石墨烯及其典型聚合物纳米复合材料的制备方法、结构与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是由碳原子构成的单原子厚度的二维层状材料,具有奇异的特点和优异的性能,是当前国际研究热点,受到物理、化学、材料、电子、能源、生物和信息技术等领域的广泛关注。石墨烯可以显著地提高聚合物的性能,石墨烯/聚合物纳米复合材料(GPNC)是石墨烯最具希望的应用之一。但是,GPNC的基础研究和实际应用仍然面临着许多科学和技术问题,其中主要包括三个方面:(1)石墨烯的高效制备方法;(2)分散性良好的GPNC规模化制备方法;(3)对于GPNC性能与微结构的内在本质关系的研究。
     本论文设计了密闭氧化法、氨-水合肼复合还原法和母粒-熔融复合法,分别用于制备氧化石墨(GO)、石墨烯和GPNC,具备简便、高效和高质量等优点;母粒-熔融复合法兼顾了GPNC的良好分散性与规模化制备的可行性,初步解决了GPNC的工业化生产和实际应用所面临的关键技术问题。重点研究了GPNC的微观结构、力学性能、热稳定性和火安全性能以及相关机理。为了研究石墨烯的片层阻隔效应、石墨烯片层的导热性以及石墨烯与聚合物基体之间的界面相互作用对GPNC结构与性能的影响,选取了聚乳酸(PLA)、聚乙烯醇(PVA)和聚苯乙烯(PS)三种与石墨烯具有不同的界面相互作用的聚合物作为基体.基于GO、石墨烯以及不同的聚合物基体进行对比研究,初步揭示了GPNC微观结构与性能之间的本质关系,阐明了石墨烯影响GPNC热稳定性和火安全性的机理。本论文为GPNC的基础研究和实际应用奠定了一定的理论和实验基础,并初步开拓了切实可行的工业化生产技术路线。
     设计了密闭氧化法和氨-水合肼复合还原法,从而实现氧化石墨和石墨烯的高效制备。密闭氧化法是将石墨在反应釜中与强酸和强氧化剂进行氧化反应的方法,包括加料、低温处理(温度为5℃以下,时间为1小时以上)和高温反应(温度为60-160℃,时间为1小时以上)三个步骤。相比于传统的Hummers法,密闭氧化法简化了制备过程,降低了制备操作和温度控制的要求,实现GO的尺寸和形貌的可控性。氨-水合肼复合还原法是用氨水和水合肼对GO进行联合还原的方法。相比于传统的水合肼还原法,氨-水合肼复合还原法制备的石墨烯还原程度高,产物中含氧官能团——尤其是羟基——数量少,厚度仅为0.4-0.6nm,是目前最接近理论值(0.34nm)的报道之一。
     设计了母粒-熔融复合法,应用于石墨烯/PLA纳米复合材料,实现了通过工业加工设备制备具有良好分散性的GPNC。石墨烯在PLA中形成良好的分散和层离状态,显著地提高了材料的结晶性能、导电性、力学性能和火安全性能。从材料的结构和性能的相互验证中,推断出影响石墨烯/PLA纳米复合材料性能的机理,研究表明:(1)石墨烯在PLA中形成连通的导电、导热网络,并存在一定的阂值;(2)石墨烯具有增强GPNC力学性能的作用,同时因为阻隔PLA分子间的相互作用而具有降低GPNC力学性能的作用,两者的相互竞争导致纳米复合材料的力学性能在石墨烯含量为0.08%-0.2%时出现反复和拐点;(3)石墨烯的高导热性是降低石墨烯/PLA纳米复合材料热解温度和点燃时间的主要原因;(4)石墨烯片层的片层阻隔效应是降低石墨烯/PLA纳米复合材料的热解失重速率与热释放速率的主要原因。
     文献报道认为石墨烯(或GO)与PVA之间的氢键作用是导致纳米复合材料性能增强的根本原因,但是这一论断与相关文献的统计规律相抵触。因此,对GO/PVA和石墨烯/PVA纳米复合材料的分散性、结晶、电学性能、力学性能和热稳定性等进行了对比研究。GO和石墨烯均显著地提高了PVA的性能。研究表明:(1)石墨烯的分散性差于GO,但是有更好的性能增强效果,这与相关文献一致;(2)氢键的作用主要是促使石墨烯或GO形成良好的分散;(3)石墨烯片层自身结构的完整性,即石墨烯晶格结构的完整性,是提高石墨烯/PVA纳米复合材料性能的根本原因;(4)石墨烯片层的片层阻隔效应是提高纳米复合材料热稳定性的主要原因,石墨烯的高导热性是降低纳米复合材料热解温度的主要原因,两者的相互竞争使石墨烯/PVA纳米复合材料的热解温度随着石墨烯添加量的增加而先降低后升高。
     为了验证母粒-熔融复合法通过工业生产设备制备GPNC的可行性,以及研究过渡金属和石墨烯在提高聚合物材料的火安全性能方面的协效作用,基于GO、石墨烯、负载二氧化锆(Zr-Gr)和负载氢氧化镍(Ni-Gr)的石墨烯,通过密炼机和双螺杆挤出机制备了以PS为基体的纳米复合材料。母粒中的PS防止石墨烯片层在干燥和加工过程中发生团聚;熔融复合过程中,螺杆对PS熔体和石墨烯的剪切作用促使石墨烯片层充分层离;两者的综合作用使石墨烯在PS中形成良好的分散性和层离状态。GO/PS纳米复合材料的热失重速率峰值对应温度最大增幅为10.8℃,石墨烯/PS的最大增幅为14.0℃,Zr-Gr/PS的最大增幅为10.5℃,Ni-Gr/PS的最大增幅为17.5℃。以上四种纳米复合材料的热释放速率峰值最大降幅分别为23%、34%、42%和41%,CO生成量显著降低,表明金属化合物与石墨烯形成了协同作用。研究表明:(1)实现了在现有的工业生产设备的基础上通过母粒-熔融复合法制备具有良好的分散性的GPNC,为GPNC的工业化生产和实际应用奠定了一定的实验和技术基础;(2)通过GO与石墨烯之间以及PLA、PVA和PS三个体系之间的相互对比,证明了石墨烯片层的片层阻隔效应和界面相互作用是提高聚合物材料热稳定性和火安全性能的主要原因;(3)过渡金属化合物和石墨烯在聚合物材料火安全性能上存在协效作用。
     采用六氯环三磷腈和环氧丙醇对GO进行表面修饰,制备出含环氧基团的改性氧化石墨(FGO),并通过原位聚合法制备了FGO/环氧树脂纳米复合材料。FGO与环氧树脂之间的化学键形成了强的界面相互作用,促使FGO形成良好的分散,显著地提高纳米复合材料的性能,如储能模量的最大增幅为131%,硬度的最大增幅为32%,热失重速率峰值的最大降幅为27%。
Graphene, a monolayer of sp2carbon atoms with many unique properties, has gained much attention from various areas, such as the physics, chemistry, material, electron, energy, biology and information technique fields. One of the most promising applications of graphene is the graphene/polymer nanocomposite (GPNC), in which graphene causes significant improvements in various properties. There are still challenges in the academic research and practical application of GPNC:1) preparation of graphene with high efficiency;2) preparation of GPNC with good dispersion and in large quantities;3) investigation of the relationship between the structure and properties as well as the mechanism for the enhanced properties. In order to overcome those challenges, this paper mainly focused on three aspects:1) high efficient preparation of graphite oxide (GO) and graphene;2) a masterbatch-melt blending method to prepare GPNC;3) investigations of the structure, properties and mechanism of the improved properties in GPNC. In order to clarify the roles of the physical barrier effect of graphene, the high thermal conductivity of graphene and the interface interaction between graphene and polymer matrix on the thermal stability and fire safety properties of GPNC, poly(lactic acid)(PLA), poly(vinyl alcohol)(PVA) and polystyrene (PS) was choosen as the polymeric matrix of GPNC. By the compoarisons between GO, graphene and the three kinds of polymers, the mechanism of the improved thermal stabilitiy and fire safety propeties was studied.
     A pressurized oxidation and an ammonia-hydrazine-based multiplex reduction were developed to prepare GO and graphene, respectively. The pressurized oxidation was carried out in reactor with three steps:adding react agents, low temperature treatment (<5℃,>1hr) and high temperature reaction (60-160℃,>1hr). GO was prepared by the pressurized oxidation with fairly easy operation and controllable morphology and size. The ammonia-hydrazine-based multiplex reduction prepared graphene which can be easily observed by atomic force microscopy with a thickness (0.4-0.6nm) which is fairly closed to the ideal value.
     A masterbatch-melt blending was employed to prepare graphene/PLA nanocomposites. The graphene was well dispersed and exfoliated in the PLA, and the crystallinity, electrical conductivity, mechanical properties and fire safety performance of the nanocomposites were obviously improved. The mechanism of the improved properties were investigated:1) the graphene started to form a conducting network at the loading content of0.08%;2) the graphene reinforced the mechanism properties of the nanocomposites, but it also cut down the interaction among the PLA molecules and hence reduced the mechanical properties, competition of the reinforcing and the reducing caused inflexions at0.08%-0.2%;3) the high thermal conductivity of graphene was the main reason for the decreased thermal degradation temperature and ignition time, and the mass barrier effect of graphene is the cause of the reduced degradation rate and heat release rate.
     In the earlier literature, the hydrogen bonding between graphene (or GO) and PVA was regarded as the causes of property enhancements. GO/PVA and graphene/PVA nanocomposites were studied in order to investigate the mechanism of the improved properties. GO and graphene caused obvious property enhancements such as storage modulus and electrical conductivity. There are mainly four conclusions:1) graphene presented a poorer dispersion than GO but caused more property enhancements;2) the hydrogen bonding mainly contributed to the dispersion of the graphene (or GO) layers;3) the main cause of the improved properties was the completeness of graphene (or GO) structure;4) the mass barrier effect was the main reason for the improved thermal stability; when the loading amount was small, the thermal degradation temperature was decreased due to the high thermal conductivity of graphene; when the loading amount was large, the mass barrier effect dominated so the thermal degradation temperature was increased.
     PS-based nanocomposites were prepared based on GO, graphene, ZrO2-loaded graphene and Ni(OH)2-loaded graphene (joint title:Gs). The Gs were well dispersed and exfoliated due to two reasons:1) the PS in the masterbatch prevented the Gs from aggregation during drying and processing;2) the shearing effect during the melt blending further improved dispersion and exfoliation. The thermal degradation was increased with2%Gs (10.8℃with GO,14.0℃with graphene,10.5℃with ZrO2-loaded graphene and17.5℃with Ni(OH)2-loaded graphene). The peak heat release rate of the above four kinds of nanocomposites was reduced by23%,34%,42%and41%, respectively. There were three conclusions:1) the master-melt blending was feasible for the industrial processing of GPNC, which pioneers a viable path to the practical producing and application of GPNC;2) the mass barrier and interface interaction were found to be the main reasons for the improved thermal stability;3) there was synergism effect between the loaded metal and graphene on the fire safety properties of the PS-based nanocomposites.
     The masterbatch-melt blending was feasible with thermoplastic polymers but was not available in thermosetting polymers such as epoxy resin. In order to obtain good dispersion and strong interface interaction, GO was modified with hexachlorocyclotriphosphazene and glycidol and then incorporated into epoxy by the in-situ curing. The storage modulus (131%), hardness (32%) and electrical conductivity (6.5magnitude orders) were obviously increased and the maximum degradation rate was decreased by27%.
     As compared to the tradition preparation methods, the pressurized oxidation, ammonia-hydrazine multiplex reduction and the masterbatch-melt blending were more convenient and efficient. The masterbatch-melt blending offered a feasible way toward the industrial processing of GPNC with good dispersion. The investigations of the properties and mechanism promoted the research of GPNC.
引文
[1]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science.2004,306(5696):666-669.
    [2]Geim AK, Novoselov KS. The rise of graphene. Nat Mater.2007,6(3):183-191.
    [3]Barlas Y, Yang K, MacDonald AH. Quantum Hall effects in graphene-based two-dimensional electron systems. Nanotechnology.2012,23(5):052001.
    [4]Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science.2008,321(5887):385-388.
    [5]Du X, Skachko I, Barker A, Andrei EY. Approaching ballistic transport in suspended graphene. Nat Nanotechnol.2008,3(8):491-495.
    [6]Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, et al. Superior thermal conductivity of single-layer graphene. Nano Lett.2008,8(3):902-907.
    [7]Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, et al. Extremely high thermal conductivity of graphene:Prospects for thermal management applications in nanoelectronic circuits. AppPhys Lett.2008,92(15):151911.
    [8]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol.2008,3(5):270-274.
    [9]Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010,43(16):6515-6530.
    [10]Pumera M. Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev.2010, (11):4146-4157.
    [11]Zhao WF, Fang M, Wu FR, Wu H, Wang LW, Chen GH. Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem.2010,20(28):5817-5819.
    [12]Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mat.2010,22(11):3441-3450.
    [13]McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mat.2007, 19(18):4396-4404.
    [14]Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon.2007, 45(7):1558-1565.
    [15]Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS. Hydrazine-reduction of graphite-and graphene oxide. Carbon.2011,49(9):3019-3023.
    [16]Ren PG, Yan DX, Ji X, Chen T, Li ZM. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology.2011,22(5):1-8.
    [17]Bon SB, Valentini L, Verdejo R, Fierro JLG, Peponi L, Lopez-Manchado MA, et al. Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chem Mat.2009,21(14):3433-3438.
    [18]Compton OC, Dikin DA, Putz KW, Brinson LC, Nguyen ST. Electrically conductive "alkylated" graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater.2010,22(8):892-896.
    [19]Xu LQ, Yang WJ, Neoh KG, Kang ET, Fu GD. Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules.2010,43(20):8336-8339.
    [20]Janowska I, Chizari K, Ersen O, Zafeiratos S, Soubane D, Da Costa V, et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res.2010, 3(2):126-137.
    [21]Liu WW, Wang JN. Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem Comm.2011,47(24):6888-6890.
    [22]Chen CF, Chen TT, Wang HL, Sun GB, Yang XJ. A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide. Nanotechnology.2011,22(40):405602.
    [23]Loh KP, Bao QL, Ang PK, Yang JX. The chemistry of graphene. J Mater Chem.2010, 20(12):2277-2289.
    [24]Cai DY, Song M. Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem.2010,20(37):7906-7915.
    [25]Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials:Past, present and future. Prog Mater Sci.2011,56(8):1178-1271.
    [26]Wang XQ, Fulvio PF, Baker GA, Veith GM, Unocic RR, Mahurin SM, et al. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chem Comm.2010,46(25):4487-4489.
    [27]Cravotto G, Cintas P. Sonication-assisted fabrication and post-synthetic modifications of graphene-like materials. Chem-Eur J.2010,16(18):5246-5259.
    [28]Campos-Delgado J, Romo-Herrera JM, Jia XT, Cullen DA, Muramatsu H, Kim YA, et al. Bulk production of a new form of sp(2) carbon:Crystalline graphene nanoribbons. Nano Letters.2008,8(9):2773-2778.
    [29]Chae SJ, Gunes F, Kim KK, Kim ES, Han GH, Kim SM, et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition:wrinkle formation. Adv Mater.2009,21(22):2328-2333.
    [30]Reina A, Jia XT, Ho J, Nezich D, Son HB, Bulovic V, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett.2009,9(1):30-35.
    [31]Ren WC, Gao LB, Ma LP, Cheng HM. Preparation of graphene by chemical vapor deposition. New Carbon Mater.2011,26(1):71-80.
    [32]Huang H, Chen W, Chen S, Wee ATS. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano.2008,2(12):2513-2518.
    [33]Guisinger NP, Rutter GM, Crain JN, First PN, Stroscio JA. Exposure of epitaxial graphene on sic(0001) to atomic hydrogen. Nano Letters.2009,9(4):1462-1466.
    [34]Kim KJ, Choi JH, Lee H, Lee HK, Kang TH, Han YH, et al. Effects of 1 MeV electron beam irradiation on multilayer graphene grown on 6H-SiC(0001). J Phys Chem C.2008, 112(34):13062-13064.
    [35]Cano-Marquez AG, Rodriguez-Macias FJ, Campos-Delgado J, Espinosa-Gonzalez CG, Tristan-Lopez F, Ramirez-Gonzalez D, et al. Ex-MWNTs:Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett.2009, 9(4):1527-1533.
    [36]Jiao LY, Zhang L, Wang XR, Diankov G, Dai HJ. Narrow graphene nanoribbons from carbon nanotubes. Nature.2009,458(7240):877-880.
    [37]Rangel NL, Sotelo JC, Seminario JM. Mechanism of carbon nanotubes unzipping into graphene ribbons. J Chem Phys.2009,131(3):031105.
    [38]Wang JZ, Manga KK, Bao QL, Loh KP. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. J Am Chem Soc.2011,133(23):8888-8891.
    [39]Qian W, Hao R, Hou YL, Tian Y, Shen CM, Gao HJ, et al. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res.2009,2(9):706-712.
    [40]Choucair M, Thordarson P, Stride JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nanotechnol.2009,4(1):30-33.
    [41]Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature.2007,448(7152):457-460.
    [42]Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano.2008, 2(3):463-470.
    [43]Zhao JP, Pei SF, Ren WC, Gao LB, Cheng HM. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano.2010,4(9):5245-5252.
    [44]Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters.2008, 8(8):2277-2282.
    [45]Paek SM, Yoo E, Honma I. Enhanced Cyclic Performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Letters.2009,9(1):72-75.
    [46]Zhu XJ, Zhu YW, Murali S, Stollers MD, Ruoff RS. Nanostructured reduced graphene oxide/Fe203 composite as a high-performance anode material for lithium ion batteries. ACS Nano.2011,5(4):3333-3338.
    [47]Service RE Materials science-New 'supercapacitor' promises to pack more electrical punch. Science.2006,313(5789):902.
    [48]Zhang LL, Zhou R, Zhao XS. Graphene-based materials as supercapacitor electrodes. J Mater Chem.2010,20(29):5983-5992.
    [49]Chen S, Zhu JW, Wu XD, Han QF, Wang X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano.2010,4(5):2822-2830.
    [50]Yu GH, Hu LB, Liu NA, Wang HL, Vosgueritchian M, Yang Y, et al. enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Letters.2011, 11(10):4438-4442.
    [51]Zhang K, Zhang LL, Zhao XS, Wu JS. Graphene/polyaniline nanoriber composites as supercapacitor electrodes. Chem Mat.2010,22(4):1392-1401.
    [52]Davies A, Audette P, Farrow B, Hassan F, Chen ZW, Choi JY, et al. Graphene-based flexible supercapacitors:pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C.2011,115(35):17612-17620.
    [53]Zhu YW, Murali S, Stoller MD, Ganesh KJ, Cai WW, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science.2011,332(6037):1537-1541.
    [54]Wang X, Zhi LJ, Mullen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters.2008,8(1):323-327.
    [55]Valentini L, Cardinali M, Bon SB, Bagnis D, Verdejo R, Lopez-Manchado MA, et al. Use of butylamine modified graphene sheets in polymer solar cells. J Mater Chem.2010, 20(5):995-1000.
    [56]Bajpai R, Roy S, Kumar P, Bajpai P, Kulshrestha N, Rafiee J, et al. Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. Acs Appl Mater Interface.2011,3(10):3884-3889.
    [57]Yen MY, Teng CC, Hsiao MC, Liu PI, Chuang WP, Ma CCM, et al. Platinum nanoparticles/graphene composite catalyst as a novel composite counter electrode for high performance dye-sensitized solar cells. J Mater Chem.2011,21(34):12880-12888.
    [58]Park H, Rowehl JA, Kim KK, Bulovic V, Kong J. Doped graphene electrodes for organic solar cells. Nanotechnology.2010,21(50):505204.
    [59]Yang HB, Guai GH, Guo CX, Song QL, Jiang SP, Wang YL, et al. NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. J Phys Chem C.2011,115(24):12209-12215.
    [60]Narayanan R, Deepa M, Srivastava AK. Nanoscale connectivity in a TiO(2)/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance. Phys Chem Chem Phys.2012,14(2):767-778.
    [61]Qu LT, Liu Y, Baek JB, Dai LM. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano.2010,4(3):1321-1326.
    [62]Feng LY, Chen YG, Chen L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells. ACS Nano.2011,5(12):9611-9618.
    [63]Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem.2012,22(2):390-395.
    [64]Shang NG, Papakonstantinou P, Wang P, Ravi S, Silva P. Platinum integrated graphene for methanol fuel cells. J Phys Chem C.2010,114(37):15837-15841.
    [65]Zhou YG, Chen JJ, Wang FB, Sheng ZH, Xia XH. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem Comm.2010,46(32):5951-5953.
    [66]Qiu JD, Wang GC, Liang RP, Xia XH, Yu HW. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J Phys Chem C. 2011,115(31):15639-15645.
    [67]Xin YC, Liu JG, Zhou Y, Liu WM, Gao JA, Xie Y, et al. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J Power Sources. 2011,196(3):1012-1018.
    [68]Choi JY, Higgins D, Chen ZW. Highly durable graphene nanosheet supported iron catalyst for oxygen reduction reaction in pern fuel cells. J Electrochem Soc.2012,159(1):B87-B90.
    [69]Lee SH, Kakati N, Jee SH, Maiti J, Yoon YS. Hydrothermal synthesis of PtRu nanoparticles supported on graphene sheets for methanol oxidation in direct methanol fuel cell. Mater Lett. 2011,65(21-22):3281-3284.
    [70]Rao CV, Cabrera CR, Ishikawa Y. Graphene-supported Pt-Au alloy nanoparticles:a highly efficient anode for direct formic acid fuel cells. J Phys Chem C.2011,115(44):21963-21970.
    [71]Jafri RJ, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem. 2010,20(34):7114-7117.
    [72]Cao YC, Xu CX, Wu X, Wang X, Xing L, Scott K. A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources.2011, 196(20):8377-8382.
    [73]Zarrin H, Higgins D, Jun Y, Chen ZW, Fowler M. Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C.2011,115(42):20774-20781.
    [74]Ang PK, Chen W, Wee ATS, Loh KP. Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc.2008,130(44):14392-14393.
    [75]Huang B, Li ZY, Liu ZR, Zhou G, Hao SG, Wu J, et al. Adsorption of gas molecules on graphene nanoribbons and its implication for panoscale molecule sensor. J Phys Chem C. 2008,112(35):13442-13446.
    [76]Robinson JT, Perkins FK, Snow ES, Wei ZQ, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Letters.2008,8(10):3137-3140.
    [77]Lu GH, Ocola LE, Chen JH. Reduced graphene oxide for room-temperature gas sensors. Nanotechnology.2009,20(44):445502.
    [78]Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH. Practical chemical sensors from chemically derived graphene. ACS Nano.2009,3(2):301-306.
    [79]Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. A graphene platform for sensing biomolecules. Angew Chem-Int Edit.2009,48(26):4785-4787.
    [80]Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH. Recent advances in graphene-based biosensors. Biosens Bioelectron.2011,26(12):4637-4648.
    [81]Myung S, Solanki A, Kim C, Park J, Kim KS, Lee KB. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater. 2011,23(19):2221-2225.
    [82]Roy S, Soin N, Bajpai R, Misra DS, McLaughlin JA, Roy SS. Graphene oxide for electrochemical sensing applications. J Mater Chem.2011,21(38):14725-14731.
    [83]Li SJ, Xing Y, Wang GF. A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone. Microchim Acta.2012,176(1-2):163-168.
    [84]Guo SJ, Dong SJ, Wang EW. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano.2010,4(1):547-555.
    [85]Huang J, Zhang LM, Chen BA, Ji N, Chen FH, Zhang Y, et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in SIMS and catalysis. Nanoscale.2010,2(12):2733-2738.
    [86]Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater.2011, 10(10):780-786.
    [87]Wang Y, Shao YY, Matson DW, Li JH, Lin YH. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano.2010,4(4):1790-1798.
    [88]Zhang CL, Yuan YX, Zhang SM, Wang YH, Liu ZH. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew Chem-Int Edit.2011,50(30):6851-6854.
    [89]Luo M, Chen X, Zhou GH, Xiang X, Chen L, Ji XH, et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem Comm.2012,48(8):1126-1128.
    [90]Cui L, Lin XY, Lin NH, Song YL, Zhu Z, Chen X, et al. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chem Comm.2012,48(2):194-196.
    [91]Wang Y, Li ZH, Wang J, Li JH, Lin YH. Graphene and graphene oxide:biofunctionalization and applications in biotechnology. Trends Biotechnol.2011,29(5):205-212.
    [92]Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS. Superparamagnetic graphene oxide-Fe(3)O(4) nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem. 2009,19(18):2710-2714.
    [93]Zhang LM, Xia JG, Zhao QH, Liu LW, Zhang ZJ. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010,6(4):537-544.
    [94]Bao HQ, Pan YZ, Ping Y, Sahoo NG, Wu TF, Li L, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small.2011,7(11):1569-1578.
    [95]Liu KP, Zhang JJ, Cheng FF, Zheng TT, Wang CM, Zhu JJ. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem.2011,21(32):12034-12040.
    [96]Pandey H, Parashar V, Parashar R, Prakash R, Ramteke PW, Pandey AC. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale.2011,3(10):4104-4108.
    [97]Miwa RH, Martins TB, Fazzio A. Hydrogen adsorption on boron doped graphene:an ab initio study. Nanotechnology.2008,19(15):155708.
    [98]Casolo S, Lowik OM, Martinazzo R, Tantardini GF. Understanding adsorption of hydrogen atoms on graphene. J Chem Phys.2009,130(5):054704.
    [99]Lamari FD, Levesque D. Hydrogen adsorption on functionalized graphene. Carbon.2011, 49(15):5196-5200.
    [100]Kim G, Jhi SH. Ca-decorated graphene-based three-dimensional structures for high-capacity hydrogen storage. J Phys Chem C.2009,113(47):20499-20503.
    [101]Lee H, Ihm J, Cohen ML, Louie SG. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Letters.2010,10(3):793-798.
    [102]Beheshti E, Nojeh A, Servati P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon.2011,49(5):1561-1567.
    [103]Park HL, Yoo DS, Yi SC, Chung YC. Theoretical investigation of ti-adsorbed graphene for hydrogen storage using the ab-initio method. J Nanosci Nanotechno.2011,11 (7):6131-6135.
    [104]Johnson JL, Behnam A, Pearton SJ, Ural A. Hydrogen sensing using pd-functionalized multi-layer graphene nanoribbon networks. Adv Mater.2010,22(43):4877-4880.
    [105]Bhattacharya A, Bhattacharya S, Majumder C, Das GP. Transition-metal decoration enhanced room-temperature hydrogen storage in a defect-modulated graphene sheet. J Phys Chem C.2010,114(22):10297-10301.
    [106]Dimitrakakis GK, Tylianakis E, Froudakis GE. Pillared Graphene:A new 3-D network nanostructure for enhanced hydrogen storage. Nano Letters.2008,8(10):3166-70.
    [107]Potts JR, Dreyer DR, Bielawski CW, Ruoff RS. Graphene-based polymer nanocomposites. Polymer.2011,52(1):5-25.
    [108]Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA. Graphene filled polymer nanocomposites. J Mater Chem.2011,21(10):3301-3310.
    [109]Moniruzzaman M, Winey KI. Polymer nanocomposites containing carbon nanotubes. Macromolecules.2006,39(16):5194-5205.
    [110]Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Progress in Polymer Science.2008,33(12):1119-1198.
    [111]Lv SC, Zhou W, Miao H, Shi WF. Preparation and properties of polymer/LDH nanocomposite used for UV curing coatings. Prog Org Coat.2009,65(4):450-456.
    [112]Choudalakis G, Gotsis AD. Permeability of polymer/clay nanocomposites:A review. Euro Polym J.2009,45(4):967-984.
    [113]Puffr R, Brozek J. Polyamide-layered silicate nanocomposites. Chemicke Listy.2010, 104(3):138-146.
    [114]Nguyen QT, Baird DG. Preparation of polymer-clay nanocomposites and their properties. Adv PolymTech.2006,25(4):270-285.
    [115]Okada A, Usuki A. Twenty years of polymer-clay nanocomposites. Macromol Mater Eng. 2006,291(12):1449-1476.
    [116]Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature.2006,442(7100):282-286.
    [117]Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol.2008, 3(6):327-331.
    [118]Xu JY, Hu Y, Song L, Wang QG, Fan WC, Chen ZY. Preparation and characterization of poly(vinyl alcohol)/graphite oxide nanocomposite. Carbon.2002,40(3):450-451.
    [119]Xu JY, Hu Y, Song L, Wang QG, Fan WC, Liao GX, et al. Thermal analysis of poly(vinyl alcohol)/graphite oxide intercalated composites. Polym Degrad Stabil.2001,73(1):29-31.
    [120]Liang JJ, Huang Y, Zhang L, Wang Y, Ma YF, Guo TY, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater.2009,19(14):2297-2302.
    [121]Salavagione HJ, Gomez MA, Martinez G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules.2009, 42(17):6331-6334.
    [122]Salavagione HJ, Martinez G, Gomez MA. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem.2009,19(28):5027-5032.
    [123]Zhao X, Zhang QH, Hao YP, Li YZ, Fang Y, Chen DJ. Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules.2010,43(22):9411-9416.
    [124]Jiang L, Shen XP, Wu JL, Shen KC. Preparation and characterization of graphene/poly(vinyl alcohol) nanocomposites. J Appl Polym Sci.2010,118(1):275-279.
    [125]Sridhar V, Oh IK. A coagulation technique for purification of graphene sheets with graphene-reinforced PVA hydrogel as byproduct. J Colloid Interface Sci.2010, 348(2):384-387.
    [126]Raghu AV, Lee YR, Jeong HM, Shin CM. Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites. Macromol Chem Phys.2008,209(24):2487-2493.
    [127]Lee YR, Raghu AV, Jeong HM, Kim BK. Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys.2009,210(15):1247-1254.
    [128]Hu HT, Wang XB, Wang JC, Wan L, Liu FM, Zheng H, et al. Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett.2010,484(4-6):247-253.
    [129]Pham VH, Cuong TV, Dang TT, Hur SH, Kong BS, Kim EJ, et al. Superior conductive polystyrene-chemically converted graphene nanocomposite. J Mater Chem.2011, 21(30):11312-11316.
    [130]胡源,宋磊.2008.阻燃聚合物纳米复合材料[M].北京:化学工业出版社.
    [131]胡源,宋磊,尤飞,钟茂华.2007.火灾化学导论[M].北京:化学工业出版社.
    [132]胡源,尤飞,宋磊.2007.聚合物材料火灾危险性分析与评估[M].北京:化学工业出版社.
    [133]Gilman J W, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, et al. Flammability properties of polymer-Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater.2000:1866-1873.
    [134]Kashiwagi T, Harris RH, Zhang X, Briber RM, Cipriano BH, Raghavan SR, et al. Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer.2004,45(3):881-891.
    [135]Duquesne S, Bourbigot S, Le Bras M, Jama C, Delobel R.2005. Use of clay-nanocomposite matrixes in fire retardant polyolefin-based intumescent systems[M]. Cambridge:Royal Soc Chemistry.
    [136]Tang Y, Hu Y, Xiao JF, Wang J, Song L, Fan WC. PA-6 and EVA alloy/clay nanocomposites as char forming agents in poly(propylene) intumescent formulations. Polym Adv Technol.2005,16(4):338-343.
    [137]Chen YJ, Fang ZP, Yang CZ, Wang Y, Guo ZH, Zhang Y. Effect of Clay dispersion on the synergism between clay and intumescent flame retardants in polystyrene. J Appl PolymSci. 2010,115(2):777-783.
    [138]Lu HD, Wilkie CA. Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym Degrad Stabil.2010,95(12):2388-2395.
    [139]Chen W, Qu BJ. Enhanced thermal and mechanical properties of poly(methyl acrylate)/ZnAl layered double hydroxide nanocomposites formed by in situ polymerisation. Polym Degrad Stabil.2005,90(1):162-166.
    [140]Shi YQ, Chen F, Yang JT, Zhong MQ. Crystallinity and thermal stability of LDH/polypropylene nanocomposites. Appl Clay Sci.2010,50(1):87-91.
    [141]Tai QL, Chen LJ, Song L, Hu YA, Yuen RKK. Effects of a phosphorus compound on the morphology, thermal properties, and flammability of polystyrene/MgAl-layered double hydroxide nanocomposites. Polym Composite.2011,32(2):168-176.
    [142]Wang DY, Leuteritz A, Wang YZ, Wagenknecht U, Heinrich G. Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polym Degrad Stabil.2010,95(12):2474-2480.
    [143]Abanin DA, Gorbachev RV, Novoselov KS, Geim AK, Levitov LS. Giant spin-hall effect induced by the zeeman interaction in graphene. Phys Rev Lett.2011,107(9):096601.
    [144]Yang DD, Hu Y, Song L, Nie SB, He SQ, Cai YB. Catalyzing carbonization function of alpha-ZrP based intumescent fire retardant polypropylene nanocomposites. Polym Degrad Stabil.2008,93(11):2014-2018.
    [145]Bao CL, Guo YQ, Song L, Lu HD, Yuan BH, Hu Y. Facile synthesis of poly(vinyl alcohol)/alpha-titanium phosphate nanocomposite with markedly enhanced properties. Ind Eng Chem Res.2011,50(19):11109-11116.
    [146]Bao CL, Song L, Guo YQ, Hu Y. Preparation and characterization of flame-retardant polypropylene/alpha-titanium phosphate (nano)composites. Polym Adv Technol.2011, 22(7):1156-1165.
    [147]Usuki A, Hasegawa N, Kato M. Polymer-clay nanocomposites. Inorg Polym Nanocompos Membranes 2005:135-195.
    [148]Leswzynska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Part II. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes. Thermochimica Acta. 2007,454(1):1-22.
    [149]Morgan AB. Flame retarded polymer layered silicate nanocomposites:a review of commercial and open literature systems. Polym Adv Technol.2006,17(4):206-217.
    [150]Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites:An overview of flame retardancy. Prog Polym Sci.2010,35(7):902-958.
    [151]Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym Adv Technol.2003,14(1):3-11.
    [152]Rodolfo A, Mei LHI. Metallic oxides as fire retardants and smoke suppressants in flexible poly(vinyl chloride). J Appl Polym Sci.2010,118(5):2613-2623.
    [153]Huang X, Qi XY, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev.2012, 41(2):666-686.
    [154]Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater.2010,22(35):3906-3924.
    [155]Hummers WS, Offeman RE. Preparation of graphitic oide. J Am Chem Soc.1958, 80(6):1339.
    [156]Staudenmaier L. Verfahren zur darstellung der graphitsaure. Berichte der Deutschen Chemischen Gesellschaft.1898,31:1481-1487.
    [157]Brodie BC. Philosophical Transactions of the Royal Society London.1859,149:249-259.
    [158]Yang HF, Li FH, Shan CS, Han DX, Zhang QX, Niu L, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem.2009, 19(26):4632-4638.
    [159]Pham TA, Choi BC, Jeong YT. Facile covalent immobilization of cadmium sulfide quantum dots on graphene oxide nanosheets:preparation, characterization, and optical properties. Nanotechnology.2010,21(46):1-10.
    [160]Srinivas G, Burress JW, Ford J, Yildirim T. Porous graphene oxide frameworks:Synthesis and gas sorption properties. J Mater Chem.2011,21(30):11323-9.
    [161]Ou JF, Wang JQ, Liu S, Mu B, Ren JF, Wang HG, et al. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir.2010, 26(20):15830-15836.
    [162]Yan XB, Chen JT, Yang J, Xue QJ, Miele P. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. Acs Appl Mater Inter.2010,2(9):2521-2529.
    [163]Cerveny S, Barroso-Bujans F, Alegria A, Colmenero J. Dynamics of water intercalated in graphite oxide. JPhys Chem C.2010,114(6):2604-2612.
    [164]Zangmeister CD. Preparation and evaluation of graphite oxide reduced at 220 degrees C. Chem Mat.2010,22(19):5625-5629.
    [165]Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ. Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat Mater.2010,9(10):840-845.
    [166]Lo CW, Zhu DF, Jiang HR. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter.2011,7(12):5604-5609.
    [167]Su CY, Xu YP, Zhang WJ, Zhao JW, Tang XH, Tsai CH, et al. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem Mat.2009, 21(23):5674-5680.
    [168]Pan SY, Aksay IA. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. Acs Nano.2011,5(5):4073-4083.
    [169]Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev.2010,39(1):228-240.
    [170]Tung VC, Allen MJ, Yang Y, Kaner RB, High-throughput solution processing of large-scale graphene. Nat Nanotechnol.2009,4(1):25-29.
    [171]Matsumoto Y, Koinuma M, Kim SY, Watanabe Y, Taniguchi T, Hatakeyama K, et al. Simple photoreduction of graphene oxide nanosheet under mild conditions. Acs Appl Mater Interface.2010,2(12):3461-3466.
    [172]Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir.2008,24(19):10560-10564.
    [173]Xiao HW, Lu W, Yeh JT. Effect of plasticizer on the crystallization behavior of poly(lactic acid). JAppl Polym Sci.2009,113(1):112-121.
    [174]Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G. Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stabil.2010,95(7):1148-1159.
    [175]Xu JZ, Chen T, Yang CL, Li ZM, Mao YM, Zeng BQ, et al. Isothermal crystallization of poly(1-lactide) induced by graphene nanosheets and carbon nanotubes:a comparative study. Macromolecules.2010,43(11):5000-5008.
    [176]Kurose T, Yudin VE, Otaigbe JU, Svetlichnyi VM. Compatibilized polyimide (R-BAPS)/BAPS-modified clay nanocomposites with improved dispersion and properties. Polymer.2007,48(24):7130-7138.
    [177]Leszczynska A, Njuguna J, Pielichowski K, Banerjee JR. Polymer/montmorillonite nanocomposites with improved thermal properties. Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochimica Acta.2007, 453(2):75-96.
    [178]Layek RK, Samanta S, Chatterjee DP, Nandi AK. Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites Piezoelectric beta polymorph formation. Polymer.2010,51(24):5846-5856.
    [179]Pramoda KP, Hussain H, Koh HM, Tan HR, He CB. Covalent bonded polymer-graphene nanocomposites. J Polym Sci Pol Chem.2010,48(19):4262-4267.
    [180]Kaczmarek H, Podgorski A. Photochemical and thermal behaviours of poly(vinyl alcohol)/graphite oxide composites. Polym Degrad Stabil.2007,92(6):939-946.
    [181]Xu YX, Hong WJ, Bai H, Li C, Shi GQ. Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon.2009,47(15):3538-3543.
    [182]Zhao X, Zhang QH, Chen DJ, Lu P. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, macromolecules.2010,43(5):2357-2363.
    [183]Yang XM, Li LA, Shang SM, Tao XM. Synthesis and characterization of layer-aligned poly(vinyl alcohol)/graphene nanocomposites. Polymer.2010,51(15):3431-3435.
    [184]Ansari S, Giannelis EP. Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites. J Polym Sci Pt B-Polym Phys.2009,47(9):888-897.
    [185]Abraham TN, Ratna D, Siengchin S, Karger-Kocsis J. Structure and properties of poly(ethylene oxide)-organo clay nanocomposite prepared via melt mixing. Polym Eng Sci. 2009,49(2):379-390.
    [186]Yang YJ, Liu CH, Wu HX. Preparation and properties of poly(vinyl alcohol)/exfoliated alpha-zirconium phosphate nanocomposite films. Polym Test.2009,28(4):371-377.
    [187]Isci S, Gunister E, Ece OI, Gungor N. The modification of rheologic properties of clays with PVA effect. Mater Lett.2004,58(12-13):1975-1978.
    [188]Dean KM, Do MD, Petinakis E, Yu L. Key interactions in biodegradable thermoplastic starch/poly(vinyl alcohol)/montmorillonite micro-and nanocomposites. Compos Sci Technol. 2008,68(6):1453-1462.
    [189]Majdzadeh-Ardakani K, Nazari B. Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol.2010, 70(10):1557-1563.
    [190]Soundararajah QY, Karunaratne BSB, Rajapakse RMG. Mechanical Properties of Poly(vinyl alcohol) Montmorillonite Nanocomposites. J Compos Mater.2010,44(3):303-311.
    [191]Tang XZ, Li WJ, Yu ZZ, Rafiee MA, Rafiee J, Yavari F, et al. Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon.2011,49(4):1258-1265.
    [192]Zhang JG, Wilkie CA. Polyethylene and polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units. Polymer.2006,47(16):5736-5743.
    [193]Nyambo C, Wilkie CA. Layered double hydroxides intercalated with borate anions:Fire and thermal properties in ethylene vinyl acetate copolymer. Polym Degrad Stabil.2009, 94(4):506-512.
    [194]Wang LJ, Xie XL, Su SP, Feng JX, Wilkie CA. A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polym Degrad Stabil.2010,95(4):572-578.
    [195]Ji ZY, Wu JL, Shen XP, Zhou H, Xi HT. Preparation and characterization of graphene/NiO nanocomposites. J Mater Sci.2011,46(5):1190-1195.
    [196]Li BJ, Cao HQ, Shao J, Zheng H, Lu YX, Yin JF, et al. Improved performances of beta-Ni(OH)(2)@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chem Comm.2011, 47(11):3159-3161.
    [197]Du D, Liu J, Zhang XY, Cui XL, Lin YH. One-step electrochemical deposition of a graphene-ZrO(2) nanocomposite:Preparation, characterization and application for detection of organophosphorus agents. J Mater Chem.2011,21(22):8032-8037.
    [198]Freitas M. Nickel hydroxide powder for NiO center dot OH/Ni(OH)2 electrodes of the alkaline batteries. J Power Sources.2001,93(1-2):163-173.
    [199]Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z. Assembly of Ni(OH)2 nanoplates on reduced graphene oxide:a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem.2011,21(42):16949-16954.
    [200]Wang Y, Cao DX, Wang GL, Wang SS, Wen JY, Yin JL. Spherical clusters of beta-Ni(OH)2 nanosheets supported on nickel foam for nickel metal hydride battery. Electrochimica Acta. 2011,56(24):8285-8590.
    [201]Otsuka T, Chujo Y. Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals. Polym J.2010,42(1):58-65.
    [202]Koltunski L, Devine RAB. Infrared properties of room-temperature-deposited ZrO2. Appl Phys Lett.2001,79(3):320-322.
    [203]Gonzalez G, Albano C, Herman V, Boyer I, Monsalve A, Brito JA. Nanocomposite building blocks of TiO2-MWCNTf and ZrO2-MWCNTf. Mater Charact.2012,64:96-106.
    [204]Qi XY, Yan D, Jiang ZG, Cao YK, Yu ZZ, Yavari F, et al. Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. Acs Appl Mater Inter.2011, 3(8):3130-3133.
    [205]Vleminckx G, Bose S, Leys J, Vermant J, Wubbenhorst M, Abdala AA, et al. Effect of Thermally Reduced Graphene Sheets on the Phase Behavior, Morphology, and electrical conductivity in poly (alpha-methyl styrene)-co-(acrylonitrile)/poly(methyl-methacrylate) blends. Acs Appl Mater Inter.2011,3(8):3172-3180.
    [206]Yang JT, Wu MJ, Chen F, Fei ZD, Zhong MQ. Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites. J Supercrit Fluids.2011,56(2):201-207.
    [207]Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK. Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int.2009,58(4):412-417.
    [208]Kim H, Macosko CW. Processing-property relationships of polycarbonate/graphene composites. Polymer.2009,50(15):3797-3809.
    [209]Wissert R, Steurer P, Schopp S, Thomann R, Mulhaupt R. Graphene nanocomposites prepared from blends of polymer latex with chemically reduced graphite oxide dispersions. Macromol Mater Eng.2010,295(12):1107-1115.
    [210]Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer.2010,51(5):1191-1196.
    [211]Feng RC, Guan GH, Zhou W, Li CC, Zhang D, Xiao YN. In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J Mater Chem.2011,21(11):3931-3939.
    [212]Guo YQ, Bao CL, Song L, Yuan BH, Hu Y. In Situ Polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-the-flame behavior. Ind Eng Chem Res.2011,50(13):7772-7783.
    [213]Kim H, Kobayashi S, AbdurRahim MA, Zhang MLJ, Khusainova A, Hillmyer MA, et al. Graphene/polyethylene nanocomposites:Effect of polyethylene functionalization and blending methods. Polymer.2011,52(8):1837-1846.
    [214]Ren PG, Yan DX, Chen T, Zeng BQ, Li ZM. Improved properties of highly oriented graphene/polymer nanocomposites. J Appl Polym Sci.2011,121(6):3167-3174.
    [215]Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, et al. Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon.2011,49(8):2615-2623.
    [216]Zaman I, Phan TT, Kuan HC, Meng QS, La LTB, Luong L, et al. Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer.2011,52(7):1603-1611.
    [217]Shen B, Zhai WT, Chen C, Lu DD, Wang J, Zheng WG. Melt blending in situ enhances the interaction between polystyrene and graphene through pi-pi stacking. Acs Appl Mater Inter. 2011,3(8):3103-3109.
    [218]Fang M, Zhang Z, Li JF, Zhang HD, Lu HB, Yang YL. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem.2010,20(43):9635-9643.
    [219]Qiu SL, Wang CS, Wang YT, Liu CG, Chen XY, Xie HF, et al. Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Express Polym Lett.2011, 5(9):809-818.
    [220]Teng CC, Ma CCM, Lu CH, Yang SY, Lee SH, Hsiao MC, et al. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon.2011, 49(15):5107-5116.
    [221]Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon.2011,49(3):793-803.
    [222]Paulsdorf J, Kaskhedikar N, Burjanadze M, Obeidi S, Stolwijk NA, Wilmer D, et al. Synthesis and ionic conductivity of polymer electrolytes based on a polyphosphazene with short side groups. Chem Mat.2006,18(5):1281-8.
    [223]Amin AM, Wang L, Wang JJ, Yu HJ, Huo J, Gao JM, et al. Recent research progress in the synthesis of polyphosphazene and their applications. Des Monomers Polym.2009, 12(5):357-375.
    [224]Chen DH, Cui YJ, Wang XL, Tang XZ. Polyphosphazene/low-density polyethylene blends: Miscibility and flame-retardance studies. J Appl Polym Sci.2002,86(3):709-714.
    [225]Gao F, Tong LF, Fang ZP. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym Degrad Stabil.2006,91(6):1295-1299.
    [226]Li Q, Jiang PK, Su ZP, Wei P, Wang GL, Tang XZ. Synergistic effect of phosphorus, nitrogen, and silicon on flame-retardant properties and char yield in polypropylene. J Appl Polym Sci.2005,96(3):854-860.
    [227]Leu TS, Wang CS. Synergistic effect of a phosphorus-nitrogen flame retardant on engineering plastics. J Appl Polym Sci.2004,92(l):410-417.
    [228]Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006,110(17):8535-8539.
    [229]Treossi E, Melucci M, Liscio A, Gazzano M, Samori P, Palermo V. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J Am Chem Soc.2009,131(43):15576-15577.
    [230]Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation. Adv Mater. 2008,20(23):4490-4493.
    [231]Chen XL, Hu Y, Jiao CM, Song L. Preparation and thermal properties of a novel flame-retardant coating. Polym Degrad Stabil.2007,92(6):1141-1150.
    [232]Liu S, Tian JQ, Wang L, Sun XP. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon.2011,49(10):3158-3164.
    [233]Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano.2011,5(6):4350-4358.
    [234]Zhou XJ, Zhang JL, Wu HX, Yang HJ, Zhang JY, Guo SW. Reducing graphene oxide via hydroxylamine:a simple and efficient route to graphene. J Phys Chem C.2011, 115(24):11957-11961.
    [235]Li D, Muller MB, Gilje S, Kaner RB, Wallace GG Processable aqueous dispersions of graphene nanosheets. Nat Nanotechno.2008,3(2):101-105.
    [236]Chen XG, He YQ, Zhang Q, Li LJ, Hu DH, Yin T. Fabrication of sandwich-structured ZnO/reduced graphite oxide composite and its photocatalytic properties. J Mater Sci.2010, 45(4):953-960.
    [237]Cote LJ, Cruz-Silva R, Huang JX. Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc.2009,131(31):11027-11032.
    [238]Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir.2009,25(10):5957-5968.
    [239]Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano.2010,4(2):1227-1233.
    [240]Allen CW. The use of phosphazenes as fire-resistant materials. J Fire Sci.1993, 11(4):320-328.
    [241]Allcock HR, Hartle TJ, Taylor JP, Sunderland NJ. Organic polymers with cyclophosphazene side groups:Influence of the phosphazene on physical properties and thermolysis. Macromolecules.2001,34(12):3896-3904.
    [242]Liu R, Wang XD. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin. Polym Degrad Stabil.2009, 94(4):617-624.
    [243]Gu XJ, Wei H, Huang XB, Tang XZ. Synthesis and characterization of a novel curing agent for epoxy resin based on phosphazene derivatives. J Macromol Sci Part A-Pure Appl Chem.2010,47(8):828-832.
    [244]Hsueh HB, Chen CY. Preparation and properties of LDHs/epoxy nanocomposites. Polymer. 2003,44(18):5275-5283.
    [245]Wang K, Chen L, Kotaki M, He CB. Preparation, microstructure and thermal mechanical properties of epoxy/crude clay nanocomposites. Compos Pt A-Appl Sci Manuf.2007, 38(1):192-197.
    [246]Park SJ, Seo DI, Lee JR. Surface modification of montmorillonite on surface acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites. J Colloid Interface Sci.2002,251(1):160-165.
    [247]Kim HC, Kim SK, Kim JT, Rhee KY, Kathi J. Thermal and tensile properties of epoxy nanocomposites reinforced by silane-functionalized multiwalled carbon nanotubes. J Macromol Sci Part B-Phys.2010,49(1):132-142.
    [248]Kuan CF, Chen WJ, Li YL, Chen CH, Kuan HC, Chiang CL. Flame retardance and thermal stability of carbon nanotube epoxy composite prepared from sol-gel method. J Phys Chem Solids.2010,71(4):539-543.
    [249]Wang WS, Chen HS, Wu YW, Tsai TY, Chen-Yang YW. Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay. Polymer.2008, 49(22):4826-4836.
    [250]Carrasco F, Pages P. Thermal degradation and stability of epoxy nanocomposites:Influence of montmorillonite content and cure temperature. Polym Degrad Stabil.2008, 93(5):1000-1007.
    [251]Wu Q, Zhu W, Zhang C, Liang ZY, Wang B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon.2010,48(6):1799-1806.
    [252]Woo RSC, Chen Y, Zhu H, Li J, Kim JK, Leung CKY. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part 1:Photo-degradation. Compos Sci Technol.2007,67(15-16):3448-3456.
    [253]Du JH, Zhao L, Zeng Y, Zhang LL, Li F, Liu PF, et al. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon.2011,49(4):1094-1100.
    [254]Xu XJ, Thwe MM, Shearwood C, Liao K. Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl Phys Lett.2002, 81(15):2833-2835.
    [255]Li QQ, Zaiser M, Koutsos V. Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent. Phys Status Solidi A-Appl Res.2004,201(13):R89-R91.
    [256]Choi WJ, Poweii RL, Kim DS. Curing behavior and properties of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes. Polym Compos.2009,30(4):415-421.
    [257]Che JF, Yuan W, Jiang GH, Dai J, Lim SY, Chan-Park MB. Epoxy composite fibers reinforced with aligned single-walled carbon nanotubes functionalized with generation 0-2 dendritic poly(amidoamine). Chem Mat.2009,21(8):1471-1479.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700