纳米二氧化钛薄膜材料制备及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti02半导体材料以其效率高、无毒、化学稳定性好等优点逐渐成为一种重要的光催化剂。在水净化实际应用方面,固定化二氧化钛薄膜因解决了悬浮态光催化剂难以分离回收等问题而倍受广泛的关注。本文采用溶胶-凝胶法和浸渍提拉技术制备了Ti02薄膜,并对其光催化性能进行了研究。主要研究内容和结论如下:
     (1)以钛酸异丙酯,无水乙醇,去离子水,乙酰丙酮,吐温20为原料制备含钛的溶胶,其中吐温20是一种表面活化剂,用来对Ti02薄膜改性。利用XRD、SEM、UV-Vis、 BET对薄膜的性能进行了表征。分析Ti02薄膜制备过程中加水量、反应温度、镀膜次数、提拉速度、pH值以及热处理温度等重要因素对薄膜结构和光催化性能的影响。结果表明:在酸性溶胶,水与钛酸异丙酯的摩尔比例为7:1,反应温度为20℃,提拉速度为1.33mm·s-1的条件下制备的Ti02薄膜具有良好的透光性,吸收紫外线能力强,二氧化钛颗粒均匀致密的附着在玻璃基体表面。
     (2)以亚甲基蓝溶液为污染物模型,对Ti02薄膜的光催化性能进行了研究。分析一些重要的因素对光催化性能的影响,并与粉状Ti02颗粒光催化性能进行了对比,同时分析了薄膜的稳定性。结论如下:加入吐温20后能够明显提高Ti02薄膜光催化效率;催化剂量增大、水量增多以及镀膜次数增加均能提高光催化效率且存在最佳值;亚甲基蓝的降解率随焙烧温度的升高先增大后减小,最佳温度为450℃;TiO2薄膜的光催化效率要低于TiO2粉末,并且紫外光条件下的降解率高于可见光;亚甲基蓝溶液的降解率随初始浓度升高而降低,并且Ti02薄膜的光催化稳定性较好。
     (3)TiO2薄膜光催化降解亚甲基蓝动力学研究和分析。结论如下:增加催化剂量有助于提高亚甲基蓝的光催化速率,直到出现最优的催化剂量;光催化速率常数随着溶液初始浓度的增大而减小;溶液的pH值是影响光催化反应速率的重要因素,在反应液中加入浓硝酸或者氨水可以增强反应速率;反应速率常数随着去离子水量增加而增大;实验中最高的反应速率常数,对应着热处理温度最佳值(450℃);纳米Ti02薄膜光催化降解亚甲基蓝溶液的反应均符合Langmuir-Hinshelwood (L-H)动力学模型,且光催化氧化过程为一级反应。
has been considered to be an important photocatalytic material due to its many advantages such as high efficiency, low cost, non-toxicity, and good chemical stability. Compared with suspended TiO2powder as photocatalyst for water treatment, immobilized TiO2thin film does not need to be separated after water purification. Therefore, the film type of TiO2photocatalyst has been paid more attention. In this dissertation, TiO2thin films have been prepared by a dip coating sol-gel method. The photocatalytic performances of TiO2thin films have been systematically investigated. The main research work and conclusions can be summarized as follows:
     In this dissertation, The Ti sol is composed of titanium isopropoxide, absolute ethyl alcohol, de-ionized water, acetyl acetone and Tween-20. Tween-20, as a kind of surfactant r, is used to modify TiO2films. The properties of the as-prepared TiO2films have been characterized by XRD, SEM, UV-visible spectrometer and BET. The effect of important preparation parameters, including the molar ratio of H2O/titanium isopropoxide, pH of the sol, calcinations temperature, the dip coating speed and number, on the structure and photocatalytic activity of the as-prepared TiO2films are investigated. The experimental results show that TiO2films is obtained under the conditions of acid sol, H20/titanium isopropoxide molar ratio of7:1,20℃of reaction temperature,33mm·s-1of dip-coating peed, which has good light transmission and UV absorbance. And TiO2particles attached to the surface of glass uniformly.
     The photocatalytic properties of TiO2thin films have been studied using methylene blue as a model pollutant in water. Some important factors that may affect photocatalytic properties of TiO2films in the reactor have been analyzed. A comparative study on photocatalytic properties of immobilized TiO2films with suspended TiO2particles has been discussed. And the stability of the film has been analyzed. The conclusions are as follows: adding Tween-20into Ti sol can obviously increase photocatalytic efficiency of TiO2thin films; the increase of photo catalytic dose, water, coating cycle all can improve the photo catalytic efficiency and have the best value;. With the enhancement of calcinations temperature, the degradation rate of methylene blue increases firstly and then decreases, the optimum temperature is450℃; our experimental results have confirmed that photocatalytic activity of TiO2thin film is less than that of suspended TiO2powders. In addition, the photocatalytic degradation rate of methylene blue by TiO2films under ultraviolet light radiation is higher than that under visible light radiation; increasing initial concentration of methylene blue can lead to the decrease in the degradation rate of methylene blue. The stability of the as-prepared TiO2thin films is good.
     The photocatalytic oxidation kinetics of TiO2films on the degradation methylene blue has been studied and analyzed. The conclusions are as follows:the reaction kinetics constant can be enhanced by increasing catalyst loading until the optimum catalyst loading can be reached; with the increase of initial concentration, the photocatalytic rate constant decreases; the pH value of solution is an important factor for the influence of photocatalytic rate constant, it seems that adding HNO3or NH3-H2O into the reaction liquid can lead to the enhancement in the reaction rate constant. In addition, with the increase of the amount of water in the sol, the reaction rate constant increases; there is also optimum calcinations temperature (i.e.,450℃) for the highest reaction rate constant. The photocatalytic oxidation of methylene blue by the TiO2films can be described by a Langmuir-Hinshelwood (L-H) model. It can be found that the photocatalytic oxidation reaction of methylene blue belongs to a first-order reaction.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972,238:37-38.
    [2]Carey J. H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension [J]. Bulletin of Environmental Contamination and Toxicology. 1976,16 (6):697-701.
    [3]范少华,崔玉民.光催化技术在污水处理方面的应用[J].化学进展,2002,21(5):345-348.
    [4]李花,沈耀良.废水高级氧化技术现状与研究进展[J].水处理技术,2011,37(6):6-8.
    [5]崔玉民,王洪涛.二氧化钛光催化技术在污水处理领域中应用[J].水处理技术,2009,35(4):9-12.
    [6]Mozia S, Morawski A W. Hybridization of photocatalysis and membrane distillation for purification of wastewater [J]. Catalysis Today,2006,118:181-188.
    [7]Yang S Y, Lou L P, Wang K, Chen Y X. Shift of initial mechanism in TiO2-assisted photocatalytic process [J]. Applied Catalysis A:General,2006,301:152-157
    [8]Fahim N.F., Sekino T, A novel method for synthesis of titania nanotube powders using rapid breakdown anodization [J]. Chemistry of Materials,2009,21:1967-1979.
    [9]Naito K., Tachikawa T., Fujitsuka M., Majima T., Single-molecule observation of photocatalytic reaction in TiO2 nanotube:Importance of molecular transport through porous structures [J]. Journal of the American Chemical Society,2008,131:934-936.
    [10]Tang X., Li D. Fabrication, geometry, and mechanical properties of highly ordered TiO2 nanotubular arrays [J]. The Journal of Physical Chemistry C,2009,113:7107-7113.
    [11]Yuan J., Lu Y, Schacher F., Lunkenbein T., et al. Template-directed synthesis of hybrid titania nanowires within core-shell bishydrophilic cylindrical polymer brushes [J]. Chemistry of Materials, 2009,21:4146-4154.
    [12]李斌.胶-凝胶法制备TiO2薄膜的光催化性能研究[D].武汉理工大学,2010.
    [13]Hotfmann M R, Martin S T, Choi W. Environ-mental app lication of Semiconductor photo catalysis [J]. Chemical Reviews.1995,95(1):69-96.
    [14]Mills A, Hunte S L. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A Chemistry,1997,108(1):1-35.
    [15]王素梅.纳晶TiO2薄膜的制备及其半导体性能的研究[D].天津大学,2004.
    [16]姜琳.长余辉与二氧化钛协同作用光催化材料的研究[D].天津大学,2010.
    [17]黄金球.电场下TiO2纳米膜光催化性能的研究[D].华中科技大学,2006.
    [18]Yates, John T, Jr., Linsebigler, Amy L., Lu, Guangquan. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J]. Chemical Reviews,1995,95(3):735-758.
    [19]田雷.共掺杂改性纳米TiO2的制备及光催化还原CO2制甲醇研究[D].西北大学,2009.
    [20]冯锐.可见光催化纳米TiO2的制备与性能研究[D].大连理工大学,2007.
    [21]刘志强.二氧化钛薄膜的制备及其光催化性能研究[D].中国海洋大学,2006.
    [22]向全军.掺杂二氧化钛光催化剂的制备、表征及可见光光催化性能[D].武汉理工大学,2010.
    [23]Fanda S, Meltem A, Sadiye S, Sema E, Murat E, Hikmet S. Hydrothermal Syhthesis, Characterization and Photocatalytic Activity of nanozied TiO2 Based Catalysts for Rhodamine B Degradation[J]. J Chem,2007,31:211-221.
    [24]Ooka Chihiro, Yoshida H isao, Suzuki Kenzi, et al. Highly Hydrophobic TiO2 Pillared Clay for Photocatalytic Degradation of Organic Compounds in Water[J]. Microporous Mesoporous Mater,2004, 67(2-3):143-150.
    [25]Ollis D F. Process Economics for Water Purification:A Comparation Assessment Photocatalysis and Environment. Trends and Application [J]. Ed by Schiavello M. Kluwer Academic Publishers, 1988:663-667.
    [26]李娄刚.TiO2光催化氧化降解偶氮染料废水的研究[J].化学工业与工程技术,2008,29(2):11-13.
    [27]于兵川,吴洪特,张万忠.光催化纳米材料在环境保护中的应用[J].石油化工2005,34(5)491-495.
    [28]Khalil L B.; Rophael M.W.; Mourad W. E. The removal of the toxic Hg(II) salts from water by photocatalysis [J]. Applied Catalysis B:Environmental,2002,36(2):125-130.
    [29]任达森.溶胶-凝胶法制备纳米二氧化钛薄膜及其光致特性研究[D].复旦大学,2004.
    [30]任成军.TiO2薄膜光催化剂的制备及结构与性能研究[D].四川大学,2004.
    [31]Kayano Sunada, Yoshihiko Kikuchi et al. Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts [J]. Environ. Sci. Technol.,1998,32 (5):726-728.
    [32]T Matsunaga, R, Tomoda, T Nakajima, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders[J].FEMS Microbiology Letters,1985,29(1-2):211-214.
    [33]竺金涛.二氧化钛的改性及其研究[D].浙江工业大学,2010.
    [34]于向阳,程继健,杜永娟.TiO2光催化抗菌材料[J].玻璃与搪瓷,2000,28(4):42-47.
    [35]Kanno S, Arato, T, Kato, A. Decomposition of CFC113 over TiO2.Based Catalysts[J].Bulletin of the Chemical Society of Japan.1996,2:129-135.
    [36]Seng Sing Tan, Linda Zou, Eric Hu. Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets [J]. Catalysis Today,2006,115(1-4):269-273.
    [37]樊君,曾波,刘恩周等.纳米Ti02稀土元素掺杂改性光催化还原CO2制甲醇研究[J].功能材料.2007,38(增):2437-2439.
    [38]金龙,等.负载贵金属光催化剂的光催化活性研究[J].物理化学学报,2004,20(4):424--427
    [39]W. Sangchay, L. Sikonga, K. Kooptarnond. Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles[J]. Procedia Engineering,2012,32:590-596.
    [40]王侃.负载型TiO2催化剂可见光降解染料污染物的研究[D].浙江大学,2004.
    [41]Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic. Degradation of a textile azo dye [J]. Chemistry of Materials,1996,8(8):2180-2187.
    [42]Li X Z, Li F B, Yang C L, et al. Photocatalyticactivity of WOx-TiO2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,141(2):209-217.
    [43]刘鑫.沸石负载纳米Ti02光催化剂的制备及其对甲基橙降解的研究[D].济南大学,2007.
    [44]Choi W, Termin A, Hoffmann M R. et al. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J].J Phys. Chem, 1994,98 (51):13669-13679.
    [45]陈小滔.纳米TiO2光催化降解酸性湖兰A及反应器研究[D].北京化工大学,2005.
    [46]于向阳,程继健,杨阳等.稀土元素掺杂对TiO2光催化性能的影响[J].华东理工大学学报,2000,26(3):287-289.
    [47]Serpone N, Borgarello E, Barbeni M et al. Photochemicalreduction of gold(III) on semiconductordispersions of TiO2 in the presence of CN ions:disposal of CN by treatment with hydrogen peroxide[J]. Journal of Photochemistry,1987,36(3):373-388.
    [48]闰哗.纳米二氧化钛光催化降解含酚废水的研究[D].北京化工大学,2008.
    [49]胡绍争.纳米二氧化钛的合成,改性及光催化性能研究[D].大连理工大学.2010.
    [50]Legrand-Buscema C, Malibert C, Bach S. Elaboration and characterization of thin films ofTiO2 Prepared by Sol-gel Process[J]. Thin Solid Films,2002,418(2):79-84.
    [51]S. Janitabar-Darzi, A. R. Mahjoub, A. Nilchi. Investigation of structural, optical and photocatalytic properties of mesoporous TiO2 thin film synthesized by sol-gel templating technique[J]. Physica E, 2009,42:176-181.
    [52]陈南春,韦翠美.溶胶-凝胶法制备纳米YiO2薄膜[J].稀有金属材料与工程,2007,36(增):974-976.
    [53]Dagan G, Tomkiewicz M Titanium dioxide aerogels for photocatalytic decontamination of aquatic environments [J]. J.Phys.Chem,1993,97(49),12651-12655.
    [54]夏存杰.纳米Ti02光催化材料的制备[D].大连理工大学,2006.
    [55]王继库,陈浩,赵丽娜等.纳米二氧化钛的制备及其应用研究进展[J].广东化工,2011,38(10):59-60.
    [56]施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用[J],功能材料,1998,29(2):136-139.
    [57]徐阳.表面沉积纳米二氧化钛纺织材料的制备及其性能研究[D].江南大学,2009
    [58]韩蕾.镧或氮掺杂TiO2/Ti光电极制备及可见光下光电催化性能研究[D].哈尔滨工业大学,2010.
    [59]咎菱.纳米晶二氧化钛的制备及其光催化性能研究[D].武汉大学,2004.
    [60]黄剑锋.溶胶-凝胶原理和技术[M].北京:化学工业出版社,2005.
    [61]Lin J, Lin Y, Liu P, et al. Hot-fluid annealing for crystalline titanium dioxide nanoparticles in stable suspension [J].J. Am. Chem. Soc.2002,124(38):11514-11518.
    [62]殷竟洲.二氧化钛溶胶-凝胶制备及光催化性能研究[D].大连理工大学,2006.
    [63]黄惠忠等编著.纳米材料分析[M].北京:化学工业出版社,2003
    [64]冯勇.纳米Ti02准微球的改性及可见光催化性能研究[D].四川师范大学,2009
    [65]Samuncva B, Kozhukharov V. Ch. Trapalis. Sol-gel processing of titanium-containing thin coatings[J]. Journal of materials,1993,28:2353-2360
    [66]董素芳,赵素梅.溶胶-凝胶法制备二氧化钛凝胶的影响因素分析[J].现代技术陶瓷,2005,3:10-12.
    [67]岑继文,李新军,梁园园等.Ti02催化剂薄膜背光催化的研究[J].环境科学,2005,26(3):135-140.
    [68]R. Mechiakh, N. Ben Sedrine, R. Chtourou. Sol-gel synthesis, characterization and optical properties of mercury-doped TiO2 thin films deposited on ITO glass substrates. Applied Surface Science,2011, 257(21):9103-9109.
    [69]梁国栋,赵莲花,全宗学,尹京花.关于二氧化钛薄膜的制备及其光催化性能[J].延边大学学报,2004,30(3):224-226.
    [70]HabibiM H, NASR-ESFAHANI M. Preparation, characterization and photocatalytic activity of a novel nanostructure composite film derived from nanopowder TiO2 and sol-gel process using organic dispersant[J].Dyes and Pigments,2006(7):1-9.
    [71]周利民,刘峙嵘,黄群武.凝胶-溶胶法制备纳米二氧化钛的pH控制[J].无机盐工业,2007,39(3):31-33.
    [72]N.R. Mathews, Erik R. Morales, M.A. Corte's-Jacome.TiO2 thin films-Influence of annealing temperature on structural, optical and photocatalytic properties[J]. Solar Energy,2009,83:1499-1508.
    [73]L. Lopez, W.A. Daoud, D. Dutta. Preparation of large scale photocatalytic TiO2 films by the sol-gel process[J]. Surface and Coatings Technology,2010,205:251-257.
    [74]葛鑫,李碧静,胡静等.焙烧温度对二氧化钛催化性能的影响[J].化学工程,2011,39(11):61-65.
    [75]Kelvin Y. S. Chan, Gregory K. L. Goh.Solution Epitaxy of TiO2 Thin Films[J]. Journal of The Electrochemical Society,2009,156(7):231-235.
    [76]W. Sangchay, L. Sikong, K. Kooptarnonda. Comparison of photocatalytic reaction of commercial P25 and synthetic TiO2-AgCl nanoparticles[J]. Procedia Engineering,2012,32:590-596.
    [77]张音波.Ti02光催化降解甲基橙的试验及机理研究[D].广东工业大学,2002.
    [78]张元晶.玻璃表面纳米Ti02膜的制备及其光催化性能研究[D].北京工业大学,2002.
    [79]朱琳芳.纳米二氧化钛的改性及其降解有机物的研究[D].河南师范大学,2010.
    [80]王君,纳米二氧化钛光催化降解苯酚的实验研究及动力学分析[J].化学与生物工程,2005,(12):46-47.
    [81]黄雪峰.二氧化钛氮掺杂改性及其动力学研究[D].安徽理工大学,2006.
    [82]胡伟,石建军.超声协同光催化降解有机污染物的研究[J].盐城工学院学报(自然科学版),2011,24(4):64-68.
    [83]Zhang Y, Crittenden J C, Hand D W, et al. Fixed-Bad Photocatalysts for solar Decontamination of water [J].Environ.Sci.Technol.1994,28(3):435-442.
    [84]Hussain Al-Ekabi, Nick Serpone. Kinetics studies in heterogeneous photocatalysis. Ⅰ. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix [J]. J Phys. Chem,1988,92(20):5726-5731.
    [85]吴辉,党炜,李成芳等.Ti02光催化氧化亚甲基蓝的动力学研究[J].化学与生物工程,2009,26(6):36-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700