串列加速器QWR超导腔低温系统的设计分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中国原子能科学研究院HI-13串列式加速器升级工程项目中采用的四分之一波长腔(Quarter Wave Resonator—QWR)超导腔恒温柜系统为研究对象。研究了恒温柜系统在低温下的若干问题,包括恒温柜系统热负载计算、低温冷却流程的模拟分析以及用FLUENT和ANSYS对恒温柜内关键设备的温度场进行了模拟。目的是为QWR超导腔恒温柜在低温下正常工作提供设计保障。
     本文在详细描述恒温柜冷却系统的基础上,详细计算了4.2K冷质量与77K冷屏的辐射漏热,同时,还对恒温柜内部支撑系统计算了变物性下的导热漏热,得出了恒温柜系统的静态和动态热负荷分别为4.692W和38.4W,并分析比较了液氮冷屏采用夹层冷却方式与铜管缠绕冷却方式的优缺点,为流程模拟的参数确定提供了依据。
     确定了系统中各主要设备的关键热力参数,同时计算了冷却QWR到4.2K需要的液氦量以及其冷却时间。采用恒温柜并联的冷却方式对系统建立了数学计算模型,选用了返回氦气经控制杜瓦冷却后再进入制冷机末级换热器冷端的方案,并结合超导腔对压力和温度的要求,用大型流程软件计算出了超导腔低温系统正常运行时所需的最佳氦流质量流量为31.57 g/s,允许质量流量波动范围为±3 g/s。同时讨论了氦流质量流量过小时对系统稳定性的影响。
     用FLUENT数值模拟了QWR超导腔正常工作时的温度分布情况,得到其表面的最大温差,用以指导冷却系统的设计,保证超导腔的正常工作。模拟比较了液氮冷屏在采用螺旋管和蛇形管两种冷却方式情况下屏上温度分布,为冷屏冷却管线布置的选择提供理论依据。用有限元软件ANSYS模拟了4.2K冷质量支撑件的温度分布情况,同时得到了其导热漏热,并与理论计算进行了比较。
The dissertation focuses on study on the QWR cryogenic system, which is the key component of the Tandem Superconducting Device(TDS) in HI-13 Upgrade in China Institute of Atomic Energy. The study will serve as the guideline for the engineering design of the TDS QWR cryogenic system.
     Detailed calculations of the radiant heat loads to 4.2K cold mass and 77K heat shield were carried out based on the structure of the QWR cryostat. The conductive heat loads from the supports inside the cryostat were given with variable physical properties of materials. The total static loads and dynamic loads are summed as 4.692W and 38.4W, respectively. And comparison between the double-wall cooling method and the cooling tube method for the 77 heat shield has been discussed to provide the thermal parameters for flow process simulation.
     The critical thermal parameters of the main components of the QWR cooling system were determined for parallel arranged QWR cryostats. The mass flow and time for cool-down of the QWR to 4.2K was also estimated. Numerical model for the cooling process has been developed in case that the QWR cryostats are connected in parallel. Temperature at the outlet of QWR cooling channel and its pressure fluctuation were calculated with the change of the mass flow of He by the large-scale process software. The optimized mass flow of He and the allowed fluctuation range were also obtained according to the temperature and pressure required by the QWR superconducting cavity. And the influence on the system when the mass flow of He is far from normal has been discussed.
     The temperature distribution of QWR has been numerically simulated by FLUENT and the maximal temperature difference has been obtained. The detailed simulation and comparison of the heat shield has been carried out for the spiral cooling method and the flexible cooling method. The temperature distribution of the support for the 4.2K cold mass has been simulated by ANSYS, and its heat flux has been simulated and compared with the theoretical results presented preciously.
引文
1 张天爵, 李振国, 殷治国, 侯世钢. 串列加速器升级工程的计算机控制系统方案设计. 原子能科学技术. 2005, 39(2):188~192
    2 P. N. Ostroumov, A. A. Kolomiets. Design of 57.5 MHz cw RFQ for medium energy heavy ion superconducting linac. Physical Review Special Topics-Accelerators and Beams. 2002, 5(9):1~9
    3 P. N. Potukuchi, S. Ghosh, K.W. Shepard. Status of the Niobium Resonator Construction Project For The New Delhi Booster Linac. Proceedings of the 1999 Particle Accelerator Conference, New York, 1999:952~954
    4 V. Palmieri, A. M. Porcellato et al. Installation in the LNL ALPI linac of the first cryostat with four niobium quarter wave resonators. Nuclear Instruments and Methods in Physics Research. 1996, 382:112~117
    5 A. Facco, J. S. Sokolowski et al. Bulk Niobium Low-, Medium- and High-β Superconducting Quarter Wave Resonators for the ALPI Postaccelerator. Proceedings of the 1993 Particle Accelerator Conference, Washington, 1993:849~851
    6 A. Facco, V. Zviagintsev. The Superconducting Medium Beta Prototype for Radioactive Beam Acceleration at TRIUMF. Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001:1092~1094
    7 R. Stassen, R. Eichhorn et al. Cold tests of a 160 MHz Half-Wave Resonator. Proceedings of LINAC2004, Lübeck, Germany, 2004:821~823
    8 A. Mosnier. Spiral 2: A High Intensity Deuteron and Ion Linear Accelerator for Exotic Beam Production. Proceedings of the 2003 Particle Accelerator Conference, Oregon, Portland, 2003:595~597
    9 T. Tajima, R. L. Edwards et al. Results of two LANL β=0.175, 350 MHz, 2-gap spoke cavities. Proceedings of the 2003 IEEE Particle Accelerator Conference, Portland, 2003:1341~1343
    10 郝建奎, 张保澄, 谢大林. 铜铌溅射超导四分之一波长谐振腔的研究. 核技术. 2000, 23(1):36~38
    11 郝建奎, 张保澄, 谢大林. 铜铌溅射型低β超导腔的研制及初步实验. 高能物理与核物理. 2001, 25(6):582~587
    12 M. Vretenar. A High-Intensity H-Linac at CERN based on LEP-2 cavities. Proceedings of LINAC2000, Monterey, California, USA, 2000:361~365
    13 S. Takeuchi, T. Ishii, M. Matsuda, Y. Zhang, T. Yoshida. Acceleration of heavy ions by the JAERI tandem superconducting booster. Nuclear Instruments and Methods in Physics Research. 1996, 382:153~160
    14 A. Facco, V. Zviagintsev. Completion of the LNL Bulk Niobium Low Beta Resoators. Proceedings of the 9th Workshop on RF Superconductivity, New Mexico, USA, 1999:203
    15 D. C. Weisser, N. R. Lobanov. ANU Linac upgrade using multi-stub resonators. Pramana-Journal of Physics. 2002, 59(5):821~827
    16 Stark S, Palmieri V et al. Niobium Suptter coated QWRs. Proceedings of the 8th Workshop on RF Superconductivity, Italy, 1997:1156
    17 S. Mitsunobu, K. Akai et al. Superconducting Cavities for the KEK B-Factory. Advances in Cryogenic Engineering. 1999, 45:785~789
    18 A. Kabe, K. Hara et al. Cryogenic System for KEKB Superconducting RF Cavity. Advances in Cryogenic Engineering. 1999, 45:1347
    19 H. Nakai, K. Hara et al. Development of the Superconducting Crab Cavity for KEKB. Advances in Cryogenic Engineering. 1999, 45:761~763
    20 K. Hara et al. Cryogenic System for TRISTAN Superconducting RF Cavity. Advances in Cryogenic Engineering. 1988, 25:615~622
    21 K. Hosoyama et al. Cryogenic System for the TRISTAN-AR Superconducting RF Cavities. Advances in Cryogenic Engineering. 1990, 35:925~932
    22 K. Hosoyama, K. Hara et al. Cryogenic System for TRISTAN Superconducting RF Cavity: Upgrading and Present Status. Advances in Cryogenic Engineering. 1991, 37:683~690
    23 K. Hosoyama, K. Hara et al. Cryogenic System for the TRISTAN Superconducting RF Cavity: Performance Test and Present Status. Advances in Cryogenic Engineering. 1990, 35:933~939
    24 S. Greenwald, D. Hartill et al. RF-cavity design for high current operation of the Cornell Electron Storage Ring. Proceedings of the 1989 IEEE Particle Accelerator Conference, Chicago, 1989:226~228
    25 H. Padamsee, P. Barnes et al. Accelerating cavity development for the Cornell B-factory, CESR-B. Proceedings of the 1991 IEEE Particle Accelerator Conference,San Francisco, USA, 1991:786~788
    26 J. G. Wesend Ⅱ et al. The TESLA test facility(TTF) cryomodule: a summary of work to date. Advances in Cryogenic Engineering. 1999, 45:825
    27 R. Brinkman. TESLA linear collider design and R&D status. Proceedings of LINAC2000, Monterey, California, USA, 2000:526~528
    28 A. Facco, V. Zviagintsev, R. Laxdal, E. Chiaveri. The Superconducting Medium Beta Prototype for Radioactive Acceleration at TRIUMF. Proceedings of the 2001 Particle Accelerator Conference, Chicago, 2001:1092~1094
    29 R. E. Laxdal et al. ISAC-Ⅰ and ISAC-Ⅱ at TRIUMF: Achieved Performance and New Construction. Proceedings of LINAC2002, Gyeongju, Korea, 2002:401~403
    30 R. E. Laxdal, G. Clark, G. Dutto, K. Fong, A. Mitra et al. The ISAC-Ⅱ Upgrade at TRIUMF Progress and Developments. Proceedings of the 2003 Particle Accelerator Conference, Oregon, Portland, 2003:601~603
    31 R. E. Laxdal, G. Clark, K. Fong, A. Mitra, M. Pasini et al. Superconducting Accelerator Activities at TRIUMF/ISAC. Proceedings of LINAC2002, Gyeongju, Korea, 2002:499~501
    32 R. E. Laxdal, W. Andersson, P. Bricault et al. Status of The ISAC-Ⅱ Accelerator at TRIUMF. Proceedings of the 2005 Particle Accelerator Conference, Knoxville, Tennessee, USA, 2005:2003~2005
    33 R. E. Laxdal, K. Fong, M. Marchetto et al. First Acceleration with Superconducting RF Cavities at ISAC-Ⅱ. Proceedings of the 2005 Particle Accelerator Conference, Knoxville, Tennessee, USA, 2005:236~237
    34 G. Stanford, Y. Bylinsky, R. E. Laxdal et al. Engineering and Cryogenic Testing of the ISAC-Ⅱ Medium Beta Cryomodule. Proceedings of LINAC2004, Lübeck, Germany, 2004:1~3
    35 G. Stanford, R. E. Laxdal, C. Marshall et al. Design of the Medium-Beta Cryomodule for the ISAC-Ⅱ Superconducting Heavy Ion Accelerator. Cryogenic Engineering Conference and International Cryogenic Material Conference, Anchorage, 2003:812~815
    36 R. E. Laxdal, K. Fong, A. K. Mitra et al. Cryogenic, Magnetic and RF Performance of the ISAC-Ⅱ Medium Beta Cryomodule at TRIUMF. Proceedings of the 2005 Particle Accelerator Conference, Knoxville, Tennessee,USA, 2005:310~312
    37 G. Fortuna et al. ALPI project at the Laboratori Nazionali di Legnaro. Nuclear Instruments and Methods in Physics Research. 1990, 287(1):253~256
    38 A. Lombardi et al. The new superconducting Positive Ion Injector for the Legnaro ALPI Booster. Proceedings of LINAC1996, Switzerland, 1996:125~127
    39 V. Palmieri et al. Installation in the LNL ALPI of the First Cryostat with four Niobium Quarter Wave Resonators. Nuclear Instruments and Methods in Physics Research. 1996, 382(1):112~117
    40 A. Lombardi, G. Bisoffi, A. Pisent et al. PIAVE the Legnaro New Positive Ion Injector Based on Superconducting RFQs. Proceedings of LINAC2000, Monterey, Califomia, USA, 2000:356~360
    41 A. Facco, F. Scarpa, V. Zviagintsev. Status of the non-RFQ Resonators of the PIAVE Heavy Ion Linac. Proceedings of the 7th European Particle Accelerator Conference, Vienna, Austria, 2000:2039
    42 A. Pisent et al. The new LNL injector PIAVE based on a superconducting RFQ. Proceeding of the 6th European Particle Accelerator Conference, Stockholm, Sweden, 1998:758~760
    43 BEPCⅡ Groups. BEPCⅡ Design Reports. Institute of High Energy Physics, 2002
    44 ICST. BEPCⅡ Cryogenic System Conceptual Design Report, Institute of Cryogenics and Superconductivity Technology, Harbin Institute of Technology, 2002
    45 K. Tsuchiya, K. Hosoyama et al. A Prototype Superconducting Inserion Quadrupole Magnet for TRISTAN. Advances in Cryogenic Engineering, 1990, 35:121~124
    46 D. Boussard, E. Chiaveri. The LEP Superconducting RF System: Characteristics and Operational Experience. NEA Workshop on Utilization and Reliability of High Power Accelerators, Mito, Japan, 1998:185~187
    47 F. Z. Hsiao, M. C. Lin et al. The Liquid Helium Cryogenic System for the Superconducting Cabity in SRRC. Proceedings of the IEEE Particle Accelerator Conference, Chicago, USA, 2001:1604~1606
    48 W. 弗罗斯特. 低温传热学. 陈叔平, 陈玉生译. 科学出版社. 1982:27~28
    49 徐烈 , 朱卫东 , 汤晓英 . 低温绝热与贮运技术 . 机械工业出版社 ,1999:124~128
    50 汪荣顺, 鲁雪生, 顾安忠等. 层间压强对多层绝热性能的影响. 低温工程. 1999, 4:147~153
    51 张建可, 冀勇夫. 多层绝热低温有效导热系数试验研究. 低温与特气. 2003, 21:40~41
    52 ICST. Design Report for the BEPCⅡ Superconducting IR Magnets. 低温与超导技术研究所, 哈尔滨工业大学, 2002:31
    53 M. J. Nilles, G. A. Lehmann. Thermal Contact Conductance and Thermal Shield Design for Superconducting Magnet Systems. Advances in Cryogenic Engineering. 1993, 39:397~402
    54 ICST. BEPCⅡ低温系统工程设计报告. 低温与超导技术研究所, 哈尔滨工业大学, 2005:21
    55 R. Poirier, K. Fong, P. Harmer et al. RF Coupler Design for the TRIUMF ISAC- Ⅱ Superconducting Quarter Wave Resonator. Proceedings of LINAC2004, Lübeck, Germany, 2004:360~363
    56 V. Zvyagintsev. Simulation of the RF Coupler for TRIUMF ISAC-Ⅱ Superconducting Quarter Wave Resonators. Proceedings of LINAC2004, Lübeck, Germany. 2004:234~236
    57 W. Andersson, R. E. Laxdal et al. Overview of the Cryogenic System for the ISAC-Ⅱ Superconducting Linac at TRIUMF. Proceedings of the 19th ICEC, Grenoble, France, 2002:47~50
    58 Randall F. Barron. Cryogenic Systems. 2nd Edition. Oxford University Press, New York. 1985:418~423
    59 Saeed Moaveni. 欧阳宇, 王崧等译. 有限元分析-ANSYS 理论与应用, 电子工业出版社. 2003:6
    60 刘涛, 杨凤鹏. 精通 ANSYS. 清华大学出版社. 2002:1~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700