东北、内蒙古地区三个古代人群分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Molecular Genetic Analysis of Three Ancient Populations in the Region of Northeast and Inner Mongolia
  • 作者:王海晶
  • 论文级别:博士
  • 学科专业名称:生物化学与分子生物学
  • 学位年度:2007
  • 导师:周慧
  • 学科代码:071010
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-04-01
摘要
本论文系统研究了内蒙古自治区朱开沟、饮牛沟和辽宁省喇嘛洞三个古代人群的遗传结构。
     首先,对内蒙古凉城县战国晚期饮牛沟古代人群线粒体DNA进行了分析,结果显示饮牛沟古代人群与现代东亚人群有着较近的亲缘关系。
     其次,对内蒙古鄂尔多斯东部龙山时代晚期至夏商时期的朱开沟遗址古代人群进行了遗传结构分析,结果表明朱开沟古代人群与其后的内蒙古饮牛沟古代居民及现代东亚人群具有较近亲缘关系,表明从大约4000年前到现在,该地区居民母系遗传上具有一定的连续性。
     最后,对辽宁省北票市喇嘛洞古代人群进行了遗传结构分析,结果表明喇嘛洞古代人群母系遗传结构非常复杂,与现代东亚人群有着较近的亲缘关系,同时含有西伯利亚人群的成分。喇嘛洞古代人群与匈奴和拓跋鲜卑古代人群具有不同的母系遗传结构
     总之,这些结果为推测东北、内蒙古地区古代族群的遗传结构,追溯古代人群与现代人群之间的相互关系,研究该地区历史上各民族的族源、迁徙、分化、融合等历史过程提供了分子遗传学线索。
To investigate the genetic relationships among populations, the origin and evolution of humankind, migration patterns, expansions and extinctions of ancient populations, anthropologists, archaeologists and historians strive to study anthropological characters of the remains, funerary objects and historic documents. Some exciting results have been achieved, however, there are still many questions unsolved. With the development of the techniques of molecular biology, scientists have started to study these issues using DNA data. In the past two decades, analysis of modern human mitochondrial DNA(mtDNA) variation has been extensively used to study the origin and migration patterns of human populations and to estimate the size of the past population and dates of expansion events, as well as to study the phylogeographic differentiation and demographic history of single or multiple ethnic populations. However all these analyses are based on the genetic information from modern human beings and thus these analyses have some time limitations in predicting ancient population’s genetic structure and evolution. Ancient DNA (aDNA) technology provides an effective way to resolve aforementioned questions. The genetic structure of ancient populations can be explored through genetic data. This method has advantages of tracing details in human evolution and breaks time limitation in human evolution.
     Located in the east of the Eurasia Steppe, the Region of Northeast and Inner Mongolia is a most important connection between the populations from of old. This territory has been a complex assembly of peoples, cultures, and habitats. It is a case in point when one is trying to understand the genetic consequences of complex cultural phenomena such as acculturation, assimilation, and syncretism; overlapping of economies, languages, and ways of life; and migrations, expansions, and conquests.
     To determine the origin, migration and relations with the extant populations, we select three populations to molecular genetic analysis from Inner Mongolia and Liaoning, which belong to different archaeological sites and span different time periods and belong to the Great Wall belt in northern China in the cultural history.
     Yinniugou and Zhukaigou populations were analyzed in Inner Mongolia from Bronze Age to early Iron Age. They both locate in the south central region of Inner Mongolia, which is an important spot where nomadic culture and agricultural culture influenced and absorbed each other to form a national amalgamation in history. Studying the history of the populations of this region would be crucial in understanding relations between populations in Zhongyuan and north ethic populations.
     We studied ancient individuals buried in the Yinniugou cemetery of Inner Mongolia by molecular biological methods. We obtained five sequences of the hypervariable region I (HVR I) of the mtDNA control region and primarily assigned the sequences into haplogroups A, B, D, C and Z by restriction-fragment length polymorphism (RFLP), respectively. The results showed that the haplogroups of the ancient individuals are specific in Asia. The shared sequences and haplogroups analyses show the genetic structure of Yinniugou population has the character of both Siberian and eastern Asian populations. A phylogenetic tree and a two-dimensional MDS plot were constructed based on pairwise FST values between the Yinniugou population and 16 relative modern populations. The results show the genetic affinity of the ancient population with eastern Asian populations in matrilineal lineage. Our research provides some clues for exploring the genetic composition of populations in the south central region of Inner Mongolia during the Warring States period. It also has academic value in unraveling complex patterns of past human migrations in this area.
     To assess the genetic affinities of the population from the Zhukaigou archaeological site in the Inner Mongolia, seven mtDNA HVR I were successfully amplified and sequenced. The sequences primarily assigned into haplogroups A, C, D, G, M9 and M10, respectively. One sequence of the ancient individuals belongs to hapolgroup M9, which testifys the hypothesis that the Haplogroup M9 may be of central or northern Chinese provenance. Principal component analysis and AMOVA analysis were carried out based on DNA data from the ancient population,the Yinniugou ancient population and several extant East Asian, Siberian and Central Asian populations. The results of these analyses show the ancient population shares a closer genetic relationship with the Yinniugou ancient population and East Asian populations than with Siberian and Central Asian populations. The Zhukaigou culture is the first nomadic culture in Chinese history from archaeological evidence. This aDNA study shows the continuity of the matrilineal genetic structure in the populations of the south central Inner Mongolia.
     The Xianbei existed as a remarkable nomadic tribe in northeastern China for three dynasties: the Han, Jin and Northern-Southern dynasties (206BC-581AD) in Chinese history. A very important sub-tribe of the Xianbei is the Murong Xianbei. In order to investigate the genetic structure of the Murong Xianbei population and to address its genetic relationships with other nomadic tribes at a molecular level, we analyzed the control region sequences and coding-region single nucleotide polymorphism (SNP) markers of mtDNA from the remains of the Lamadong cemetery of the Three-Yan Culture of the Murong Xianbei population, which is dated to 1600 to 1700 years ago. By combining polymorphisms of the control region with those from the code region, we assigned 17 individuals to haplogroups B, C, D, F, G2a, Z, M, and J1b1. Haplogroups frequencies analysis, phylogenetic analysis, multidimensional scaling analysis and AMOVA analysis were carried out based on DNA data from East Asian and Siberian populations to investigate relationships with other Asian populations. The results indicate that the genetic structure of the Lamadong population is very intricate; it has haplogroups prevalent in both the Eastern Asian and the Siberian populations, showing more genetic affinity with the Eastern Asian populations. The present study also shows that the ancient nomadic tribes of Huns, Tuoba Xianbei, and Murong Xianbei have different maternal genetic structures and that there could have been some genetic exchange among them.
     On the basis of mtDNA data from different ancient popuations from the region of Northeast and Inner Mongolia, our research reveals the genetic structure, the relationships and gene continuity between the ancient populations and extant populations. The genetic pool of ancient populations is enriched in the Great Wall belt in north China. This article provides some molecular genetic clues for unraveling complex patterns of past human origins, migrations, and genetic affinity with other populations in this area.
引文
1. Anderson S, Bankier AT, Barrell BG et al. Sequence and organization of the human mitochondrial genome. Nature. 1981; 290:457-465.
    2. Pakendorf B, Stoneking M. Mitochondrial DNA and human evolution. Annu Rev Genomics Hum Genet. 2005; 6:165-183.
    3. Giles RE, Blanc H, Cann HM et al. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980; 77:6715-6719.
    4. Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol. 1988; 136:507-513.
    5. Meyer S, Weiss G, von HA. Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics. 1999; 152:1103-1110.
    6. Lutz S, Wittig H, Weisser HJ et al. Is it possible to differentiate mtDNA by means of HV III in samples that cannot be distinguished by sequencing the HV I and HV II regions? Forensic Sci Int. 2000; 113:97-101.
    7. Lutz S, Weisser HJ, Heizmann J et al. Mitochondrial heteroplasmy among maternally related individuals. Int J Legal Med. 2000; 113:155-161.
    8. Mourier T, Hansen AJ, Willerslev E et al. The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol. 2001; 18:1833-1837.
    9. 姚永刚, 孔庆鹏, 张亚平. 人类线粒体 DNA 变异的检测方法和思路. 动物学研究. 2001; 22(4):321-331.
    10. 高树辉. 浅谈线粒体 DNA 分析在法医学中的应用. 中国人民公安大学学报(自然科学版). 2004; 42: 53-55.
    11. Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution. Nature. 1987; 325:31-36.
    12. Vigilant L, Stoneking M, Harpending H et al. African populations and the evolution of human mitochondrial DNA. Science. 1991; 253:1503-1507.
    13. Ingman M, Kaessmann H, Paabo S et al. Mitochondrial genome variation and the origin of modern humans. Nature. 2000; 408:708-713.
    14. Stoneking M, Sherry ST, Redd AJ et al. New approaches to dating suggest a recent age for the human mtDNA ancestor. Philos Trans R Soc Lond B Biol Sci. 1992; 337:167-175.
    15. 姚永刚, 张亚平. 线粒体 DNA 和人类进化. 动物学研究. 2000; 21(5):392-406.
    16. Lindahl T. The Croonian Lecture, 1996: endogenous damage to DNA. Philos Trans R Soc Lond B Biol Sci. 1996; 351:1529-1538.
    17. Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993; 362: 709-715.
    18. Lindahl T, Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972; 11:3610-3618.
    19. Lindahl T, Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972; 11:3618-3623.
    20. Mitchell D, Willerslev E, Hansen A. Damage and repair of ancient DNA. Mutat Res. 2005; 571:265-276.
    21. Yang H. Ancient DNA from Pleistocene fossils: preservation, recovery, and utility of ancient genetic information for quaternary research. Quaternary Science Reviews. 1997; 16: 1-17.
    22. Lassen C, Hummel S, Herrmann B. Comparison of DNA extraction and amplification from ancient human bone and mummified soft tissue. Int J Legal Med. 1994; 107: 152-155.
    23. Cooper A, Wayne R. New uses for old DNA. Curr Opin Biotechnol. 1998; 9:49-53.
    24. Tuross N. The biochemistry of ancient DNA in bone. Experientia. 1994; 50:530-535.
    25. Poinar HN, Hoss M, Bada JL et al. Amino acid racemization and the preservation of ancient DNA. Science. 1996; 272:864-866.
    26. Lambert DM, Ritchie PA, Millar CD et al. Rates of evolution in ancient DNA from Adelie penguins. Science. 2002; 295:2270-2273.
    27. Paabo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymaticamplification. Proc Natl Acad Sci U S A. 1989; 86:1939-1943.
    28. Hoss M, Jaruga P, Zastawny TH et al. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 1996; 24:1304-1307.
    29. Willerslev E, Cooper A. Ancient DNA. Proc Biol Sci. 2005; 272:3-16.
    30. Gilbert MT, Willerslev E, Hansen AJ et al. Distribution patterns of postmortem damage in human mitochondrial DNA. Am J Hum Genet. 2003; 72:32-47.
    31. Gilbert MT, Hansen AJ, Willerslev E et al. Characterization of genetic miscoding lesions caused by postmortem damage. Am J Hum Genet. 2003; 72:48-61.
    32. Hofreiter M, Jaenicke V, Serre D et al. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 2001;29: 4793-4799.
    33. Hansen A, Willerslev E, Wiuf C et al. Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol. 2001; 18:262-265.
    34. Geigl EM. On the circumstances surrounding the preservation and analysis of very old DNA. Archaeometry. 2002; 44, 337–342.
    35. Willerslev E, Hansen AJ, Ronn R et al. Long-term persistence of bacterial DNA. Curr Biol. 2004; 14:R9- R10.
    36. Poinar HN, Hofreiter M, Spaulding WG et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science. 1998; 281:402-406.
    37. Handt O, Richards M, Trommsdorff M et al. Molecular genetic analyses of the Tyrolean Ice Man. Science. 1994; 264:1775-1778.
    38. Handt O, Krings M, Ward RH et al. The retrieval of ancient human DNA sequences. Am J Hum Genet. 1996; 59:368-376.
    39. Graziano P, Cecilia S. A Novel method for estimating substitution rate variation among sites in a large dataset of homologous DNA sequences. Genetics. 2001; 157:859-865.
    40. Bailey JF, Richards MB, Macaulay VA et al. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proc Biol Sci. 1996; 263: 1467-1473.
    41. Poinar HN, Stankiewicz BA. Protein preservation and DNA retrieval from ancient tissues. Proc Natl Acad Sci U S A. 1999; 96:8426-8431.
    42. 崔银秋, 张全超, 谢承志等. 新型 TaqMan-MB 荧光探针测定古 DNA 模板含量. 吉林大学学报(医学版). 2007; 33 (1):9-12.]
    43. Hebsgaard MB, Phillips MJ, Willerslev E. Geologically ancient DNA: fact or artefact? Trends Microbiol. 2005; 13:212-220.
    44. Haak W, Forster P, Bramanti B et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science. 2005; 310:1016-1018.
    45. 杨东亚. 古代 DNA 研究中污染的控制和识别. 人类学学报. 2003; 22 (2 ):163-173.
    46. Gilbert MT, Wilson AS, Bunce M et al. Ancient mitochondrial DNA from hair. Curr Biol. 2004; 14:R463-R464.
    47. Sampietro ML, Gilbert MT, Lao O et al. Tracking down human contamination in ancient human teeth. Mol Biol Evol. 2006; 23:1801-1807.
    48. Hofreiter M, Poinar HN, Spaulding WG et al. A molecular analysis of ground sloth diet through the last glaciation. Mol Ecol. 2000; 9:1975-1984.
    49. Kaestle FA, Horsburgh KA. Ancient DNA in anthropology: methods, applications, and ethics. Am J Phys Anthropol. 2002; 35:92-130.
    50. Kristina Strandberg AK, Salter LA. A comparison of methods for estimating the transition:transversion ratio from DNA sequences. Mol Phylogenet Evol. 2004; 32: 495-503.
    51. Zischler H, Hoss M, Handt O et al. Detecting dinosaur DNA. Science. 1995; 268: 1192-1193.
    52. Greenwood AD, Capelli C, Possnert G et al. Nuclear DNA sequences from late Pleistocene megafauna. Mol Biol Evol. 1999; 16:1466-1473.
    53. Cooper A, Lalueza-Fox C, Anderson S et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature. 2001; 409:704-707.
    54. Orlando L, Leonard JA, Thenot A et al. Ancient DNA analysis reveals woolly rhino evolutionary relationships. Mol Phylogenet Evol. 2003; 28:485-499.
    55. Higuchi R, Bowman B, Freiberger M et al. DNA sequences from the quagga, an extinct member of the horse family. Nature. 1984; 312:282-284.
    56. Krause J, Dear PH, Pollack JL et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature. 2006; 439:724-727.
    57. Poinar HN, Schwarz C, Qi J et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science. 2006; 311:392-394.
    58. Hunter P. Ancient DNA research goes nuclear. A new technique to extract sequence data from nuclear DNA may reveal exciting new insights into evolution and phylogeny. EMBO Rep. 2006; 7:136-139.
    59. 朱泓. 内蒙古长城地带的古代种族. 边疆考古研究(第一辑). 科学出版社.. 2002; 301-313.
    60. 蔡大伟, 王海晶, 韩璐等. 四种古 DNA 抽提方法效果比较. 吉林大学学报(医学版). 2007; 33(1): 13-16.
    61. Fu Y, Zhao H, Cui Y et al. Molecular genetic analysis of Wanggu remains, Inner Mongolia, China. Am J Phys Anthropol. 2007; 132:285-291.
    62. Umetsu K, Tanaka M, Yuasa I et al. Multiplex amplified product-length polymorphism analysis of 36 mitochondrial single-nucleotide polymorphisms for haplogrouping of East Asian populations. Electrophoresis. 2005; 26:91-98.
    63. Shinoda K, Adachi N, Guillen S et al. Mitochondrial DNA analysis of ancient Peruvian highlanders. Am J Phys Anthropol. 2006; 131:98-107.
    64. Simmons MP. Independence of alignment and tree search. Mol Phylogenet Evol. 2004; 31:874-879.
    65. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol. 2000; 17:1251-1258.
    66. Excoffier LLGSS. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics. 2005; Online 1:47-50.
    67. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the controlregion of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993; 10: 512-526.
    68. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4:406-425.
    69. 米红, 张文璋. 实用现代统计学分析方法与 SPSS应用. 当代中国出版社. 2000; 第一版; 204-278.
    70. 林志斌,刘明德. SPSS11.0 与统计模型构建. 清华大学出版社. 2004;第一版; 263-264.
    71. 内蒙古自治区工作队. 凉城县饮牛沟墓葬清理简报. 内蒙古文物考古. 1984; 3 : 26-32.
    72. 宫本一夫. 鄂尔多斯青铜文化的地域性及变迁. 岱海考古 2. 科学出版社. 2001; 454-481.
    73. 朱泓. 内蒙古凉城东周时期墓葬人骨研究. 考古学集刊. 1991; 7: 169-191.
    74. 张小雷, 崔银秋, 吕慧英, 等. 系统发育分析在古 DNA 研究中的应用. 吉林大学学报(理学版). 2005; 43(5): 696-701.
    75. Yao YG, Kong QP, Bandelt HJ et al. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet. 2002; 70:635-651.
    76. Kong QP, Yao YG, Liu M et al. Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Hum Genet. 2003;113:391-405.
    77. Oota H, Kitano T, Jin F et al. Extreme mtDNA homogeneity in continental Asian populations. Am J Phys Anthropol. 2002; 118:146-153.
    78. Lee SD, Shin CH, Kim KB et al. Sequence variation of mitochondrial DNA control region in Koreans. Forensic Sci Int. 1997; 87:99-116.
    79. Kolman CJ, Sambuughin N, Bermingham E. Mitochondrial DNA analysis of Mongolian populations and implications for the origin of New World founders. Genetics. 1996; 142:1321-1334.
    80. Shields GF, Schmiechen AM, Frazier BL et al. mtDNA sequences suggest a recent evolutionary divergence for Beringian and northern North American populations. Am J Hum Genet. 1993; 53:549-562.
    81. Pakendorf B, Wiebe V, Tarskaia LA et al. Mitochondrial DNA evidence for admixed origins of central Siberian populations. Am J Phys Anthropol. 2003; 120:211-224.
    82. Quintana-Murci L, Chaix R, Wells RS et al. Where west meets east: the complex mtDNA landscape of the southwest and Central Asian corridor. Am J Hum Genet. 2004; 74: 827-845.
    83. Comas D, Calafell F, Mateu E et al. Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations. Am J Hum Genet. 1998; 63:1824-1838.
    84. Comas D, Calafell F, Mateu E et al. Geographic variation in human mitochondrial DNA control region sequence: the population history of Turkey and its relationship to the European populations. Mol Biol Evol. 1996; 13:1067-1077.
    85. Pult I, Sajantila A, Simanainen J et al. Mitochondrial DNA sequences from Switzerland reveal striking homogeneity of European populations. Biol Chem Hoppe Seyler. 1994; 375:837-840.
    86. Di RA, Wilson AC. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci U S A. 1991; 88:1597-1601.
    87. Piercy R, Sullivan KM, Benson N et al. The application of mitochondrial DNA typing to the study of white Caucasian genetic identification. Int J Legal Med. 1993; 106:85-90.
    88. Kong QP, Yao YG, Sun C et al. Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences. Am J Hum Genet. 2003; 73:671-676.
    89. 内蒙古文物考古研究所. 内蒙古朱开沟遗址. 考古学报. 1988; 3: 301-331.
    90. 邵方. 中国北方游牧起源问题初探. 中国人民大学学报. 2004; 1:144-149.
    91. 内蒙古自治区文物考古研究所, 鄂尔多斯博物馆. 朱开沟——青铜时代早期遗址发掘报告. 文物出版社.. 2000.
    92. 潘其风. 朱开沟墓地人骨的研究. 朱开沟——青铜时代早期遗址发掘报告, 附录一.文物出版社. 2000 年.
    93. Torroni A, Sukernik RI, Schurr TG et al. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans. Am J Hum Genet. 1993; 53:591-608.
    94. 王海晶, 常娥, 葛斌文, 等. 饮牛沟墓地古人骨线粒体 DNA 研究. 吉林大学学报(理学版). 2005; 43(6):847-852.
    95. 张博泉. 乌拉全书 二集 鲜卑新论. 长春: 吉林文史出版社. 1993; 144-146.
    96. 林幹. 东胡史. 内蒙古: 内蒙古人民出版社. 1989; 78-86; 146; 167; 214-217.
    97. 马长寿. 乌桓与鲜卑. 上海: 上海人民出版社. 1962; 1-25; 198-201.
    98. 辽宁省文物考古研究所, 朝阳市博物馆, 北票市文物管理所. 辽宁北票喇嘛洞墓地1998 年发掘报告. 考古学报. 2004; 153: 209-242.
    99. Yao YG, Zhang YP. Phylogeographic analysis of mtDNA variation in four ethnic populations from Yunnan Province: new data and a reappraisal. J Hum Genet. 2002; 47:311-318.
    100. Yu C, Xie L, Zhang X et al. Genetic analysis on Tuoba Xianbei remains excavated from Qilang Mountain Cemetery in Qahar Right Wing Middle Banner of Inner Mongolia. FEBS Lett. 2006; 580:6242-6246.
    101. Mooder KP, Schurr TG, Bamforth FJ et al. Population affinities of Neolithic Siberians: a snapshot from prehistoric Lake Baikal. Am J Phys Anthropol. 2006; 129:349-361.
    102. Keyser-Tracqui C, Crubezy E, Ludes B. Nuclear and mitochondrial DNA analysis of a 2,000-year-old necropolis in the Egyin Gol Valley of Mongolia. Am J Hum Genet. 2003; 73:247-260.
    103. Wang L, Oota H, Saitou N et al. Genetic structure of a 2,500-year-old human population in China and its spatiotemporal changes. Mol Biol Evol. 2000; 17:1396-1400.
    104. Oota H, Saitou N, Matsushita T et al. Molecular genetic analysis of remains of a 2,000-year-old human population in China-and its relevance for the origin of the modern Japanese population. Am J Hum Genet. 1999; 64:250-258.
    105. Yao YG, Kong QP, Man XY et al. Reconstructing the evolutionary history of China: a caveat about inferences drawn from ancient DNA. Mol Biol Evol. 2003; 20:214-219.
    106. Pakendorf B, Novgorodov IN, Osakovskij VL et al. Investigating the effects of prehistoric migrations in Siberia: genetic variation and the origins of Yakuts. Hum Genet. 2006; 120:334-353.
    107. Puzyrev VP, Stepanov VA, Golubenko MV et al. [MtDNA and Y-chromosome lineagesin the Yakut population]. Genetika. 2003; 39:975-981.
    108. Schurr TG, Sukernik RI, Starikovskaya YB et al. Mitochondrial DNA variation in Koryaks and Itel'men: population replacement in the Okhotsk Sea-Bering Sea region during the Neolithic. Am J Phys Anthropol. 1999; 108:1-39.
    109. Tanaka M, Cabrera VM, Gonzalez AM et al. Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res. 2004; 14:1832-1850.
    110. Excoffer L, Somouse P, Quattro J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to humang mitochondrial DNA restriction data. Genetics. 1992; 136: 479-491.
    111. Krings M, Stone A C, Schmitz R W, et al. Neandertal DNA sequences and the origin of modern humans. Cell. 1997. 90: 19-30.
    112. Ovchinnikov I, Anders G, Galina P R, et al. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature. 2000. 404: 490-493.
    113. Caramelli D, Lalueza-Fox C, Vernesi C, et al. Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans. Proc Natl Acad Sci USA. 2003. 100: 6593-6597.
    114. Richard E G, Johannes K, Susan E P, et al. Analysis of One Million Base Pairs of Neanderthal DNA. Nature. 2006. 444:330-336.
    115. James P N , Graham C , Sridhar K, et al. Sequencing and Analysis of Neanderthal Genomic DNA. Science. 2006. 314:1113-1118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700