钡/尿素掺杂TiO_2薄膜催化剂对染料光脱色的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染有色废水色度高,排放量大,有机污染物含量高,水质变化大,对环境和人造成严重危害。TiO_2光催化技术利用源源不断的清洁太阳能,深度脱色印染有色废水,可处理多种难降解的污染物。但是TiO_2对太阳光利用率低、空穴和电子复合机率高等不利因素限制其广泛运用。本文制备钡、尿素掺杂TiO_2溶胶和薄膜,提高TiO_2光催化活性,并用于脱色印染有色废水。
     采用溶胶-凝胶法掺杂碱土金属钡,不加入任何醇类室温下制备钡/TiO_2溶胶。考察不同Ba~(2+)掺杂量对溶胶粒径、紫外可见吸收光谱、晶型、红外光谱和光催化活性的影响。结果表明,0.01%Ba~(2+)掺杂使得催化剂粒径变小,继续增加则粒径变大。随着Ba~(2+)掺杂量的增加,催化剂的吸收边缘波长向长波方向发生移动,对可见光吸收能力增强。XRD谱图表明0.01%Ba~(2+)掺杂没有改变TiO_2锐钛矿晶型,但是其特征峰宽化,晶粒尺寸从22.4nm减小至20.1nm。Ba~(2+)掺杂使Ti-O键振动吸收峰从485cm-1红移至627cm-1。Ba~(2+)掺杂带来催化剂粒径和吸收光谱等性能的变化,提高了TiO_2紫外可见光光催化活性。紫外光下0.05%,可见光下0.01%Ba~(2+)掺杂脱色率分别达到89.1%和93.1%。
     采用旋涂法室温制备钡/TiO_2薄膜,考察旋转速度、涂膜次数、涂膜时间和循环使用次数对薄膜紫外光催化活性的影响。结果表明,涂膜时间30s,旋转速度2500rpm,涂膜3次制备的Ba~(2+)/TiO_2薄膜活性较好。循环使用5次后,薄膜光催化活性几乎没有下降。探究钡掺杂对Ba~(2+)/TiO_2薄膜的牢固性、亲水性、形貌结构、光透射性能和光催化性能的影响。用自来水冲刷薄膜和透明胶带粘揭薄膜实验表明,薄膜具有很好的牢固性。适量Ba~(2+)掺杂减小薄膜接触角,提高薄膜亲水性,从而吸附更多染料分子。薄膜组成颗粒为球形或近球形,分散均匀,0.01%Ba~(2+)的掺入能有效抑制颗粒团聚成二次颗粒。0.01%、0.05%Ba~(2+)掺杂的TiO_2薄膜对可见紫外光的吸收有所提高。适量钡掺杂可提高薄膜活性,0.01%Ba~(2+)掺杂脱色率达86.1%。利用Ba~(2+)/TiO_2薄膜脱色染料溶液,考察染料初始浓度、光照强度、光照时间和染料结构对Ba~(2+)/TiO_2薄膜光催化活性的影响。结果表明,较高的初始浓度会减小溶液的透光率,降低染液脱色率。光照强度越高活性越好,大于100W继续增加则变化不大。光照时间越长脱色率越高,大于120min则变化不大。Ba~(2+)/TiO_2薄膜对实验选取的偶氮和蒽醌染料有很好的脱色效果,其中酸性绿GS脱色率达86.3%。
     采用溶胶-凝胶法掺杂非金属尿素,不加入任何醇类室温下制备尿素/TiO_2溶胶。考察尿素掺杂量对溶胶粒径、紫外可见吸收光谱、晶型、红外光谱和光催化活性的影响。结果表明,尿素掺杂对溶胶粒径影响不大,平均粒径均在30-40nm之间。尿素掺杂后吸收光波长没有产生明显的红移,但吸收强度有所提高。XRD谱图中没有出现尿素特征峰,但是0.01%尿素掺杂使得TiO_2特征峰宽化。红外谱图表明尿素参与钛酸四正丁酯的水解过程,并与TiO_2形成新的共价键。0.01%尿素掺杂催化剂紫外和可见光活性分别从87.2%提高到95.2%,89.2%提高到92.8%。研究脱色过程中染液的可见吸收光谱发现,染料特征吸收峰逐渐降低至几乎消失,且没有形成新的吸收峰,说明反应过程中没有生成新的有机物质。采用旋涂法室温制备尿素/TiO_2薄膜,研究尿素掺杂对TiO_2薄膜的牢固性、亲水性、形貌结构、光透射性能和光催化性能的影响。尿素/TiO_2薄膜具有很好的牢固性。0.01%尿素掺杂可以提高薄膜亲水性,更加容易吸附溶液中的染料分子,能有效抑制颗粒团聚成二次颗粒。适量尿素掺杂可以提高TiO_2薄膜对紫外可见光的吸收。尿素掺可提高薄膜活性,0.01%尿素使薄膜脱色率从85.6%提高到91.6%。以尼龙6为基体,利用静电纺室温下制备尼龙6/尿素-TiO_2纤维薄膜,其具有极大的比表面积,从而提高光催化活性。对尼龙6/尿素-TiO_2纤维薄膜红外谱图、形貌结构、光催化活性和重复使用性能进行研究。结果表明,红外谱图中分别出现尼龙6和尿素/TiO_2的特征吸收峰。纤维薄膜表面均匀,当混有15%和20%尿素/TiO_2催化剂时,纤维变细至80-200nm之间,比表面积增大,薄膜吸附性能增强。尼龙6/尿素-TiO_2纤维薄膜能吸附5%左右染料,20%催化剂含量时脱色率达93.7%。薄膜重复使用性能良好。纤维薄膜对选取的偶氮和蒽醌染都有很好的脱色效果。通过分析活性红X-3B染液反应前后的红外谱图可以知道,染料结构发生变化,偶氮键断裂以及苯环已经开环降解。
     钡和尿素掺杂能够有效提高TiO_2光催化活性。旋涂法和静电纺制备的催化剂薄膜均匀平整且牢固性好,可以重复使用。薄膜催化活性高,能够处理多种染料,适用于脱色印染有色废水。
Dyeing wastewater from textile industry is large volumes of heavily pollutive wastewaters with high colority and high organic content, containing complicated components, which has caused serious problems to the environment and people. TiO_2 can deeply decolor dyeing wastewater and deal with larger quantities of nonbiodegradable pollutants using a stream of clean solar energy. However, TiO_2 has a low utilization ratio of solar energy. The holes and electrons easily recombine. The negative factors limit the practical application of TiO_2. The paper prepares Ba~(2+) and urea doped TiO_2 sol and films. The catalyst’s photoactivity is improved and expected to decolor the dyeing wastewater.
     Ba~(2+)/TiO_2 sol is prepared by adding alkaline earth Ba~(2+) in absence of alcohol using sol-gel method at room temperature. The effects of amount of doped Ba~(2+) on the particle size, UV/vis absorption spectra, crystal form, FI-IR spectra and photocatalytic activity of the sol are discussed. The results indicate that particle size decreases with adding 0.01%Ba~(2+) then increases as the mass continue to increase. With increased amount of doped Ba~(2+), the absorption wavelength edge shifts to long wave direction, which leads to an increase in optical absorption intensity in the visible-light region. XRD spectra show that 0.01%Ba~(2+) doped doesn’t change the anatase phase of TiO_2, but makes the diffraction peak widen. The crystallite size is reduced from 22.4nm to 20.1nm. Doped Ba~(2+) makes the vibration absorption peaks of Ti-O bond appear a red shift from 485cm-1 to 627cm-1.The changes of TiO_2 properties, such as particle size, absorption spectra, improve UV and visible light photocatalytic activity. The decolorization of 0.05% doped under UV light and 0.01% doped under visible light are 89.1% and 93.1%, respectively.
     Ba~(2+)/TiO_2 film is prepared by spin coating method at room temperature. The effects of amount of doped Ba~(2+), spin speed, film layers, spin time and recycle times on the photocatalytic activity of Ba~(2+)/TiO_2 film are discussed. The film spinned 3 times, each time for 30s, in rotation speed of 2500rpm has relatively good photoactivity. The catalytic activity of Ba~(2+)/TiO_2 film doesn’t have an obvious decrease after cycle using for 5 times. The effects of doped Ba~(2+) on adhesion, hydrophily, morphology structure, light transmission performance and photocatalytic activity of Ba~(2+)/TiO_2 film are investigated. The results indicate that the film is properly adherent proved by tap water erosion test and the scotch tape test. The appropriate amount Ba~(2+) decreases contact angle and improves the hydrophilicity of the film, which is beneficial to adsorb more dye molecules. The film basically contains ball particles and the balls disperse uniformly. 0.01% doped Ba~(2+) can effectively restrain the agglomeration of particles and formation of second particle. 0.01% and 0.05% doped Ba~(2+) also leads to an increase in optical absorption intensity in the ultraviolet light region. The film reduces transmission and increases light absorption with the increase in film layers. The moderate doping can improve the activity of the catalyst and the decolorization of the film with 0.01% Ba~(2+) doped reaches 86.1%. Ba~(2+)/TiO_2 film is used to decolor the dye solution. The effects of the initial concentration of dyes, light intensity, irradiation time and dye structure on the photocatalytic activity of the film are investigated. The results indicate that high initial concentration can reduce the light transmittance of the reaction solution, which leads to decrease the decolorization performance. The activity of film presents a trend of rise first to 100W then unchangeableness as light intensity increases. The photodecoloriation increases with the increased irradiation time. Ba~(2+)/TiO_2 film has remarkable decolorization ability for both of selected azo and anthraquinone dyes. Among these dyes, the decolorization of acid green GS reaches 86.3%.
     The urea/TiO_2 sol is prepared by adding nonmetal urea using sol-gel method at room temperature in absence of alcohol. The effects of amount of doped urea on the particle size, UV/vis absorption spectra, crystal form, FI-IR spectra and photocatalytic activity of the sol are investigated. The results indicate that the effect of doped urea on the particle size would be modest. The mean particle size of the sol is around 30-40nm.The doping of urea doesn’t make the absorption threshold wavelength have an obvious red-shift. However, it leads to an increase in optical absorption intensity. The characteristic peak of urea doesn’t appear in the XRD spectra. 0.01% urea doped makes the diffraction peak widen. FI-IR spectra indicate that urea involves in the hydrolysis process of tetrabutyl titanate and forms a new covalent bond with TiO_2. 0.01% doped urea can improve the photoactivity of the catalyst from 87.2% to 95.2%, from 89.2% to 92.8% under UV and visible light, respectively. Absorption spectra changes of the dye solution in the process of decolorization show that the absorption peak rapidly decreases to almost disappear. No new absorption peak and new organic pollutant are generated.
     The effects of doped urea on adhesion, hydrophily, morphology structure, light transmission performance and photocatalytic activity of urea/TiO_2 film are discussed. The results indicate that the film is properly adherent. 0.01% doped urea improves the hydrophilicity of the film resulting in adsorbing more dye molecules. 0.01% urea can effectively restrain the agglomeration of particles and formation of second particle. The gap between the particles exists. Doped urea also leads to an increase in optical absorption intensity in the ultraviolet and visible light region. The moderate doping can improve the activity of the catalyst. 0.01% urea doped makes the decolorization improves from 85.6% to 91.6%.Nylon 6/urea-TiO_2 fiber film is prepared by electro-spinning method at room temperature based on nylon 6. The film has high specific surface area, which is beneficial to improve the photoactivity. The FI-IR spectra, morphology structure, photocatalytic activity and cycle using performance of the fiber film are discussed. The characteristic absorption peaks of nylon 6 and urea/TiO_2 exist in the FI-IR spectra. The surface of the fiber film is even. When spinning solution contains 15% and 20% urea/TiO_2 catalyst, the fiber becomes thinner between 80nm and 200nm and specific surface area increases, resulting to the strengthen of adsorptive capacity of the fiber film. The film can absorb about 5% dye. The photocatalytic decolorization of the film containing 20% catalyst reaches 93.7%. The film can be reused. Nylon 6/urea-TiO_2 fiber film has remarkable decolorization ability for both of selected azo and anthraquinone dyes. According to the analysis of FI-IR spectra of dye solution before and after the reaction, the dye structure has changed. The azo bond is cleaved and benzene ring is destroyed.
     Doping Ba~(2+) and urea can effectively improve the photoactivity of TiO_2. The catalyst films prepared by spin coating and electro-spinning methods are even, uniform and adherent. The films with high photocatalytic activity and good reused performance can decolor many kinds of dyes and have potential applicability in treating dyeing wastewater.
引文
[1]常爱荣,孙瑾.印染废水处理技术研究进展[J].广东化工,2010,37(9):217-218.
    [2]冯天照,王红林,严宗诚,陈砺.印染废水脱色研究进展[J].科技导报,2009,19(3):112-115.
    [3]王晓明,李凤仙.偶氮染料废水处理技术[J].山东环境, 2008,6:78-80.
    [4] Malik PK, Saha SK. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst [J]. Separation and Purification Technology, 2003, 31(3): 241-250.
    [5] Michael RH, Martin ST, Choi WY. Environmental application of semiconductor photicatalysis [J]. Chemical Reviews, 1995, 95(2): 69-96.
    [6]张万忠,乔学亮.纳米二氧化钛的光催化机理及其在有机废水处理中的应用[J].人工晶体学报, 2006, 35(5): 1026-1031.
    [7] Vassilis Z, Costas B, Alexandra M. Yellowing effect and discoloration of pigments: experimental and theoretical studies [J]. Journal of Cultural Heritage, 2003, 4(1): 249-256.
    [8] Mounir B, Pons MN, Zahraa O. Discoloration of a red cationic dye by supported TiO_2 photocatalysis [J].Journal of Hazardous Materials, 2007, 148(3): 513-520.
    [9] Gong R, Li M, Yang C. Removal of cationic dyes from aqueous solution by adsorption on peanut hull [J]. Journal of Hazardous Materials, 2005, 121(3): 247-250.
    [10]王世琴,刘宝生,陈小平,杨武.印染废水催化氧化处理技术的研究进展[J].广西纺织科技,2009,38(2):25-29.
    [11]耿云波,刘永红,赵鹏飞.印染废水生物处理技术的应用现状及研究进展[J].工业用水与废水,2010,41(4):1-4.
    [12]刘长坤.光催化技术应用进展[J].材料导报, 2008, 1(1): 52-55.
    [13]孙杨. TiO_2光催化剂的研究进展[J].渤海大学学报, 2008, 29(2): 116-122.
    [14]于艳辉.纳米二氧化钛光催化剂研究进展[J].材料导报, 2008, 22(1): 54-57.
    [15]郝晶玉.纳米二氧化钛光催化剂的研究进展[J].钛工业进展, 2007, 24(1): 36-41.
    [16] Mounir B, Pons MN, Zahraa O. Discoloration of a red cationic dye by supported TiO_2 photocatalysis [J]. Journal of Hazardous Materials, 2007, 148(3): 513-520.
    [17]殷竟洲.二氧化钛溶胶-凝胶制备及光催化性能研究[D].大连:大连理工学, 2006.
    [18]徐振华.溶胶-凝胶法制备光功能材料研究[D].长春:长春理工大学, 2002.
    [19] Modestov A, Glezer V, Marjasin I, Lev O. Photocatalytic degradation of chlorinated phenoxyacetic acids by a new buoyant titania-exfoliated graphite composite photocatalyst [J]. The Journal of Physical Chemistry B, 1997, 101(23):4623-4629.
    [20] Tanaka K, Capule MFV, Hisanaga T. Effect of crystallinity of TiO_2 on its photocatalytic action [J]. Chemical Physics Letters, 1991, 187(1-2):73-76.
    [21]黄汉生.日本TiO_2光催化剂的应用进展[J].工业用水与废水, 2001, 32(2): 55-60.
    [22]秦金兰,钱建华,杜金萍等.掺杂铁离子和铜离子的TiO_2光催化剂的研究[J].化学工业与工程技术,2008,29(4):10-13.
    [23]孙根行,方应森,王全杰等.银掺杂纳米TiO_2薄膜光催化降解丙烯酸复鞣剂的研究[J].中国皮革.2006,35(21):41-44.
    [24]管晶,梁文懂.可见光响应型TiO_2光催化剂研究进展[J].武汉科技大学学报, 2006, 29(2): 164-167.
    [25] Jiang BT, Zhang SY, Guo XZ, Jin BK, Tian Y P. Preparation and photocatalytic activity of CeO_2/TiO_2 interface composite film [J] Applied Surface Science, 2009, 255:5975-5978.
    [26] Jiyun F, Raymond SKW, Xijun H, etc. Discoloration and mineralization of OrangeⅡby using Fe3+-doped TiO_2 and bentonite clay-Ba2+sed Fe nanocatalysts [J].Catalysis today, 2004, 98(3):441-446.
    [27] Akihiko H, Hiroaki T. High photocatalytic activity of F-doped TiO_2 film on Glass [J]. Journal of Sol-Gel Science and Technology, 2001, 22(1-2): 47-52.
    [28] Samari J, Taghdisian H, Afshar SS. Effects of pH and polyethylene glycol on surface morphology of TiO_2 thin film [J]. Tasharrofi Surface and Coatings Technology, 2009, 203:1991-1996.
    [29] Hydrate Q, Hiromichi IM. Teraski H. Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium [J]. Journal of Sol-Gel Science and Technology, 2001, 22:33-40.
    [30] Gouma PI, Mills MJ, Sandhage KH. Fabrication of free-standing titania-Ba2+sed gas sensors by the oxidation of metallic titanium foils [J]. Journal of the American Ceramic Society, 2000, 83(4):1007-1009.
    [31] Sato S. Photocatalytic activity of NOX-doped TiO_2 in the visible light region [J]. Chemical Physics Letters, 1986, 123(122): 126-132.
    [32] Asahi R, Morikawa T, Ohwaki T. Visble-light photocatalysis in nitrogen-doped titanium dioxide [J]. Science, 2001, 293: 269
    [33]杨辉一,申乾宏,高基伟.酞菁敏化混晶TiO_2薄膜的低温制备及其对罗丹明B的催化降解[J].催化学报,2007,28(12):32-35.
    [34]高健.玻璃弹簧负载二氧化钛凹凸膜催化剂的制备和光催化降解印染废水的研究[D].青岛:青岛科技大学, 2007.
    [35] Hwang KS, Kim BH. Preparation of highly Oriented Pt/TiO_2 thin films by spin-coating technique [J]. Journal of Sol-Gel Science and Technology, 1999, 14: 203-207.
    [36] Igor N, Martyanov J, Kenneth K. Comparative study of TiO_2/CdS particles in powder form and as a thin nanostructured film on quartz [J]. Journal of Catalysis, 2004, 225: 408-416.
    [37]夏天.溶胶-凝胶法TiO_2纳米晶与薄膜的制备及表征[D].大连:海事大学, 2005.
    [38]黄舒.二氧化钛薄膜材料制备工艺研究进展[J].中国科技信息, 2007, 17: 68-70.
    [39] Subramania G, Constant K, Biswas R, Sigalas MM, Ho KM. Visible frequency thin film photonic crystals from colloidal systems of nanocrystalline titania and polystyrene microspheres [J]. Journal of the American Ceramic Society, 2002, 85(1):383-388.
    [40] Shimizu K, Imai H, Hirashima H, Tsukuma K. Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions[J]. Thin Solid Films, 1999, 351(2):220-224.
    [41]银董红.溶胶-凝胶法制备TiO_2薄膜的研究进展[J].工业催化, 2004, 12(1): 1-6.
    [42]李明伟.低温制备二氧化钛光催化剂薄膜的研究进展[J].现代化工, 2007, 27: 16-19.
    [43]赵文宽.光催化活性TiO_2薄膜的低温制备[J].物理化学报, 2002, 18(4):368-371.
    [44] Ge L, Xu MX. Fabrication and characterization of TiO_2 photocatalytic thin film prepared from peroxo titanic acid sol [J]. Journal of Sol-Gel Science and Technology, 2007, 43:1-7.
    [45]陈大鹏.复合二氧化钛膜的研究[J].膜科学与科技, 2000, 20(3): 14-16.
    [46]袁昊.光活性二氧化钛膜的制备方法[J].安全与环境工程, 2004, 11(2): 31-34.
    [47]黄剑峰.溶胶-凝胶原理与技术[M].北京:化学工业出版社, 2005: 113-150.
    [48] Monteiro OC, Mendonca MHM, Pereira MIS, Nogueira JMF. Preparation of lead and tin oxide thin films by spin coating and their application on the electrodegradation of organic pollutants[J]. Journal of Solid State Electrochemistry, 2006, 10: 41-47.
    [49] Wen TF, Gao JP, Shen JY. Preparation and characterization of TiO_2 thin films by the sol-gel process [J]. Journal of Materials Science, 2001, 36 (2):5923-5926.
    [50] Negishi N, Takeuchi K. Preparation of TiO_2 thin film photocatalysts by dip coating using a highly viscous solvent[J]. Journal of Sol-Gel Science and Technology, 2001, 22: 23-31.
    [51] Negishi N, Takeuchi K, Ibusuki T. Surface structure of the TiO_2 thin film Photocatalyst[J]. Journal of materials science, 1998, 33: 5789-5794.
    [52]刘振儒.负载型TiO_2膜太阳光光催化降解活性深蓝K-R的研究[J].环境工程学报, 2007, 1(3): 46-49.
    [53]邹博,吴凤清,阮圣平.纳米TiO_2薄膜的制备及其紫外光吸收性能的研究[J].功能材料,2004, 35(5):618-620.
    [54] Dong SK, Seung YK. Photocatalytic inactivation of e.coli with a mesoporous TiO_2 coated film using the film adhesion method [J]. Environmental Science & Technology, 2009, 43:148-151.
    [55] Negishi N, Takeuchi K. Preparation of TiO_2 thin film photocatalysts by dip coating using a highly viscous solvent[J]. Journal of Sol-Gel Science and Technology, 2001, 22: 23-31.
    [56] Kobayakawa K, Murakami Y. Visible-light active N-doped TiO_2 prepared by heating of titanium hydroxide and urea [J].Journal of photochemistry and photobiology A: Cheistry, 2005, 170(2):177-179.
    [57]张新磊,李翠霞.薄膜超亲水性研究进展[J].应用化工, 2006, 35(12): 962-965.
    [58] Masahim M, Nobuo K, Shumc HH. Reversible wettability control of TiO_2 surface by light irradiation [J]. Surface Science, 2002, 511(7): 401-407.
    [59]崔旭梅,黄载春,陈孝娥.稀土掺杂TiO_2薄膜的制备及其应用研究[J].新型化工材料,2010,38(1):99-101.
    [60]李和平,袁曹龙,张玉强等.金属共掺杂纳米TiO_2对甲基橙的催化降解[J].印染,2006,32(24):9-13.
    [61]丁坚强,许金生,袁亚莉等. Zr和N共掺杂TiO_2的制备、表征及其光催化性能[J].中国有色金属学报, 2008,18(12):2212-2217.
    [62]钟敏,韦之豪,司平占,李红,卫国英,葛洪良,韩高荣.掺铁二氧化钛纳米晶的制备及其光催化性能[J].硅酸盐学报, 2010, 38(1):68-71.
    [63]袁养龙,罗宁.国内钛自粉生产、研究及应用进展[J].化工进展, 1997, 12(5): 5-7.
    [64]彭英才,傅广生,王英龙.纳米薄膜材料的蓝光发射特性及其研究进展[J].人工晶体学报, 2006, 35(4): 820-825.
    [65] Chu S Z, Inoue S, Wada K. Fabrication and photocatalytic characterizations of ordered nanoporous X doped(X= N, C, S, Ru, Te and Si)TiO_2/Al2O3 films on ITO/glass [J]. Langmuir, 2005, 21(17): 8035-8041.
    [66]燕姗姗,吴连弟,陈锋.双晶型TiO_2薄膜的低温制备及表征[J].物理化学学报, 2007, 23(3): 414-418.
    [67]夏艳杰,高晓艳,潘志娟.尼龙6/66纺丝液的性能与其静电纺效果的关系[J].苏州大学学报,2009,29(1):34-38.
    [68] Park SJ, Kang YC, Park JY, Evans EA, Ramsier RD, George GC. Physical Characteristics of Titania Nanofibers Synthesized by Sol-Gel and ElectrospinningTechniques[J]. Journal of Engineered Fibers and Fabrics, 2010 5(1):50-56.
    [69] Chen YJ, Dionysios DD. Correlation of structural properties and film thickness to photocatalytic activity of thick TiO_2 films coated on stainless steel [J]. Applied Catalysis B: Environmental, 2006, 69: 24-33.
    [70] Huang XQ, Li N. Structural characterization and properties of the TiO_2 film on tinplate [J]. Journal of Alloys and Compounds, 2008, 465:317-323.
    [71]李跃军,曹铁平.二氧化钛纳米纤维的制备及光催化性质研究[J].河北师范大学学报, 2010,34(2):23-26.
    [72]王进贤,郭月秋,董相廷,李志国,刘桂霞.钇或钕掺杂TiO_2纳米纤维的制备及光催化性能研究[J].无机材料学报,2010,25(4):379-385.
    [73]赵进才,张丰雷.二氧化钛微粒存在下表面活性剂光催化分解机理的研究[J].感光科学与光化学, 1999, 14(3):289-273.
    [74]李晓斌,呼世斌,袁松虎,周涛,陆晓华.TiO_2/浮石光催化降解活性艳红X-3B的中试研究[J].工业水处理,2006,26(9):65-68.
    [75]毛艳萍,陶颖也,申哲民,雷阳明,王文华.活性艳红X-3B的Fenton氧化降解机理研究[J].环境科学与技术,2009,32(10):67-70.
    [76]王九思,赵红花.负载型纳米TiO_2光催化降解活性艳红X-3B染料[J].应用化学,2002,19(8):792-794.
    [77]王喜全,胡筱敏,陈雪,杨静.内电解-Fenton法处理染料活性艳红X-3B降解历程的研究[J].工业安全与环保,2010,36(3):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700