减压、臭氧和气调贮藏对杏果实采后生理效应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杏是夏季水果,它色泽艳丽,风味独特,营养丰富,而且具有良好的医药效能,深受人们的喜爱。但由于杏果采收正值高温季节,呼吸十分旺盛,采后消耗大量的营养物质和风味物质,致使果实后熟软化加快,极易腐烂变质,严重影响了杏果的贮藏期,制约了杏产业的发展。国内果农长期采用传统的冰窖贮藏、常温贮藏等方法贮藏杏果,一般贮量少,贮期短,贮后果实质量差,商品价值低,没有形成规模效益,难以满足市场需要。
     本文以串枝红杏果为材料,研究了减压、臭氧和气调贮藏对杏果实采后生理生化变化的影响,探讨了杏果贮期软化机理,为杏果实贮藏保鲜提供依据。本试验得到以下结果:
     1.杏果采用减压贮藏(盛水加湿)保鲜效果显著,在20.3 kPa下贮藏90 d,商品果率仍达80%,失重率仅为5.7%。
     2.杏属于呼吸跃变型果实,减压贮藏具有降低呼吸强度和推迟呼吸高峰的作用,在20.3~101.3 kPa之间,压力越低效果越显著。
     3.杏果贮期总酸含量呈现逐渐下降趋势,减压贮藏可减缓总酸含量下降,当压力降低到40.5 kPa时,再减压对总酸含量影响不大。杏果贮期还原糖含量呈现前期上升后期下降的趋势,减压贮藏能抑制贮藏后期还原糖含量下降,在20.3~101.3 kPa之间,压力越低效果越显著。
     4.杏果贮期PG活性先上升后下降,减压贮藏具有抑制PG活性的作用,以20.3 kPa处理效果为佳。杏果贮期水溶性果胶含量不断增加,减压贮藏可降低水溶性果胶含量,以20.3 kPa处理效果为好。杏果贮期硬度逐渐下降,减压贮藏能保持果实硬度,在20.3~101.3 kPa之间,压力越低效果越显著。
     5.杏果贮期LOX活性前期升高后期降低,减压贮藏具有抑制LOX活性的作用,以20.3 kPa处理效果为佳。杏果贮期MDA含量先增加后减少,减压贮藏可降低MDA含量,但压力降低到40.5 kPa以下,效果不显著。杏果贮期相对电导率表现为上升趋势,减压贮藏能保持细胞膜透性,在20.3~101.3 kPa之间,压力越低效果越显著。
     6.杏果采用浓度为150 mg·m~(-3)O_3,每5 d处理一次,每次处理30 min,贮藏90 d时,商品果率达66.7%,失重率为10.8%。
     7.臭氧处理具有降低杏果呼吸强度的作用,浓度低于150 mg·m~(-3)时,随浓度增加呼吸强度降低,当浓度高于200 mg·m~(-3)时,随浓度增加呼吸强度反而升高。
     8.臭氧处理不但可延缓杏果贮期总酸含量下降,而且还能减缓贮藏后期还原糖含量降低,以150 mg·m~(-3)O_3处理效果为佳。
     9.臭氧处理可抑制PG活性、降低水溶性果胶含量和保持果实硬度,以150mg·m~(-3)O_3处理效果为好。
     10.臭氧具有抑制LOX活性、降低MDA含量和保持细胞膜透性的作用,浓度越高作用效果越显著,但浓度大于200 mg·m~(-3)时效果并不理想。
     11.杏果采用2%O_2+10%CO_2+88%N_2气调贮藏,贮藏90 d时,商品果率为50%,失重率为11.8%。
     12.适宜气调贮藏可降低杏果贮期呼吸强度,以处理2(2%O_2+10%CO_2+88%N_2)效果为佳。
     13.适宜气调贮藏可延缓杏果贮期总酸含量下降,以处理1(2%O_2+2%CO_2+96%N_2)效果为好。适宜气调贮藏能减缓杏果贮藏后期还原糖含量下降,以处理2(2%O_2+10%CO_2+88%N_2)效果较为理想。
     14.适宜气调贮藏可抑制杏果贮期PG活性和保持果实硬度,以处理2(2%O_2+10%CO_2+88%N_2)效果为佳。适宜气调贮藏可延缓杏果贮期水溶性果胶含量上升,以处理1(2%O_2+2%CO_2+96%N_2)和处理2(2%O_2+10%CO_2+88%N_2)效果为好。
     15.适宜气调贮藏可抑制杏果贮期LOX活性和降低MDA含量,以处理2(2%O_2+10%CO_2+88%N_2)和处理7(10%O_2+10%CO_2+80%N_2)效果为佳。适宜气调贮藏还可延缓杏果贮期相对电导率上升,以处理2(2%O_2+10%CO_2+88%N_2)较为理想。
Apricot is one of summer fruitages and favorable not only for itsflamboyant skin, unique flavor and abundant nutrition, but also for better officinal andfunctional values for the human being. It results in quick ripeness and softening, andsusceptible decay because of vigorous respiration and loss of nutrient and flavorsubstance of apricot fruits after harvest. It also influences storage period andproduction of apricot fruits. Domestic peasants adopt traditional methods such as icepit storage and room temperature storage to store apricot fruits over a long period oftime, but their storage quantity is small and storage time is short. Apricot fruits treatedwith these methods have poor quality after storage, they can't meet with marketdemand and there is no benefit of scale.
     Effect of hypobaric storage, ozone storage and controlled atmosphere storage onphysiological and biochemical changes of 'Chuan zhi hong' apricot fruits after harvestwas studied, and softening mechanism of apricot fruits during storage was discussed.The reference on fresh-keeping of apricot fruits is offered. The conclusions weresummarized as follows:
     1. Hypobaric storage (increasing humidity by filling water) had prominent effectson fresh-keeping of apricot fruits. The rate of commercial fruits was still up to 80%,and the rate of weight loss was only 5.7% when apricot fruits were stored at 20.3kPaafter 90 days.
     2. Apricot fruits were supposed to belong to the kind of fruits with climacteric.Hypobaric storage could reduce respiration rate and delay climacteric. Its effect wasmore remarkable when the pressure between 20.3kPa and 101.3kPa was lower.
     3. The total acid content of apricot fruits tended to fall off gradually during storage.Hypobaric storage could slow down degradation rate of the total acid content, but theeffect was not remarkable when the pressure dropped to lower than 40.5kPa. Thereducing sugar content of apricot fruits tended to rise first and then go down duringstorage. Hypobaric storage could slow down augment rate of the reducing sugarcontent of apricot fruits. Its effect was more remarkable when the pressure between20.3kPa and 101.3kPa was lower.
     4. The activity of polygalacturonase of apricot fruits rose first and then went down during storage. Hypobaric storage could inhibit the activity of polygalacturonase, andthe effect was most remarkable when the pressure was at 20.3kPa. The water-solublepectin content of apricot fruits went up gradually during storage. Hypobaric storagecould slow down augment rate of the water-soluble pectin content of apricot fruits,and the effect was most remarkable when the pressure was at 20.3kPa. The firmnessof apricot fruits fell off gradually during storage. Hypobaric storage could retainfirmness of apricot fruits, and its effect was more remarkable when the pressurebetween 20.3kPa and 101.3kPa was lower.
     5. The activity of lipoxygenase of apricot fruits rose first and then went downduring storage. Hypobaric storage could restrain the activity of lipoxygenase, and theeffect was most remarkable when the pressure was at 20.3kPa. The malondialdehydecontent of apricot fruits increased first and then decreased during storage. Hypobaricstorage could slow down degradation rate of the malondialdehyde content, but theeffect was not remarkable when the pressure dropped to lower than 40.5kPa. However,the relative conductivity of pulp tissue of apricot fruits went up all the time duringstorage. Hypobaric storage could slow down augment rate of the relative conductivity,and the effect was more remarkable when the pressure between 20.3kPa and 101.3kPawas lower.
     6. The rate of commercial fruits was up to 66.7% and the rate of weight loss was10.8% after 90 days when apricot fruits were dealt with 150 mg·m~(-3) ozone, once every5 days and 30 minutes every time.
     7. Ozone treatment could reduce respiration rate of apricot fruits during storage.The respiration rate cut down along with the concentration increase when theconcentration of ozone was lower than 150 mg·m~(-3). However, the respiration rateenhanced along with the concentration increase when the concentration of ozone washigher than 200 mg·m~(-3).
     8. Ozone treatment could slow down degradation rate of the total acid content ofapricot fruits and reduce degradation rate of the reducing sugar content of apricotfruits. The effect was most remarkable when the concentration of ozone was 150mg·m~(-3).
     9. Ozone treatment could inhibit the activity of polygalacturonase, reduce thewater-soluble pectin content and retain firmness of apricot fruits. The effect was mostremarkable when the concentration of ozone was 150 mg·m~(-3).
     10. Ozone treatment could restrain the activity of lipoxygenase, slow downdegradation rate of the malondialdehyde content and maintain osmosis of pericellularmembrane. The effect was not remarkable along with the concentration increase whenthe concentration of ozone was higher than 200 mg·m~(-3).
     11. The rate of commercial fruits was up to 50% and the rate of weight loss was11.8% after 90 days when apricot fruits were stored under controlled atmosphere with2%O_2+10%CO_2+88%N_2.
     12. The suitable controlled atmosphere storage could reduce respiration rate ofapricot fruits during storage. The effect of treatment No.2 (2%O_2+10%CO_2+88%N_2)was most remarkable among all treatments.
     13. The suitable controlled atmosphere storage could slow down degradation rate ofthe total acid content of apricot fruits, and the effect of treatment No.1 (2%O_2+2%CO_2+96%N_2) was most remarkable among all treatments. The controlled atmospherestorage could reduce degradation rate of the reducing sugar content of apricot fruitsduring storage. The effect of treatment No.2(2%O_2+10%CO_2+88%N_2) was mostremarkable among all treatments.
     14. The suitable controlled atmosphere storage could inhibit the activity ofpolygalacturonase and retain firmness of apricot fruits, and the effect of treatmentNo.2(2%O_2+10%CO_2+88%N_2) was most remarkable among all treatments. Thesuitable controlled atmosphere storage could reduce augment rate of the water-solublepectin content, and the effect of treatment No.1(2%O_2+2%CO_2+96%N_2) andtreatment No.2 (2%O_2+10%CO_2+88%N_2) was most remarkable among all treatments.
     15. The suitable controlled atmosphere storage could restrain the activity oflipoxygenase and slow down degradation rate of the malondialdehyde content, and theeffect of treatment No.2 (2%O_2+10%CO_2+88%N_2) and No.7 (10%O_2+10%CO_2+80%N_2) was most remarkable among all treatments. The suitable controlled atmospherestorage could slow down augment rate of the relative conductivity, and the effect oftreatment No.2 (2%O_2+10%CO_2+88%N_2) was most remarkable among all treatments.
引文
[1] 张加延,张钊.中国果树志·杏卷[M].北京:中国林业出版社,2003:1,73,385-386.
    [2] 郭沫若.殷契粹编[M].北京:科学出版社,1965.
    [3] 夏纬瑛.夏小正经文校释[M].北京:农业出版社,1981.
    [4] 孙云蔚.中国果树史与果树资源[M].上海:上海科学技术出版社,1983.
    [5] 俞德浚.中国果树分类学[M].北京:农业出版社,1979:43.
    [6] 吴耕民.中国温带果树分类学[M].北京:农业出版社,1984:188.
    [7] 陈学森,李宪利,张艳敏,吴树敬,沈洪波,束怀瑞.杏种质资源评价及遗传育种研究进展[J].果树学报,2001,18(3):178-181.
    [8] 赵锋,刘威生,刘宁,郁香荷,孙猛,张玉萍,周宴起.我国杏种植资源及遗传育种研究新进展[J].果树学报,2005,22(6):687-690.
    [9] 张加延.中国李杏资源及开发利用研究[M].北京;中国林业出版社,2003.
    [10] 中国农业百科全书总编辑委员会果树卷编辑委员会,中国农业百科全书编辑部.中国农业百科全书·果树卷[M].北京:农业出版社,1993:360-362.
    [11] 贾克礼,吴燕民.甘肃省两个杏的优良品种[J].中国果树,1988,(3):49-50.
    [12] 耿忠芳.华县大接杏[J].山西果树,1987,(2):49-50.
    [13] 马之胜,常振田.串枝红杏[J].北方园艺,1991,(Z1):49.
    [14] 于希志,徐秋萍,安国宁,王凤才.山东省主要鲜食杏良种资源介绍[J].中国种业,1989,(2):38-39.
    [15] 沈裕生,宗学普,张贵荣.鸡蛋杏品种简介[J].中国果树,1981,(2):32.
    [16] 韩岐山.杏树主要品种介绍[J].山西林业,1996,(4):16-17.
    [17] 王秀芹,吕英民.仁用杏优良品种简介[J].河北农业科技,1993,(10):28.
    [18] 葛维祯.果树栽培学(北方本)[M].北京:工人出版社,1988:246-247.
    [19] 王伟,张有林.鲜杏贮藏技术[J].安徽农业科学,2006,34(10):2246.
    [20] 河北农业大学.果树栽培学各论(北方本)·上册[M].北京:农业出版社,1980:204-205.
    [21] 杨月欣,王光亚,潘兴昌.中国食物成分表2002[M].北京:北京大学医学出版社,2002:88-89,100-101.
    [22] 张加延.杏的营养成分与医疗保健作用.温陟良,郗荣庭.中国园艺学会干果分会成立大会暨第二届全国干果生产与科研进展学术研讨会论文集[C].2001:131-135.
    [23] 张加延,孙升,杨承时.西部大开发杏产业前景广阔[J].西北园艺,2002,(4):8-9.
    [24] 张加延,孙升,杨承时.西部大开发应首选既治荒又治穷的杏产业.朱德蔚.中国园艺学会第九届学术年会论文集[C].2001:81-85.
    [25] Chambroy V., et al. Effects of different CO_2 treatments on postharvest changes of apricot fruit [J]. Acta Hort., 1991, 293: 675-684.
    [26] Inaba A. Recent studies on postharvest physiology and technology of horticultural crops in Japan [J]. Postharvest News and Technology, 1993, 4(4): 101-114.
    [27] Mclaren G F. Few apricots meet storage requirements [J]. Hort. Abst., 1991, 61(6): 541-542.
    [28] Bionde G, et al. Maturity indexes as a function of quality in apricot harvesting [J]. Acta Hort., 1991, 293: 667-674.
    [29] Visahie T R. Maturity index of apricots [J]. Hort. Abst., 1989, 59(7): 632.
    [30] Brwn G S, et al. Indicators of maturity in apricots using biplot multivariate analysis [J]. J. Sci. Food Agr., 1990, 53(3): 321-331.
    [31] Carlos H. Crisosto, Adel A. Kader. The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks: Apricot. USDA Agriculture Handbook Number 66, 2004.
    [32] 李体智,彭晓东.李、杏果实适宜采收成熟度初探[J].北方园艺,1989,(10):34-35.
    [33] 牛玉堂,赵欣萍.鲜食杏、李的果实采收技术要点[J].河北林业,2005,(2):28.
    [34] 关军锋.机械振动胁迫对杏果实生理特性的影响[J].食品科学,1994,(10):6-8.
    [35] Monzim A, et al. Prefreezing storage and industrial use of apricot with relationship to quality [J]. Acta Hort., 1991, 293: 559-655.
    [36] Tonini G, et al. Precooling of apricot: influence on rot, ripening and weight loss[J]. Acta Hort., 1991, 239: 701-704.
    [37] Sharma R C. Studies on postharvest disease of apricot and chemical control of Whiskers rot [J]. Hort. Abst., 1992, 62(5): 436-437.
    [38] 蒙盛华.《水果蔬菜贮藏保鲜技术》讲座—第四讲桃、李、杏的保鲜技术[J].农村实用工程技术,1999,(7):29-30.
    [39] Streif J. Storability of Buhler Fruhzwetschen [J]. Hort. Abst., 1991, 61(8): 782.
    [40] Gianpaolo Andrich, Roberto Fiorentini. Effects of controlled atmosphere on the storage of new apricot cultivars [J]. Journal of the Science of Food and Agriculture, 1986, 37(12): 1203-1208.
    [41] GB/T 17479-1998杏冷藏[S].
    [42] 高海生.杏果李子产地的贮藏保鲜[J].农村实用工程技术,2000,(5):28-29.
    [43] 朱建兰,常永义,陈德蓉.杏果实斑点病研究[J].中国果树,1995,(3):15-17.
    [44] 王吉奎,王勇,冯启收,倪善亮,袁安良,刘家莲.杏果实斑点病的发生与防治[J].山西果树,1995,(4):27-28.
    [45] 刘开启,杨炜华,郭泺.杏果实黑斑病病原鉴定及病原菌生物学特性[J].仲恺农业技术学院学报,2004,17(1):1-6.
    [46] 张天宇.中国真菌志(第十六卷)·链格孢属[M].北京:科学出版社,2003:188-190.
    [47] 杨炜华.杏果实黑斑病病原鉴定及相关链格孢菌的RAPD分析[D].泰安:山东农业大学,2002.
    [48] 曹建康.杏采后黑斑病潜伏侵染时期、机制及控制[D].兰州:甘肃农业大学,2002.
    [49] 梁臣,刘新立,徐睿,陈德成.杏果实贮藏保鲜研究[J].河南林业科技,1995,(4):3-5.
    [50] 丁立群,徐凌,郝义.沙金红杏果保鲜技术探讨[J].北方果树,2000,(1):8-9.
    [51] 徐凌,丁立群,郝义,韩国涛.银香白杏保鲜技术[J].中国果菜,2000,(6):19.
    [52] Ellen M. Welby, Brian McGregor. Agricultural Export Transportation Handbook. USDAAgriculture Handbook Number 700, 2004.
    [53] 孙金萍 译.预冷和冷藏对四种杏质量的影响(土耳其)[J].铁道货运,1994,(6):29-30.
    [54] 黄永红,张静,陈文玉.挂机自动冷库贮藏红丰杏的试验初报[J].落叶果树,2005,(5):35-36.
    [55] 杏采后保鲜技术要点[J].保鲜与加工,2001,1(3):24.
    [56] 王敬尊,梁俊香.杏的速冻[J].农村实用工程技术,1999,(7):30.
    [57] Claypool L L, R M Pangbom. Influence of controlled atmosphere storage on quality of canned apricots [J]. J. Amer. Soc. Hort. Sci., 1972, 97: 636-638.
    [58] Folchi A, G C Pratella, S P Tian and P Bertolini. Effect of low oxygen stress in apricot at different temperatures [J]. Ital. J. Food Sci., 1995, 7: 245-254.
    [59] 任文明,母智深,高爱武,张建华.相关气体对杏贮藏的影响[J].内蒙古农业科技,1999,(2):18-19.
    [60] Serek M, Sisler E C, Reid M S. Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowing plants [J]. J. Amer. Soc. Hort. Sci., 1994, 119(6): 1230-1233.
    [61] Sisler E C, Serek M. Inhibition of ethylene responses by 1-Methylcyclopropene and 3-Methylcyclopropene [J]. Plant Grow Regul., 1999, 27(2): 105-111.
    [62] Fan X, Argenta L, Mattheis J P. Inhibition of ethylene action by 1-methylcyclopropene prolongs storage life of apricots [J]. Postharvest Biology and Technology, 2000, 20: 135-142.
    [63] 王庆国,邓正焱,谷林.1-甲基环丙烯对杏采后保鲜效果的影响[J].山东农业科学,2005,(1):59-61.
    [64] Mei Zhong, Bin Wu, Ji-De Wang, Jian-Ming Wu, Li-Hui Wei. Effect of chlorine dioxide on ripening of 'Xiaobai' apricots [J]. Eur. Food Res. Technol., 2006, 223: 791-795.
    [65] Erol Ayranci, Sibel Tunc. The effect of edible coatings on water and vitamin C loss of apricots(Armeniaca vulgaris Lam.) and green peppers(Capsicum annuum L.) [J]. Food Chemistry, 2004, 87: 339-342.
    [66] 刁春英,毕阳.采后壳聚糖涂膜处理对损伤接种杏黑斑病的影响[J].甘肃农业大学学报,2000,35(4):445-449.
    [67] M I Egeaa, M C Marti'nez-Madridb, P Sa'nchez-Belc, M A Murciaa, F Romojaro. The influence of electron-beam ionization on ethylene metabolism and quality parameters in apricot (Prunus armeniaca L., cv. Bulida) [J]. LWT, 2007, 40: 1027-1035.
    [68] 蒋耀庭,孙英,王永利.高压静电场杏保鲜试验[J].烟台大学学报(自然科学与工程版),1993,(1):66-68.
    [69] 李富军,张新华.果蔬采后生理与衰老控制[M].北京:中国环境科学出版社,2004:10.
    [70] 杨映根,张立军,李钰.杏果实采后生理特征初探.植物学通报,1995,12(2):54-56.
    [71] 潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社,2001:187-189.
    [72] Amoros A, et al. The importance of ethylene in the development and ripening of apricots Bulide [J]. Hort. Abst., 1991, 61(2): 1116.
    [73] 李嘉瑞,周燕飞.低压条件下“拳杏”果实的乙烯代谢[J].西北农业大学学报(自然科学版),1993,21(2):13-18.
    [74] 陈美霞.杏果实风味物质的组成及其遗传特性的研究[D].泰安:山东农业大学,2005.
    [75] Tang C, Jenning W. Volatile compound of apricot [J]. J. Agric. Food Chem., 1967, 15: 24-28.
    [76] Chariote G, Rodriguez F, Crouzet J. Characterization of additional volatile flavor components of apricot [J]. J. Food Sci., 1981, 46: 1898-1901.
    [77] Guichard E, Souty M. Comparison of the relative quantities of aroma compounds found in fresh apricot(Prunus armeniaca) from six different varieties [J]. Z. Lebensm. Unters. Forsch, 1988, 186: 301-307.
    [78] Takeoka G, Flath R, Mon T, et al. Volatile constituents of apricot [J]. J. Agric. Food Chem., 1990, 38: 471-477.
    [79] Gomez E, Ledbetter C A. Development of volatile compounds during fruit maturation: Characterization of apricot and plum×apricot hybrids [J]. J. Sci. Food Agric., 1997, 74(4): 541-546.
    [80] 孙存普,张建中,段绍瑾.自由基生物学导论[M].北京:中国科学技术出版社,1999.
    [81] 杨书珍,任小林,彭丽桃,饶景萍.GA_3处理对采后油桃果实膜脂过氧化的影响[J].西北植物学报,2001,21(3):575-578.
    [82] 任小林,李嘉瑞.杏果实成熟衰老过程中活性氧和几种生理指标的变化(简报)[J].植物生理学通讯,1991,27(1):34-36.
    [83] 史国安,郭香凤,张益民,王淑芳.GA_3和乙烯利对杏果实采后活性氧代谢的影响[J].园艺学报,1997,24(1):87-88.
    [84] Lucette Dijkstra, John R L Walker. Enzymic browning in apricots(Prunus armeniaca) [J]. Journal of the Science of Food and Agriculture, 1991, 54(2): 229-234.
    [85] 郭香凤,史国安,张继澍.采后杏果实色泽的转变及GA_3的延缓作用[J].西北植物学报,1999,19(1):162-165.
    [86] 罗云波,蔡同一.园艺产品贮藏加工学[M].北京:中国农业大学出版社,2001.
    [87] 朱明月,沈文涛,周鹏.果实成熟软化机理研究进展.分子植物育种,2005,3(3):421-426.
    [88] 李家庆.果蔬保鲜手册[M].北京:中国轻工业出版社,2003.
    [89] 任仲傅,饶景萍,周新民,马锋旺.果品蔬菜贮藏运销学[M].西安:陕西科学技术出版社,1993:14-15.
    [90] 朱继英,王相友.果实采后软化机理的研究进展[J].山东:里工大学学报(自然科学版),2004,18(3):96-99.
    [91] Weckler D E. Structural characterization of pectic polyrmers during ripening and storage of apple(galactans, arabinans, arabinogalactan) [D]. DAI-C,58/04, P1990, 1997.
    [92] Fils-Lycaon M, Lovatl C J, Coggins C W, et al. Loss of firmness and changes in pectic fractions during ripening and over-ripening of sweet cherry [J]. HortSci., 1990, 25(7): 777-778.
    [93] Dawson D M, Walkins C B, Meiton L D. Intermittent harming affects cell wall composition of 'Frantasia' nectarine during ripening and storage [J]. J. Amer. Soc. Hort. Sci., 1995, 120(6): 1057-1062.
    [94] Ning B, Kubo Y. Softening characteristics of Chinese pear 'Yali' fruit with special relation to changes in cell wall polysaccharides and their degrading enzymes [J]. Scientific Reports of the Faculty of Agriculture Okayama University, 1997, 86: 71-78.
    [95] Kramer M, Sanders R. Postharvest evaluation of transgenic tomatoes with levels of polygalacturonase, processing and disease resistance [J]. Post. Biol. Tech., 1992, 1(2): 411-419.
    [96] Carfington C M S, Greve L C, Labavitch J M. Cell wall metabolism in ripening fruit. Ⅵ. Effect of the antisense polygalacturonase gene on cell wall changes accompanying ripening in transgenic tomatoes [J]. Plant Physiol., 1993, 103:429-434.
    [97] Von-Mollendoff L J, Jacob G, De-Villiers O T. Effects of temperature and fiuit size on firmness, extractable juice, wooliness and browning in two nectarine cultivars [J]. J. Hortsci., 1992, 67(5): 647-654.
    [98] 夏春森,王兰英.“红星”苹果在贮藏中果肉发棉生理过程的研究[J].园艺学报,1991,8(2):29-36.
    [99] Fischer R L, Bennett A B. Role of cell wall hydrolyses in fruit ripening [J]. Annu. Rev. Plant Physiol., 1991, 42: 675-683.
    [100] 周培根,罗祖友,戚晓玉,吴邦良.桃成熟期间果实软化与果胶及有关酶的关系[J].南京农业大学学报,1991,14(2):33-37.
    [101] Fishman M L, Gross K C, Gillespie D T, et al. Macromolecular components of tomato fruit pectin [J]. Arch. Biochem. Biophys., 1989, 274: 179-191.
    [102] Fishman M L, Levy B, Gillespie D T. Changes in the physiol-chemical properties of peach fruit pectin during on-tree ripening and storage [J]. J. Amer. Soc. Hort. Sci., 1993, 118(3): 343-349.
    [103] Blackboum H D, Jeger M J, John P, et al. Inhibition of degreening in the peel of bananas ripened at tropical temperatures. Ⅱ. Changes in plastid ultrastructure and chlorophyll protein complexes accompanying ripening in bananas and plantains [J]. Ann. Appl. Biol., 1990, 117: 147-161.
    [104] 饶景萍,任小林.果实成熟过程中组织超微结构变化[J].西北植物学报,1997,17(1):128-134.
    [105] Hayfield R, Nevins D J. Cell wall changes in ripening avocado fruits [J]. Plant Physiol., 1985, 77(4): 62-68.
    [106] 田建文.柿子常温贮藏研究[D].杨凌:西北农业大学,1991.
    [107] 余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1998.
    [108] Young R E, Salminen S, Sornsrivichai P. Facteurs at regulation dela maturation des fruits [J]. Paris: CNRS, 1975, 238: 271-280.
    [109] Mochizuki T, Kurosak T. Histochemical changes of starch in kiwifruit during fruit growth and storage [J]. Jap. Soc. Food Tech., 1988, 35(4): 221-225.
    [110] Arpaia M L, Labaritch J M. Change in the cell wall compentents of Kiwifruit during storage in air controlled atmosphere[J]. Amer. Sci., 1987, 112(2): 474-487.
    [111] 王贵禧,韩雅珊,于梁等.猕猴桃总淀粉酶活性与果实转化的关系[J].园艺学报,1994,21(4):329-333.
    [112] Solomos T. Postharvest Physiology and Crop Preservation [M]. New York: Plenum Press, 1983.
    [113] Wyman H, Palmer J K. Endopolygalacturonase and melting flesh locus in peach [J]. Amer. Soc. Hort. Sci., 1996, 121: 231-235.
    [114] Hobson G E. The firmness of tomato fruit in relation to polygalacturonase activity [J]: J. Hort. Sci., 1965, 40: 66-72.
    [115] 生吉萍,罗云波,申琳.PG和LOX对采后番茄果实软化及细胞超微结构的影响[J].园艺学报,2000,27(4):276-281.
    [116] 杨得兴,戴京晶,庞向宇,等.猕猴桃衰老过程中PG、果胶质和细胞避超微结构的变化[J].园艺学报,1993,20(4):341-345.
    [117] 陆胜民,席玛芳,张耀洲.梅果采后软化与细胞壁组分及其降解酶活性的变化[J].中国农业科学,2003,36(5):595-598.
    [118] 陈发河,吴光斌,冯作山.葡萄贮藏过程中落粒与离区酶活性变化及植物生长调节物质的关系[J].植物生理与分子生物学学报,2003;29(2):133-140.
    [119] 林河通,席玛芳,陈绍军.黄花梨果实采后软化生理基础[J].中国农业科学,2003,36(3):349-352.
    [120] 苍晶,王学东,王军虹,等.狗枣猕猴桃果实软化过程阶段性专一酶的研究[J].果树学报,2001,18(5):284-287.
    [121] MCCOLLUM T G, HUBER D J, CANTLIFFE D J. Modification of polyuronides and hemicelluloses during muskmelon fruit softening [J]. Physiologia Plantarum, 1989, 76(3): 303-308.
    [122] KANG I K, CHANGKH, BYUN J K. Changes in activities of cell wall hydrolases during ripening and softening in persimmon fruit [J]. Journal of the Korean Society for Horticultural Science, 1998, 39: 155-159.
    [123] TUCKER G A. Changes in polygalacturonase isozymes during the 'ripening' of normal and mutant tomato fruit [J]. Europe Journal of Biochemistry, 1980, 112: 119-124.
    [124] BRADY C, MACALPINE G, MCG1ASSON, et al. Polygalacturonase in tomato fruit and the induction of ripening [J]. Australia Journal of Plant Physiology, 1982, 9: 171-178.
    [125] SMITH C J S, WATSON C F, MORRIS P S, et al. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes [J]. Plant Molecular Biology, 1990, 14: 369-379.
    [126] BIRD C R, SMITH C J S, RAY J A, et al. The tomato polygalacturonase gene and ripening-specific expression in transgenic plants [J]. Plant Molecular Biology, 1988, 11: 651-662.
    [127] DELLAPENNA D, LINCOLN J E, FISCHER R L, et al. Transcriptional analysis of polygalacturonase and other ripening associated genes in Rutgers, rin, nor, and Nr tomato fruit [J]. Plant Physiology, 1989, 90: 1372-1377.
    [128] GIOYANNONI J J, DELLAPENNA D, BENNETTA B, et al. Expression of a chimeric polygalacturonase gene in fin(ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening [J]. Plant Cell, 1989, 1: 53-63.
    [129] 叶志彪,李汉霞.两个反义基因在番茄工程植物中的生理抑制效应分析[J].植物生理学报,1996,22(2):157-160.
    [130] 缪颖,毛玛节,叶钢.采前钙处理对水蜜桃果实软化过程中蛋白质代谢的影响[J].浙江农业大学学报,1992,18(4):35-39.
    [131] 卢春彬.PG在番茄果实成熟中的作用及二价金属离子与乙烯对PG活性的影响[J].植物学报,1990,32(5):337-347.
    [132] Lieberman M. Postharvest Physiology and Crop Preservation [M]. NewYork: Plenum, 1983.
    [133] WOLFANG S. Control and maniplation of gene expression during tomato fruit ripening [J]. Plant Molecular Biology, 1989, 13: 303-311.
    [134] 罗自生.MA贮藏对桑果细胞壁组分和水解酶活性的影响[J].果树学报,2003,20(3):214-217.
    [135] 石海燕,冯双庆.气调贮藏对“紫花”芒果PG、纤维素酶及果实硬度的影响[J].园艺学报,1997,24(4):407-409.
    [136] KNEE M, BARTELY I M. Recent Advances in the Bio-chemistry of Fruits and Vegetables [M]. London: Academic Press, 1981.
    [137] BARRETT D M, GONZALEZ C. Activity of softening enzymes during cherry maturation [J]. Journal of Food Science, 1994, 59(3): 574-577.
    [138] 王贵禧,韩雅珊,于梁.猕猴桃软化过程中阶段性专一酶活性变化的研究[J].植物学报,1995,37(3):198-203.
    [139] 王贵禧,韩雅珊.猕猴桃果实中PME、PG及其抑制因子的研究[J].中国农业大学学报,1998,3(1):88-94.
    [140] HILARY G, COLIN B. Purification of three pectin esterases from ripe peach fruit [J]. Phytochemistry, 1994, 31(4): 949-959.
    [141] 杨光,陈学平,高锡永.柑桔果胶酯酶钝化的研究[J].食品科学,1991,12(11):1-8.
    [142] WEGRZYN T F, MACRAE E A. Pectinesterase, Polygalacturonase, and β-galactoidases during softening of ethylene-treated kiwifruit[J]. HortScience, 1992, 27(8): 900-902.
    [143] Huber D J. The role of cell wall hydrolyses in fruit sottening[J]. Horticultural reviews, 1983, 5:169-219.
    [144] 茅林春,张上隆.果胶酶和纤维素酶在桃果实成熟和絮败中的作用[J].园艺学报,2001,28(2):107-111.
    [145] Huber D J. Strawbery fruit softening: the potential foles of polyuronides and hemicelluloses[J]. Food Sci., 1984, 49: 1310-1315.
    [146] Laian H, Slamat M K, Ali Z M. β-galactorunase and pectinesterase in differential softening and cell wall modification during papaya fruit ripening [J]. Physiol. Plant, 1995, 95: 106-112.
    [147] Cardarelli M T, Botondi R, Mencarelli F. Role of glycosidases in the softening of apricots during postharvest ripening [A]. In: Atti del Workshop Nazionale. Postraccolta Degli Ortotlorofiutticoli Vol. 5 [C]. Italy: Ascea Marina, 1998.
    [148] Rouen R, Iauberman G, Akerman M, et al. Xylanase and xylosidase activities in avocado fruit [J]. Plant Physiol., 1991, 95: 961-964.
    [149] Kung I K, Kim H Y, Kweon H J, et al. Changes in ethylene production, respiration rates and cell wall hydrolase activities during storage of apple [J]. J. Kor. Soc. Hort. Sci., 1999, 40(4): 451-454.
    [150] Redgwell T B, Fry S C. Xyloglucan endotransglycosylase activity increases during kiwifruit(Actinidia deliciosa) ripening [J]. Plant Physiol., 1993, 103: 1399-1406.
    [151] 王海滨.植物的脂肪氧化酶[J].植物生理学通讯,1990,(2):63-67.
    [152] 罗云波,生吉萍,李钰,夏红进.番茄脂肪氧合酶与乙烯释放量的关系[J].园艺学报,1999,26(1):28-32.
    [153] 生吉萍,罗云波,申琳.转ACS番茄采后脂质过氧化相关酶研究初报[J].中国农业大学学报,1999,4(1):64.
    [154] 张荣平.脂氧合酶在植物体内的生理功能[J].莱阳农学院学报,1993,10(1):47-51.
    [155] 梁小娥,王三宝.枣采后果肉软化的生化和细胞超微结构变化[J].园艺学报,1998,25(4):333-337.
    [156] Biale J B. Encyclopaedia of plant physiology [J]. Springer Verlag Berlin, 1980, 12: 536-592.
    [157] Mcmurchie E J. Ethylene biosynthesis: Identifiation of 1-aminocylopropane, 1-carboxylic acid as an intermediate in the concersion of methionine to ethylene [J]. Nature Acad. Sci., 1979, 76: 170-174.
    [158] 刘愚.乙烯生物合成及其调节进展[J].植物生理学通讯,1986,(1):60-66.
    [159] Sam C E. Effect of oxygen atmosphere on ACC content ethylene production, respiration rate and firmness of stayman apple [J]. Plant Physiol., 1983, 72(1): 21-25.
    [160] Kader A A, Morris L L, Lyons J M. Increased activity of ornithine decarboxylase in tomato ovavies induced by auxin [J]. Plant Physiol., 1982, 54: 367-368.
    [161] Dreher T W, Poovaiah B W. Changes in auxin content during development in strawberry fruits [J]. Plant Growth Regul., 1982, 1: 267-276.
    [162] 陈昆松,张上隆,吕均良,等.脱落酸吲乙酸和乙烯在猕猴桃后熟进程的变化[J].中国农业科学,1997,30(2):54-57.
    [163] Manning K. Changes in gene expression during strawberry fruit ripening and their regulation by auxin [J]. Planta, 1994: 62-68.
    [164] 吴有梅.ABA和乙烯在草莓采后成熟衰老中的作用[J].植物生理学报,1992,18(2):167-172.
    [165] 冯双庆,赵玉梅.果蔬保鲜技术及常规测试方法[M].北京:化学工业出版社,2001:145-147.
    [166] GB/T 12456-1990食品中总酸的测定方法[S].
    [167] GB/T 5009.7-2003食品中还原糖的测定[S].
    [168] 侯曼玲.食品分析[M].北京:化学工业出版社,2004:86-90.
    [169] 彭志英.食品酶学导论[M].北京:中国轻工业出版社,2002:128-131.
    [170] 侯福林.植物生理学实验教程[M].北京:科学出版社,2004:90.
    [171] 中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999:305-306.
    [172] 田寿乐,周俊义.不同贮藏温度与鲜枣果实中保护酶及脂氧合酶活性变化的关系[J].河北农业大学学报,2006,29(1):46-49.
    [173] Buescher R W, Furmanski R J. Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches[J].J Food Sci,1978,43:264-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700