纸载掺P-TiO_2光催化法降解甲醛的影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醛已被世界卫生组织(WHO)确定为致癌和致畸物质,是公认的变态反应源,也是潜在的强致突变物之一。甲醛为较高毒性的物质,在我国有毒化学品优先控制名单上甲醛高居第二位。本文以TiCl4为主要原料,在低温条件下制备出了TiO_2和P-TiO_2溶胶,并对产品分别进行了XRD、TEM、UV-vis和FT-IR表征及对甲基红溶液的降解测试;以牛皮纸、烟包纸和铜版纸为载体负载制备的TiO_2溶胶和P-TiO_2溶胶用于降解室内低浓度污染气体甲醛,分别通过尝试性实验、正交实验和单因素实验研究了各种反应因素对甲醛气体降解率的影响,并在此基础上对其重复利用率进行了探索。
     实验结果表明:采用溶胶-凝胶法制备的纳米TiO_2及P-TiO_2均呈锐钛矿晶型且具有良好的分散性;通过对甲基红溶液的降解实验结果可以看出:与纳米TiO_2相比,P-TiO_2无论是微观结构还是光催化性能都更具明显优势;甲醛气体降解的初步研究结果表明,以牛皮纸为载体负载的P-TiO_2光催化剂对甲醛气体的降解效果优于TiO_2光催化剂,在同等条件下降解率相对提高了近20个百分点;尝试性的实验结果表明:甲醛气体的初始浓度、反应时周围环境的湿度状况、反应时溶胶的pH值、添加金属离子的影响等因素在甲醛气体的降解实验中都起到了一定的作用,可以作为正交实验综合考察的因素;单因素实验结果表明:溶胶的最佳pH值为5.50,反应器内最佳湿度条件为接近55%,而甲醛气体的初始浓度最佳范围为3.00mg/m~3左右;正交实验的验证性实验结果表明:将pH值为5.50的溶胶负载于牛皮纸上,反应器内湿度为55%左右,甲醛气体初始浓度为3.08mg/m~3,加入的Cu2+离子体积为6.00mL,于紫外光照条件下反应120min时,甲醛气体的降解率达到了97.39%,其浓度由3.08mg/m~3下降到了0.0803mg/m~3;重复利用率实验结果表明:当纸载光催化剂重复利用一次时,甲醛气体的降解率为48.08%,重复利用两次的降解率是21.52%,重复利用三次的降解率为3.69%。
the World Health Organization (WHO), and also a recognized source of allergy and potentially one of the strong mutagen. Formaldehyde was a high toxic substance, which was listed in the second place in our state toxic chemicals priority to control. In this paper, the TiO_2 sol and the P-TiO_2 sol were prepared at low temperatures when TiCl4 was as the main raw material, and the products were characterized by methods of XRD, TEM, UV-vis and FT-IR, respectively. The degradation rate of methyl red solution was also tested; low concentrations of indoor air pollution-formaldehyde gas was degradated by the TiO_2 sol and P-TiO_2 sol loaded on the kraft paper, cigarette paper and coated paper; various reaction factors influencing the degradation rate of formaldehyde gas were studied by tentative experiments, orthogonal experiments and single factor experiments respectively, and its reuse rate was also explored on this basis.
     The results showed that the crystal structures of nano-P-TiO_2 and nano-TiO_2 prepared by sol-gel method were anatase phase and a good dispersion; the test experiment results of methyl red solution indicated that P-TiO_2 sol compared with nano-TiO_2 sol demonstrated more obvious advantages in microstructure and photocatalytic properties; preliminary degradation results of formaldehyde gas revealed that P-TiO_2 photocatalyst loaded on the kraft paper was prior to TiO_2 photocatalyst in photocatalytic degradation of formaldehyde gas under the same conditions, and the degradation rate increased nearly 20 percentage points relatively; the tentative experimental results proclaimed that the following factors such as the initial concentration of formaldehyde, the humidity of ambient conditions, pH value, reaction time and the impact of metal ions added had played a key role in the degradation experiments of formaldehyde gas, which were also served as comprehensive factors surveyed in orthogonal experiments properly; the single fartor experimental results indicated that the best pH of TiO_2 sol was about 5.50, and the best humidity of the reactor was close to 55%, and the best initial concentration of formaldehyde gas was about 3.00 mg/m~3; the verification test results of orthogonal experimental indicated that the degradation rate of formaldehyde gas could reach 97.39%, whose concentration decresed from 3.08 mg/m~3 to 0.0803mg/m~3 when pH value of the sol loaded on kraft papers was about 5.50, the humidity was about 55% in the reactor, the initial concentration of formaldehyde gas was 3.08mg/m~3, the added volume of Cu~(2+) ions was 6.00mL, and reacted for 120min under UV irradiation; the reuse experiment results displayed that the degradation rate of formaldehyde gas was 48.08% when the photocatalyst loaded on papers was used once time, and the degradation rate is 21.52% when was used twice, and the degradation rate of the three times was 3.69%.
引文
[1]杨爽,康瑞琴,郭常颖.室内空气污染物与防治[J].广州化工,2010, 38(11):173-174
    [2]李亚茹.室内空气污染与防治初探[J].绿色科技,2010,8:127-129
    [3]王勇,刘志军.室内环境空气质量现状的分析与改善[J].电子产品可靠性与环境试验,2006,3:67-69
    [4] A T Hodgson, D Beal, J E R. Mcllvaine. Sources of formaldehyde other aldehydes and terpenesina new manufactured house[J]. IndoorAir, 2002, 12: 235-242
    [5]夏宏丽,姜仑,董明旭,等.室内甲醛污染的防治对策[J].辽宁建材,2009,10:45-46
    [6]奚丽荷,朱忠其,张瑾,等.室内空气中甲醛污染的治理技术[J].材料导报,2007,21(4):92
    [7]斯琴高娃,乌云,高小平.谈室内空气中甲醛污染物的危害及防治[J].内蒙古石油化工,2007,(1):25
    [8]徐春秀.空气环境检测方法研究[J].中国科技博览,2009,7:38-39
    [9]钱琛.环境中有毒有害物质与工作场所及室内污染监测评价控制国际标准化通用方法(第3卷)[M].北京:新星出版社,2004:l186-1189
    [10]贾涛.有毒化学品的环境污染控制[J].广州化工,2009, 37(2):172-173
    [11]侯富忠.室内环境污染防治的探讨[J].中国新技术新产品,2010,21:191
    [12]尹艳.浅述室内空气中甲醛的危害和预防[J].资源与环境保护,2008,(5):61-63
    [13]江俊俊,汪模辉,顾娟.室内空气中微量甲醛光催化降解研究进展[J].广东微量元素科学,2005,12(8):5-9
    [14] Coggon D, Harris E C, Poole J, et al. Extended follow-up of a cohort of British chemical workers exposed to formaldehyde[J]. Journal of the National Cancer Institute, 2003, 95: 1608-1615
    [15] Hauptman M, Lubin J H., Atewart P A., et al. Mortality fromlympho hematopoietic malignancies among workers in formaldehyde industries[J]. Journal of the National Cancer Institute, 2003, 95: 1615-1623
    [16]邵俊艳.浅析室内环境中甲醛的危害[J].中国质量技术监督,2008,9:61
    [17]高凤霞.室内甲醛污染的控制与治理[J].污染与防治,2006,9(30):79-80
    [18]朱征,李志民.室内甲醛污染的治理技术[J].消费导刊·科教论坛,2008,(6):186-187
    [19]高濂,郑珊,张青红著.纳米氧化钛光催化材料及应用[M].化学工业出版社,2002:2-4
    [20]王占国,陈涌海,叶小玲,等.纳米半导体技术[M].化学工业出版社,2006:2-8
    [21] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38
    [22] Yu Jing, Zhao Xiao. Effect of surface treatment on the photocatalytic activity and hydrophilicproperty of the sol-gel derived TiO2 thin films[J]. Mater res bullet, 2001, 36(2): 97-107
    [23]于守武,肖淑娟.纳米TiO2的表面修饰研究[J].上海化工,2010,10:13-17
    [24]鹿院卫,马重芳,夏国栋,等.室内污染物甲醛的光催化氧化降解研究[J].太阳能学报,2004,25(4):542-546
    [25] Mishra P R, Srivastava O N. On the synthesis, characterization and photocatalytic applications of nanostructured TiO2 [J]. Bulletin of Materials Science, 2008, 31(3): 545-550
    [26] Norio N, Toyoharu H. Preparation and characterization of TiO2 and polymer nanocomposite films with high refractive index[J]. Journal of Applied Polymer Science, 2007, 105(6): 3662-3672
    [27]黎晓霞,刘炳娟,刘国光.纳米TiO2制备方法述评[J].化学工业与工程技术,2008,29(2):18-21
    [28]曹明礼,曹明贺.非金属纳米矿物材料[M].北京:化学工业出版社,2005:58-59
    [29]殷竟洲.纳米TiO2的低温制备及光催化活性研究[J].淮阴师范学院学报(自然科学版),2008,7(3):232-235
    [30]张云,赵浪,尹光福,等.正钛酸胶溶法制纳米TiO2薄膜及性能表征[J].无机化学报,2004,20(8):991-995
    [31]王美文,周兴平.水热法可控合成的高径向比金红石型纳米TiO2颗粒[J].东华大学学报(自然科学版),2010,36(2):148-152
    [32] Cao Silei, King Laiying, Yue Pengli. Preparation of freestanding and crack-free titania-silica aerogels and their performance for gas phase,photocatalytic oxidation of VOCs[J]. Applied Catalysis B: Environmental, 2006,68: 99-101
    [33]姚超,吴凤芹,林西平,等.纳米技术与纳米材料(Ⅸ)-纳米TiO2的液相合成[J].日用化学工业,2004,34(3):190-194
    [34] Huang Denggai., Liao Saijin., Quan Shenqian, et al. Preparation of anatase F doped TiO2 sol and its performance for photodegradation of formaldehyde[J]. Journal of Materials Science, 2007, 42(19): 8193-8202
    [35]马占营,姚秉华,钮金芬,等.TiO2界面光催化剂的制备及其催化性能研究[J].水处理技术,2010,36(12):30-34
    [36]杨学灵,徐悦华,陈明洁,等.TiO2光催化剂的负载技术[J].化学世界,2009,7:443-446
    [37]曹明礼,曹明贺.非金属纳米矿物材料[M].北京:化学工业出版社,2005:58-59
    [38]董丽君,邹丽霞,白秀敏,等.提高二氧化钛可见光催化活性掺杂方法的研究进展[J].现代技术陶瓷-综述与述评,2007,8(23):23-28
    [39]郭凯敏,卿宁,陈鹏,等.纳米TiO2在环境领域应用的研究进展[J].材料导报,2010,(1):122-126
    [40]朱良俊,崔玉民.影响TiO2薄膜光催化活性的主要因素[J].天津化工,2008,22(3):23-26
    [41] János R, János K. Surface science poducts in the preferential oxidation of CO on TiO2-supported Au-Rh bimetallic catalysts [J]. Reaction Kinetics and Catalysis Letters, 2007, 90(2): 215
    [42] Xiao Lin, Zhang Jinglu, Ye Cun, et al. Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2[J]. Catalysis Letters, 2006, 111: 207-211
    [43] Amama P. B., Itoh K., Murabayashi M.. Photocatalytic degradation of trichloethylene in dry and humid atmospheres: role of gasphase reactions[J]. Mo1. Cata1. A: Chemical, 2004, 217(1~2): l09-ll5
    [44] Zhang Kaijian, Xu Wei, Xin Jian, et al. Effect of dopant concentration on photocatalytic activity of TiO2 film doped by Mn non-uniformly[J]. Central European Journal of Chemistry, 2006, 4(2): 234-245
    [45] Amama P B, Itoh K, Murabayashi M. Photocatalytic degradation of trichloethylene in dry and humid atmospheres: role of gasphase reactions[J]. Mo1. Cata1. A: Chemical, 2004, 217(1-2): l09-ll5
    [46] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides science[J]. Japanese Journal of Applied Physics Part 2:Letters, 2001, 293: 269-271
    [47] Chen Cui, Bai He, Chang Shanming, et al. Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources[J]. Journal of Nanoparticle Research, 2007, 9(3): 365-375
    [48]王振宇,刘敬肖,史非,等.不同工艺法制备TiO2-SiO2复合气凝胶及其结构性能表征[J].材料导报,2008,22:66-68
    [49] Hattori A, Tokihisa Y, Tada H. Patterning effect of a sol-gel TiO2 overlayer on the photocatalytic activity of a TiO2/SnO2 bilayer-type photocatalyst[J]. Journal of Sol-Gel Science and Technology,2001(22): 53-61
    [50] Chai S Y, Kim Y J, Lee W I. Photocatalytic WO3/TiO2 nanoparticles working under visible light[J]. Journal of Electroceramics, 2006, 17: 909-912
    [51]马忠英,郑冠军.如何提高TiO2光催化的活性[J].青海科技,2008,4:24-25
    [52]王勇,张艳,赵亚伟,等.纳米TiO2的制备及其改性和应用研究进展[J].化学研究,2010,21(2):94-99
    [53] Sun R D, Akira N, Itaru W, et al. TiO2-Coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds[J]. J. Photochem. Photobiol. A:Chem, 2000, 136: 111-114
    [54] Robert D, Piscopo A, Heintz O, et al. Photocatalytic detoxification with TiO2 supported onglass-fibre by using artificial and natual light. Catal[J]. Today, 1999, 54: 291-293
    [55] Xu Yang, Zheng Wei, Liu Wang. Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2[J]. Photochem. Photobiol. A: Chem., 1999, 122: 57-60
    [56] Grieken R, Aguado J, Lopez-Muoz M J, et al. Synthesis of size-controlled silica-supported TiO2 photocatalysts[J]. Photochem. Photobiol. A: Chem., 2002,148:315-318
    [57] Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole[J]. Mol. Catal. A: Chemical, 2001, 165: 265-268
    [58]雷建飞,李伟善.钛基阳极氧化法制备TiO2纳米管阵列研究进展[J].电源技术,2008,32(12):875-879
    [59] Robert D, Piscopo A, Heintz O, et al. Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natual light. Catal[J]. Today, 1999, 54: 291-294
    [60] Choi W Y . Pure and modified TiO2 photocatalysts and their environmental applications[J]. Catalysis Surveys from Asia, 2006, 10(1): 16-28
    [61] Sano T., Negishi N., Uchino K., et al. Photocatalytic degradation of gaseous acetaldehyde on TiO2 with photo deposited metalsand metal oxides[J]. Journal of Photochemistry and Photobio1ogy, A, Chemistry., 2003, 160(1~2): 93-98
    [62]罗磊,李志光,涂飞跃,等.TiO2光催化剂的负载技术研究进展[J].化工科技,2008,16(4):60-64
    [63]颜秀茹,李晓红,霍明亮,等.纳米SnO2和TiO2的制备及其光催化性能[J].物理化学学报,2001,17(1):23
    [64]赵晖,孙杰.TiO2光催化剂载体及提高其光催化活性的研究进展[J].江苏环境科技,2006,19(4):52-55
    [65]王芳玲,杨建忠.甲醛检测方法及研究进展[J].纺织科技造展,2008,3:58-62
    [66]陈宁,王丝雨,颜小宁,等.室内空气中甲醛含量的测量不确定度评估[J].中国计量,2007,12:69-71
    [67]贺小凤,王国胜.室内空气中甲醛检测方法的比较研究[J].深圳信息职业技术学院学报,2008,6(2):10-13
    [68]王芳.新装修居室内空气中甲醛污染状况调查分析[J].中国卫生检验杂志,2007,17(3):514-515
    [69]彭人勇,陈强,熊克思.不同介质条件下纳米二氧化钛溶胶的低温制备及其光催化性能表征[J].广州化学,2008,33(1):26-30
    [70]郑广涛,上官文峰.TiO2光催化剂的掺杂改性作用机理研究[J].功能材料,2004,35:2554-2559
    [71] Marci G, Addamo M, Augugliaro V, et a1. Photocatalytic oxidation of toluene on imadiatedTiO2: comparison of degradation performance in humidifide air, in water and in water containing a zwitteriorric surfactant [J]. Journal of PhotoChemistry and Photobiology A: Chemistry, 2003, 160: 105-114
    [72]王淑勤,张佩佩.纳米TiO2治理室内甲醛的实验研究[J].环保科技,2008,14(2):1-4
    [73]国家技术监督局卫生部,GB/T16127-1995.居室空气中甲醛的卫生标准[S].北京:中国标准出版社,1996:58-61
    [74]徐敏,何满潮,王岩,等.TiO2/ACF复合材料吸附-光催化降解甲醛的实验研究[J].中国安全生产科学技术[J].2008,4(2):40-44
    [75]洪孝挺,王正鹏,陆峰,等.可见光响应型非金属掺杂TiO2的研究进展[J].化工进展,2004,23(10):1077-1080
    [76] Kim II-K, Ha H J, Lee S K, et al. Degradation of chlorophenol by photocatalysts with various transition metals[J]. Korean Journal of Chemical Engineering, 2005, 22(3): 382-386
    [77] Jooho M, Takagi H, Fujishiro Y, et al. Preparation and characterization of the Sb-doped TiO2 photocatalysts[J]. Journal of Materials Science, 2001(36): 949-955
    [78]杨海明.沸石负载二氧化钛光催化脱氮研究[D].大连:大连理工大学,2006
    [79]朱顺萍.TiO2催化降解室内甲醛的影响因素[J].中国卫生工程学,2007,6(1):41-44
    [80]杨丽珍,周震,郝艳萍,等.TiO2纳米颗粒光催化降解甲醛的影响因素[J].北京印刷学院学报,2006,14(1):39-42
    [81]沈文浩,龙周,陈小泉,等.纳米TiO2光催化降解甲醛的影响因素[J].华南理工大学学报(自然科学版),2010,38(8):143-146
    [82]卜军,陈洪玲,沈斌,等.金属离子掺杂TiO2薄膜光催化去除气相中甲醛[J].环境科学与技术,2009,32(1):126-129
    [83]银董红,邓吨英,陈恩伟,等.溶胶—凝胶法制备TiO2薄膜的研究进展[J].工业催化,2004,12(1):1-6
    [84]徐敏,何满潮,王岩,等.TiO2/ACF复合材料吸附-光催化降解甲醛的实验研究[J].中国安全生产科学技术,2008,4(2):40-44
    [85]王淑勤,刘彦东,赵俊起.纳米TiO2光催化降解室内甲醛的研究[J].工业安全与环保,2009,35(2):17-19
    [86] Hu Chao, Yu Jiangcheng, Hao Zeng, et al. Effects of acidity and inorganic ions on the photo-catalytic degradation of different azo dyes[J]. Appl. Catal. B. 2003, 46: 35-47
    [87]卢维奇,赵黎明.纳米TiO2改性可见光催化降解有机物研究进展[J].环境污染治理技术与设备,2006,5:10-15
    [88]齐虹,沈晋,孙德智,等.二氧化钛光催化氧化动态降解甲醛废气及动力学研究[J].太阳能学报,2007,28(9):951-955
    [89]曹广秀,马淮凌,姜芳婷,等.掺杂Fe2O3纳米TiO2膜光催化降解有机染料废水中甲基橙[J].工业水处理,2006,26(12):44-47
    [90]周建军,崔海萍,闫军.无机阴离子掺杂TiO2薄膜光催化性能及红外光谱分析[J].信息纪录材料,2006,7(6):10-12
    [91]许佩瑶,康玺,朱洪涛,等.掺杂Fe3+和Zn2+纳米二氧化钛薄膜光催化降解制革废水的试验研[J].中国皮革,2007,36(13):17-20
    [92] Jooho Moon, Takagi H, Fujishiro Y, et a1.Preparation and characterization of the Sb-doped TiO2 photocatalysts[J].Journal of Materials Science, 2001(36): 949-955
    [93]张立德,牟季美.纳米材料和纳米技术[M].北京:科学出版社,2001:55-60
    [94]邵绍燕,楚英豪,姚远,等.纳米TiO2在环境应用方面的研究进展[J].环境科学与技术,2008,31(3):43-46
    [95]李莉,宋俊密,陈强.纳米TiO2薄膜的制备技术研究进展[J].安徽农业科学,2008:36(11):4643-4644
    [96]王卫伟,张志煜.过渡金属离子掺杂纳米TiO2的机理和光吸收特性[J].青岛科技大学学报,2003,24(2):102-104
    [97]丁震,陈晓东,林萍,等.纳米TiO2对气相中甲醛光催化降解的研究[J].环境科学研究,2006,19(4):74-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700