生物质混煤的灰熔融特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于能源与环境问题日益突出,人们开始对诸如生物质之类的可再生能源进行研究,以期实现生物质的清洁、高效利用。由于生物质碱性物含量较大,熔融温度较低,且软化温度和流动温度相差较小,致使生物质锅炉及生物质混煤燃烧锅炉易发生积灰、结渣和腐蚀等问题,因此研究生物质及生物质混煤的灰熔融特性等关键基础科学问题会加快解决生物质能发电锅炉的积灰、腐蚀和结焦等问题,促使我国尽快具备生物质能发电系列锅炉的生产、研发和设计能力。
     首先,本文在TGA/SDTA851e热分析系统上,对麦秆、稻秆、玉米秆、棉秆、花生壳、杨木屑、酒糟和造纸废液浓缩颗粒等8种生物质的灰熔融特性做了试验研究。由于各种生物质灰成分和矿物组成的差异性,所以通过热分析方法所表现出来的熔融特性有着明显的差异性。碳酸盐和硫酸盐的分解以及碱金属氧化物和碱金属盐的蒸发是造成生物质灰升温失重的主要原因。DSC曲线的吸热峰多是由于碳酸盐分解和碱金属的硅酸盐和硅铝酸盐熔融造成的。根据生物质灰中各种化学元素在灰熔融过程中的迁移规律,应用回归分析方法构造的失重率函数能较好的反映出生物质灰中各种元素化合物的失重规律,方程的线性相关性好,回归效果显著。
     其次,本文在YX-HRD灰熔融性测定仪上研究了生物质以不同配比混煤时对灰熔融特征温度的影响规律。由于煤的灰分含量比生物质的灰分含量大,所以生物质混煤灰熔融特性在小配比范围内基本体现了煤灰的成分特点和熔融特性。随着生物质配比的增加,生物质混煤灰熔融特征温度与配比之间在总体上是呈现非线性的关系,但是在部分配比范围内可出现近似线性关系。通过单生物质混煤的灰熔融性试验研究发现,在小配比范围内生物质降低煤灰熔融特征温度能力的排序为:(稻秆、麦秆)>(玉米杆、酒糟、棉秆)>(杨木屑、花生壳)。在双生物质混煤的灰熔融性试验中研究发现,双生物质对煤灰熔融性特征温度的影响基本体现了两种生物质的共同作用。通过添加剂对生物质灰熔融性的影响试验,验证了灰熔融特征温度随着Al_2O_3含量的增加而增加,而SiO_2对了灰熔融特征温度的影响不明显,但是当含量过高时易发生烧结现象。CaO和MgO对麦秆灰在小配比范围内起到了“骨架”作用,而当配比过大时灰熔融性特征温度增加明显。
     根据得到的在不同配比下生物质混煤灰熔融特征温度数据,通过回归分析方法得出灰组分与特征温度之间的多元线性回归模型及二次多项式回归模型,由回归分析结果得出,由11个灰组分变量合并得到的5个变量的二次多项式回归模型的显著性明显优于线性回归模型。
     最后,本文分别采用普通径向基神经网络和广义回归神经网络对生物质混煤灰熔融特征温度进行了建模,用190组样本数据对网络进行学习,用8组测试数据对网络的有效性进行检验。网络仿真结果表明广义回归神经网络与普通径向基神经网络相比,具有更好的预测能力和泛化能力,预测结果满足误差要求,适合用来对生物质配煤灰熔融特征温度进行建模预测。
In recent years, due to the problem of energy crisis and environment pollution become more and more serious, people began to research the biomass energy to use cleanly and efficiently. Because biomass has high alkaline substance content, low ash fusion temperature and small difference between softening temperature and flowing temperature, the boiler have the problems of fouling, slagging and corrosion when burning biomass and blending with coal. So the studying on the ash fusion property of biomas and blending with coal can speed up resolving the problems of fouling, slagging and corrosion of biomass boiler, and prompt our country to have the ability of produce, reaserch and design of biomass boiler.
     First of all, a thermal analyzer modeled TGA/SDTA851e was used to study the ash fusion property of eight kinds of biomass, such as wheat straw, rice straw, corn stalk, cotton stalk, peanut shell, poplar chip, vinasse and paper sullage. Because of the differences in ash chemical composition and mineral composition of the biomass, there were obvious differences in ash fusion property through the thermal analysis methods. Thermal analysis indicates that the principal causes of weight loss of the biomass ashes are the decomposition of carbonates and sulfates and the evaporation of alkali oxides and alkali metal salts. The endothermic peaks on the DSC curves are mainly caused by the decomposition of carbonates and the melting of alkali silicates and alkali aluminosilicates. According to the migration regularity of chemical element during ash fusing, the function of weight loss rate, which deduced by regression analysis method, can reflect the weightless regulation of most element contents of biomass ashes.
     Secondly, the effects of biomass proportions on the ash fusion temperature of biomass and coal blending were researched through YX-HRD ash fusion analyzer. Because coal has higher ash content than biomass, ash fusion property of biomass and coal blending reflects the ash composition and fusion prpperty of the coal. With the increment of the biomass proportions, the relationship between ash fusion temperature and the biomass proportions is nonlinear in general, but the relationship is approximate to linear property in part proportions ranges. Through experimental research on ash fusion property of single biomass and coal blending, it is found that the sequencing of ability of biomass to reduce coal ash fusion temperature is ( rice straw, wheat straw ) >( corn stalk, vinasse, cotton stalk )>( poplar chip, peanut shell ) . Through experimental research on ash fusion property of double biomass and coal blending, it is found that the effect of double biomass on coal ash fusion property basically embodies the combined action of double biomass. Through the influence test of additives on biomass ash fusion temperature, it is verified that ash fusion temperature increases with increasing content of Al_2O_3, while the effect of SiO_2 on ash fusion temperature is not obvious, but the ash will be sintered with a higher content of SiO_2. CaO and MgO play a role as skeleton at low content, and ash fusion temperature is significantly increased with a higher content.
     According to the ash fusion temperature of biomass and coal blending in different proportions, multiple linear regression model and quadratic polynomial regression model between ash chemical composition and ash fusion temperature were estimated. Regressive analysis shows that the significance of quadratic polynomial regression model, which has five independent variables merged from eleven independent variables, is obviously better than multiple linear regression model.
     At last, the radial basis function neural network (RBFNN) and the generalized regressive neural network (GRNN) were applied to build models for forecasting the ash fusion temperature of biomass and coal blending. 190 group samples were used to train and 8 group samples were used to check up the validity of the network. The simulated result shows that GRNN has better predictive ability and generalization ability than RBFNN, and the prediction results of GRNN satisfy the error requirement. So GRNN is suitable to be used to build models for forecasting the ash fusion temperature of biomass and coal blending.
引文
[1]中华人民共和国国家统计局.2007年国民经济和社会发展统计公报[Z].2008-02-28
    [2]周庆凡,朱又红.从世界统计数据看中国能源现状[J].中国能源,2005,27(11):40-42
    [3]韩伟.生物质能发电:激情与理性的平衡[J].电力设备,2007,8(4):101-104
    [4]中华人民共和国环境保护部.2006年中国环境状况公报[Z].2007-06-19
    [5]阴秀丽,吴创之,徐冰燕等.生物质气化对减少CO_2排放的作用[J].太阳能学报,2000,21(1):40-44
    [6]周应华.我国发展生物质能的思路与政策[J].中国热带农业,2006,(5):7-8
    [7]邓芙蓉,杨建国,赵虹.利用TG-DSC方法研究煤灰熔融特性[J].煤炭科学技术,2005,33(2):46-49
    [8]薛永强,孙群,李寒旭.两种煤配煤降低淮南煤高灰熔融性温度的研究[J].安徽建筑工业学院学报(自然科学版),2006,14(1):93-96
    [9]张军,范志林,林晓芬等.灰化温度对生物质灰特征的影响[J].燃料化学学报,2004,32(5):547-551
    [10]肖军,段菁春,庄新国等.生物质与煤共燃研究[J].煤炭转化,2003,26(1).61-66
    [11]Vorres.K.S.Effect of composition on melting behavior of coal ash [J].Journal of Engineering for Power,Transactions ASME,1979,101(4):497-499
    [12]Vassilev S V,Kunihiro K.Influence of mineral and chemical composition of coal ashes on their fusibility[J]Fuel Processing Technology,1995,45(1):4-27
    [13]Saimir A.Lolja,Hajri Haxhi,Rolanda Dhimitri,et al.Correlation between ash fusion temperatures and chemical composition in albanian coal ashes[J].Fuel,2002,81(17):2257-2261
    [14]毛军,徐明厚,李帆.碱性矿物质对煤灰熔融特性影响的研究[J].华中科技大学学报(自然科学版).2003,31(4):59-62
    [15]刘春焱,谢玉珑.浅谈煤灰熔融性测定的重要性及方法[J].热电技术,2002,(4):52-55
    [16]焦发存.配煤对煤灰熔融特性和灰渣粘度影响的实验研究[D].安徽理工大学,2006
    [17]岑可法,樊建人,池作和等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社,1994
    [18]M.Seggiani.Empirical Correlations of the Ash Fusion Temperatures and Temperature of Critical Viscosity for Coal and Biomass Ashes[J].Fuel,1999,78(9):1121-1125
    [19]陈文敏,姜宁.煤灰成分和煤灰熔融性的关系[J].洁净煤技术,1996,2(2):34-37
    [20]G.Ozbayog lu,M.Evren Ozbayoglu.A new approach for the prediction of ash fusion temperatures:A case study using Turkish lignites[J].Fuel,2006,85(4):545-552
    [21]张德祥,龙永华,高晋生等.煤灰中矿物的化学组成与灰熔融性的关系[J].华东理工大学学报,2003,29(6):590-594
    [22]Evgueni Jak.Prediction of Coal Ash Fusion Temperatures with the F~*A~*C~*T Thermodynamic Computer Package[J].Fuel,2002,81(13):1655-1668
    [23]伍昌鸿,马晓茜.混煤煤灰软化温度的实验研究与预测[J].热能动力工程,2006,21(2):179-182
    [24]周昊,郑立刚,樊建人等.广义回归神经网络在煤灰熔点预测中的应用[J].浙江大学学报(工学版),2004,38(11):1479-1482
    [25]肖军,段菁春,王华等.低温热解生物质与煤共燃的结渣、积灰和磨损特性分析[J].能源工程,2003,(3):9-13
    [26]宋鸿伟,郭民臣,王欣.生物质燃烧过程中的积灰结渣特性[J]。节 能与环保,2003,(9):29-31
    [27]Jenkins BM,Baxter LL,Miles Jr TR,and Miles TR.Combustion properties of biomass[J].Fule Processing Technology,1998,54(1-3):17-46
    [28]Robinson AL,Junker H,and Baxter LL.Pilot-scale investigation of the influence of coal-biomass cofiring on ash deposition[J]Energy &Fuels,2002,16(2):343-355
    [29]Larry Baxter.Biomass-coal co-combustion:opportunity for affordable renewable energy[J].Fuel,2005,84(10):1295-1302
    [30]Alakangas E,Flyktman M.Biomass CHP technologies[A].VTT Energy Reports[C],2001(7):35-37
    [31]Marek Pronobis.Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations[J].Biomass and Bioenergy,2005,28(4):375-383
    [32]阎维平,陈吟颖.生物质燃料结渣特性分析与判别[J].华北电力大学学报,2007,34(1):49-54
    [33]J.Werthera,M.Saengera,E.-U.Hartgea,et al.Combustion of agricultural residues[J].Progress in Energy and Combustion Science,2000,26(1):1-27
    [34]Marek Pronobis.The influence of biomass co-combustion on boiler fouling and efficiency[J].Fuel,2006,85(4):474-480
    [35]H.P.Nielsen,F.J.Frandsen,K.Dam-Johansen,et al.The implication of chlorine-associated corrosion on the operation of biomass-fired boilers[J].Progress in Energy and Combustion Science,2000,26(3):283-298
    [36]盛昌栋,张军.煤粉锅炉共燃生物质发电技术的特点和优势[J].热力发电,2006,(3):8-11
    [37]John G Olsson,Ulf Jaeglid,Jan B.C.Pettersson.Alkali metal emission during pyrolysis of biomass[J].Energy & Fuels.1997,11(4):779-784
    [38]P.A.Jensen,F.J.Frandsen,K.Dam-Johansen,B.Sander.Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]Energy & Fuels,2000,14(6):1280-1285
    [39]Richard W.Bryers.Analysis of a Suite of Biomass Samples[R].Foster Wheeler Development corporation,1994,(6),Ref:FWC/FWDC/TR-94/03
    [40]E Thy,B.M.Jenkins,C.E.Lesher.High-Temperature Melting Behavior of Urban Wood FuelAsh[J].Energy & Fuel,1999,13(4):839-850
    [41]余春江,骆仲泱,张文楠等.碱金属及相关无机元素在生物质热解中的转化析出[J].燃料化学报,2000,28(5):420-424
    [42]Heije Mietinen Westberg,Madeleine Bystroem,Bo Leckner.Distribution of potassium,chlorine,and sulfur between solid and vapor phases during combustion of wood chips and coal[J].Energy &Fuels,2003,17(1):18-28
    [43]Thomas R.Miles,Thomas R.Miles,Jr.Larry L.Baxter,et al.Boiler deposits from firing biomass fuels[J].Biomass and Bioenergy,1996,10(2-3):125-138
    [44]E.Bjoerkman,B.Stroemberg.Release of chlorine from biomass at pyrolysis and gasification conditions[J]Energy & Fuels,1997,11(5):1026-1032
    [45]张艳平,金保升.生物质热化学转化过程中碱金属问题的相关研究[J].能源研究与利用,2007,(3):27-31
    [46]Larry L.Baxter,Thomas R.Miles,Thomas R.Miles Jr.,et al.Behavior of inorganic material in biomass-fired power boilers:Field and laboratory experiences[J].Fuel Processing Technology,1998,54(1-3):47-78
    [47]Valmari T,Lind T M,Kauppinen EI,et al.Field study on ash behavior during circulating fluidized-bed combustion of biomass[J].Ash Formation,Energy & Fuels,1999,13(2):379-389
    [48]Hanne Philbert Michelsen,Flemming Frandsen,Kim Dam-Johansen, et al.Deposition and high temperature corrosion in a 10 MW straw fired boiler[J].Fuel Processing Technology,1998,54(1-3):95-108
    [49]沈鑫甫等.中学教师实用化学辞典.北京:北京科学技术出版社,2002
    [50]Weigang Lin,Gite Krusholm,Kim Dam-Johansen,et al.Agglomeration phenomena in fluidized bed combustion of straw[A].Proceedings of 14th International conference on FBC.ASME,1997(2):831-837
    [51]马孝琴,方梦祥,骆仲泱等.生物质燃烧过程中碱金属问题的研究进展[A].2004年中国生物质能技术与可持续发展研讨会论文集[C],2004:159-167
    [52]钱觉时,王智,张玉奇.粉煤灰的矿物组成(中)[J].粉煤灰组合利用,2001,(4):24-28
    [53]杨淑珍.硬石膏的高温相变和结构研究[J].矿物学报,1998,18(1):73-79
    [54]邓芙蓉,杨建国,赵虹.利用TG-DSC方法研究煤灰熔融特性[J].煤炭科学技术,2005,33(2):46-49
    [55]张克立.固体无机化学[M].武汉:武汉大学出版社,2005:188-227
    [56]徐婧,余春江,秦建光等.麦草木素与煤混烧灰熔融特性[J].浙江大学学报(工学版),2007,41(7):1186-1190
    [57]何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001
    [58]闻新,周露,李翔等.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003:285-297
    [59]王永骥,涂健.神经元网络控制[M].北京:机械工业出版社,1988
    [60]董长虹.神经网路与应用[M].北京:国防工业出版社,2005:121-142
    [61]飞思科技产品研发中心。神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005:116-127
    [62]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:101-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700