面冷反射的分析与评价.科学通报,2012,57(1):36-41
    [21]W. C. Sweet. Describing holographic optical elements as lenses. J.Opt. Soc.Am.,1977,67:803-808
    [22]W. T. Welford. Aberrations of Optical Systems. Adam Hilger,1986:226-234
    [23]Hans Peter Herzig. Micro-optics Elements,systems and applications. Taylor & Francis Ltd,1997
    [24]G. J. Swanson. Binary optics technology:Theoretical limits on the diffraction efficiency of multilevel diffractive optical elements. MIT Lincoln laboratory technical report,1991
    [1]D. W. Sweeney, G.E. Sommargren. Harnonic diffractive lenses. Appl. Opt.,1995,34 (14):2469-2475
    [2]D. Fakilis, G.M. Morris. Spectral properties of multiorder diffractive lenses. Appl. Opt.,1995,34(14):2462-2469
    [3]K. J. Weible, A. Schilling, H. P. Herzig, and D. Lobb. Achromatization of the diffraction efficiency of diffractive optical elements. SPIE,1999,3749:378-379.
    [4]裴雪丹,崔庆丰,冷家开.入射角对双层衍射光学元件衍射效率的影响.光学学报,2009,29(01):120-125
    [5]Changxi Xue and Qingfeng Cui. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency. Opt. Lett.,2010,35(7):986-988.
    [6]薛常喜.多层衍射光学元件成像特性的研究:[博士学位论文].长春理工大学,2010
    [7]范长江,赵亚辉,应朝福等.宽光谱大视场角的高衍射效率多层衍射元件.中国激光,2012,,39(5):0516001
    [1]R. Bittner. Tolerancing of single point diamond turned diffractive optical elements and optical surfaces. Journal of the European Optical Society, Rapid Publications,2007.2,07028
    [2]Richard C. Juergens, R. Hamilton Shepard III, John P. Schaefer. Simulation of single point diamond turning fabrication process errors. Proc. SPIE,2003.5174:93-104
    [3]Thomas Hessler, Markus Rossi, Rino E. Kunz, et al., Analysis and optimization of fabrication of continuous-relief diffractive optical elements, Appl. Opt,1998,37:4069-4079
    [4]G I. Greisukh, S.T. Bobrov, and S.A. Stepanov. Optics of diffractive and gradient-index elements and systems, SPIE press,1997
    [5]Donald C. O'Shea, Thomas J. Suleski, Alan D. Kathman, et al. Diffractive Optics Design, Fabrication, and Test, SPIE press,2004
    [6]G I. Greisukh, E.A. Bezus, D.A. Bykov, et al. Suppression of the spectral selectivity of two-layer relief-phase diffraction structures. Opt. Spectrosc,2009,106:621-626
    [7]T. Fujita, H. Nishihara, and J. Koyama. Blazed gratings and Fresnel lenses fabricated by electron-beam lithography. Opt. Lett.,1982,7:578-580
    [8]Donald W. Sweeney and Gary E. Sommargren. Harmonic diffractive lenses. Appl. Opt.1995,34:2469-2475
    [9]Yoel Arieli, Shmuel Ozeri, and Naftali Eisenberg. Design of a diffractive optical element for wide spectral bandwidth. Opt. Lett.,1998,23:823-824
    [10]Liangliang Yang, Qingfeng Cui, Tao Liu, and Changxi Xue. Effects of manufacturing errors on diffraction efficiency for multilayer diffractive optical elements. Appl. Opt.2011.50(32):6128-6133
    [11]Liangliang Yang, Qingfeng Cui, Changxi Xue, Tao Liu, "Analysis of microstructure heights error of multilayer diffractive optical elements for far infrared optical system, " Proc. SPIE,2011,8197,81970D
    [12]Changxi Xue and Qingfeng Cui. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency. Opt. Lett.,2010,35(7):986-988
    [l]米凤文,杨国光,沈亦兵.红外混合光学系统衍射效率的测量方法及其实现.光学技术.2006,32(3):353-360
    [2]陈德伟,李永平.衍射光学元件分析和设计中标量理论的局限性.光电工程.2004.31(6):9-13
    [3]张巍,巩岩.投影光刻离轴照明用衍射光学元件的矢量分析.光学学报.2011.31(10):1005002
    [4]Thomas Hessler, Markus Rossi, Rino E. Kunz, et al. Analysis and optimization of fabrication of continuous-relief diffractive optical elements. Appl. Opt.,1998,37(19),4069-4079
    [5]殷可为,黄智强,林妩媚等.二元光学元件横向加工误差对衍射效率的影响.光电工程.2011,38(9),46-49
    [6]王植恒,陈英等.菲涅尔微透镜列阵衍射效率的测试与分析.光学学报.1998,18(1):41-48
    [7]崔庆丰.折衍射混合光学系统的研究:[博士学位论文].中国科学院长春光学精密机械研究所,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700