电网故障下直驱永磁同步风电系统的持续运行与变流控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风电作为缓解全球燃油枯竭、气候变暖和环境恶化的一个主要能源形式而受到越来越多国家的重视。随着并网风电容量的不断提高,风力发电机组与电网之间的相互作用也越来越强。一方面,风电机组的运行性能直接影响到所并电网的稳定性和电能质量,另一方面,实际运行中电网故障可能导致风电机组的保护性切机,引起电网的扩大化故障,给电网的稳定运行带来严重的后果。因此从电网的安全角度考虑要求并网运行的风电机组应能满足接入电网的技术规范,要求风电机组能在电网故障下持续运行而不退出电网,即风电机组必须具备低电压穿越(LVRT)能力。本文针对直驱风电系统在不对称电网故障下的持续运行与变流控制进行了研究,全文安排如下:
     第1章介绍了风力发电技术的研究现状与发展趋势;介绍了目前风力发电系统中的主要机型,概述了直驱风电系统低电压穿越技术的研究现状。
     第2章阐述了风力发电的基本原理、风轮机的功率特性和风轮机功率的控制方法,探讨了风轮机最大风能捕获原理和最大功率输出的控制策略,介绍了3种最大功率点跟踪算法,为直驱风电系统在正常和电网故障情况下控制策略的最优选择提供有效的指导。
     第3章在直驱风电系统传统控制策略的基础上,提出一种新的变流器控制策略,并在SIMULINK/MATLAB的环境下对两种控制策略进行了仿真和比较。由于新型控制策略中的功率环调节在网侧,其能量转换的效率较传统控制策略高,系统的响应速度加快,动态特性很好,稳态后各项参数的性能也很优越。同时,新型控制策略在没有采用任何保护措施的情况下,也可使系统具有一定的低电压穿越能力,为电网故障下直驱风电系统变流器的控制提供了一种最优的选择。但传统控制策略比新型控制策略在机侧与直流母线电压的稳定性上更具有优势。然后构建了直驱风电系统实验平台,对风电实验系统各部分装置的软、硬件进行设计,并通过实验对所提出的新型控制策略的性能进行验证。
     第4章首先阐述了风电机组的并网要求与直驱风电机组的并网过程,介绍了电网的故障类型,提出了5种提高直驱风电系统低电压穿越能力的措施,接着阐述了抑制振荡的阻尼控制器的设计。最后结合电容保护电路、桨距角调节、直流母线电压调节和电网无功支持等控制策略,给出了实现直驱风电系统低电压穿越的控制结构和仿真模型,并进行了仿真。
     第5章首先阐述了锁相环的功能和结构,介绍了直驱风电系统网侧变流器控制的电网同步化要求。接下来对现有的一些同步化方法进行了研究与比较,然后探索出适合于电网不对称故障下的网侧变流器同步化方法。本章对单同步软件锁相环、解耦的双同步坐标系软件锁相环和二阶通用积分器-正交信号发生器软件锁相环的工作原理和性能进行了研究,重点对二阶通用积分器-正交信号发生器同步化方法进行了仿真和实验研究,为直驱风电机组在不对称电网故障下的持续运行提供可靠的信息。
     第6章首先给出电网故障下直驱风电系统的控制策略和控制结构,探讨了电网故障下保持直流母线电压恒定的机理,提出了3种不同的电流控制器,在SIMULINK/MATLAB的环境下对3种电流控制器的性能进行了仿真与比较。最后针对本文所提出的新型控制策略和第5章所提出的电网同步化方法,结合低电压穿越控制策略在电网不对称故障下对直驱风电系统的持续运行与控制性能进行了实验验证。
     结论部分作为对本论文研究工作的总结,介绍本研究的特点和创新之处,同时指出了进一步研究工作的重点和方向。
As a one of main energy sources to release the depletion of oils, climate warming and environment deteriorate in the world wind power generation has been increasingly emphasized by more and more countries. With the rapid increase of capacity of wind power generator set connected to grid, the mutual action between the wind power generator set and grid has been larger and larger. In one hand, the operation performance of generator set directly influences operation stability and energy quality of the grid connected to it. In the other hand the grid faults in real operation can cause the generator set to disconnect from the grid because of protection action and give rise to an enlarged fault resulting in a severely negative effect to restoring stabilized operation of grid. So from the grid safety it is necessary to design new grid code requirements for wind power which impose the wind turbines to stay connected to the grid under grid fault. That means the wind generator sets must have the capability to ride through low voltage. This paper is designed to research the operation and control of direct drive wind power generation system under asymmetrical grid fault conditions. This paper is organized as follows:
     In chapter1, we introduce research status and development trends of wind power generation technology in and out of domestic, and the main wind power generator set types at present. Then we also summarized research status of direct drive wind generation system in terms of low voltage ride-through technology.
     In chapter2, we introduce basic principles of wind power generation, power characteristic and control methods of output power of wind turbine, and discuss principles to capture maximum wind energy from changing wind and the control strategy to output maximum electrical power, then introduce three maximum power point tracking control algorithms to provide effective guides to optimum control strategy choice in direct drive wind power generation system under normal and grid fault conditions.
     In chapter3, a new converter control strategy of direct drive wind generation system is proposed based on conventional one on the which generator-side converter controls power transmitted into grid and grid-side converter controls DC bus voltage, while the new control strategy is the other way around. Then we simulate and compare two control strategies in the SIMULINK/MATLAB environment. On the new strategy because power regulation is realized in grid-side converter, the energy convertion efficiency is higher than that on the traditional one, response speed of system speeds up and dynamic performance is very good, various steady performance of parameters is also very good. In the meantime, the new control strategy can make this system to have definite ability to ride through low voltage without adopting any protection measures and offers an optimal choice for converter control of direct drive wind generation system under grid faults. However, the conventional strategy has advantages in terms of generator-side and DC bus voltage stability over the new one. Then the experimental platform of direct-driven wind generation system is constructed and software and hardware of it are designed to verify the performance of two kinds of control strategies proposed.
     In chapter4, the grid code requirments and grid incorporation process of wind power generator sets are dealed with, the fault types of grid are introduced. Five different measures to enhance low voltage ride-through capability in direct drive wind power generation system are proposed, and design of damping controller to restrain the oscillation is performed. Based on the control strategy of capacitor energy storage protection circuit, generator speed regulating (regulating blade pitch angle), DC bus voltage adjusting and grid reactive power support provided by grid-side converter, the control configuration and simulation model to fulfill low voltage ride-through of direct-driven wind generation system is offered and simulations are performed.
     In chapter5, function and configuration of phase-locked loop are dealed with and grid synchronization requirments of grid-side converter in the direct-driven wind generation system is clarified. Some present grid synchronization methods are researched and compared to seek out an optimal method suit for grid-side converter synchronization under asymmetrical grid fault conditions. This paper researches the work principles and performance of single synchronous reference frame software phase-locked loop, decoupled double synchronous reference frame PLL and second order general integrator-quadrature signals generator synchronization methods. Second order general integrator-quadrature signals generator synchronization method is researched by simulation and experiment to provide reliable information for continuous operation of direct-driven wind generation system under asymmetrical grid fault conditions.
     In chapter6, the control strategy and configuration of direct-driven wind generation system are given, the principle to keep DC bus voltage constant is discussed. Three different current controllers are provided and compared by simulating under SIMULINK/MATLAB environment. Finally based on the new control strategy and grid synchronization method offered in the chapter5and coupled with low voltage ride-through control strategy the continuous operation and control performance of direct-driven wind generation system under asymmetrical grid fault is verified.
     The conclusion summarizes research work of this paper and introduces the characteristic and originality in the paper, meanwhile gives the emphasis and direction of research work in the future.
引文
[1]杨俊华,吴捷,杨金明等.现代控制技术在风能转换系统中的应用.太阳能学报,2004,25(4):530-539
    [2]王晓蓉,王伟胜,戴慧珠,等.我国风力发电现状与展望.中国电力,2004,31(2):81-84.
    [3]贺益康,周鹏.变速恒频双馈异步风力发电系统低电压穿越技术综述,电工技术学报,2009,24(9):140-146.
    [4]Idsoe Nass, B. et al. Methods for Reduction of Voltage Unbalance in Weak Grids Connected to Wind Plants, IEEE Workshop on wind Power and The Impacts on Power System, Norway, June 2002:17-18
    [5]Eduard Muljadi, C. P. Butterfield, Brian Parsons, Abraham Ellis, et al. Effect of Variable Speed Wind Turbine Generator on Stability of a Weak Grid. IEEE Trans. on Energy Conversion,2007,22(1):29-36.
    [6]张宪平.直驱式变速恒频风力发电系统低电压穿越研究.大功率变流技术,2010,4:28-31.
    [7]Cuiqing Du, Math H. J. Bollen, Evert Agneholm, Ambra Sannino, et al. A New Control Strategy of a VSC-HVDC System for High-Quality Supply of Industrial Plants. IEEE Trans. on Power Delivery,2007,22(4):2386-2394.
    [8]Lie Xu, Liangzhong Yao, Christian Sasse, et al. Grid Integration of Large DFIG-Based Wind Farms Using VSC Transmission. IEEE Trans. on Power Systems,2007,22(3): 976-984.
    [9]Tavner P.J, Xiang J, Spinato F. Reliability Analysis for Wind Turbines. Wind Energy, 2007(10):1-18.
    [10]李建林,梁亮,许洪华.双馈感应式风力发电系统低电压运行特性研究.电网与清洁能源, 2008,24(1):39-43.
    [11]Santiago Arnaltes, Juan Carlos Burgos. Control of Permanent-Magnet Generators Applied to Variable- Speed Wind-Energy Systems Connected to the Grid Chinchilla. IEEE Transaction on Energy Conversion,2006,21(1):130-135.
    [12]Henk Polinder, Frank F. A. van der Pijl, Gert-Jan de Vilder, Peter J. Tavner.Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Transaction on Energy Conversion,2006,21 (3):725-733.
    [13]耿华,杨耕,崔杨等.并网型风力发电系统的现状与发展.东方汽轮评论,2006, 20(2):1-7
    [14]刘细平,林鹤云.风力发电机及风力发电控制技术综述.大电机技术,2007(3):17-20,55
    [15]蒋雪冬,赵舫.应对电网电压骤降的双馈感应风力发电机Crowbar控制策略.电网技术,,2008,32(12):84-89
    [16]金玉洁,毛承雄,王丹等.直驱式风力发电系统的应用分析.能源工程,2006(3):29-33
    [17]李建林,胡书举,孔德国等.全功率变流器直驱风电系统低电压穿越特性研究.电力系统自动化,2008,32(19):92-95.
    [18]A.Parviainen, J.Pyrhonen, P.Kontkanen. Axial flux permanent magnet generator with concentrated winding for small wind power applications. IEEE International Conference on Electric Machines and Drives, Wuhan China,2005:1187-1191.
    [19]潘文霞,艾斯卡尔,史林军等.变速恒频风力发电系统控制方案的分析与比较.太阳能,2004(6):45-48
    [20]李俊峰,施鹏飞,高虎.中国风力发展报告2010.海南:海南出版社,,2010.10.
    [21]颜新华.风电安全运行难题待解.中国电力报,2011.04.09
    [22]颜新华.电监会通报近期三起风电机组大规模脱网事故.中国电力报,,2010.5.06
    [23]赵群,柴福莉.海上风力发电现状与发展趋势.机电工程,2009,26(12):5-8.
    [24]张兴,张龙云,杨淑英等.风力发电低电压穿越技术综述.电力系统及其自动化学报,2008,20(2):1-8.
    [25]胡家兵,孙丹,贺益康等.电网电压骤降故障下双馈风力发电机建模与控制.电力系统自动化,2006,30(8):21-26.
    [26]李建林,许鸿雁,梁亮,等VSCF-DFIG在电压瞬间跌落情况下的应对策略,电力系统自动化,2006,30(19):65-68.
    [27]刘琦,许移庆.世界海上风电投资分析.电器工业,2009(6):45-47,51.
    [28]张玲,王伟,盛银波.基于清洁能源发电系统的微网技术.电网与清洁能源,2009,25(1):40-43.
    [29]Katiraei F,Iravani M R. Power Management Strategies for a Microgrid With Multiple Distributed Generation Units. IEEE Transactions on Power System,2006, 21(4):1821-1831.
    [30]黄伟,孙昶辉,吴子平.等.含分布式发电系统的微网技术研究综述.电网技术,2009,33(9):14-18.
    [31]Nian Heng, Liu Jiao, Zhou Peng, He Yikang, et al. Improved Control Strategy of an Active Crowbar for Directly-driven PM Wind Generation System under Grid Voltage Dips. International Conference on Electrical Machines and Systems, Wuhan China,2008:2294-2298.
    [32]J.F. Conroy and R. Watson. Low voltage ride-through of a full converter wind turbine with permanent magnet generator, IET Renew. Power Generation,2007,1,(3), pp. 182-189.
    [33]胡书举,李建林,许洪华.直驱风电系统变流器建模和跌落特性仿真.高电压技术,2008,34(5):949-954.
    [34]胡书举,李建林,许洪华.变速恒频风电系统应对电网故障的保护电路分析.变流技术与电力牵引,2008(1):45-50,55.
    [35]肖磊.直驱型永磁风力发电系统低电压穿越技术研究[硕士学位论文],长沙:湖南大学,2009.04.
    [36]Alvaro Luna, Pedro Rodriguez, Remus Teodorescu, Freede Blaabjerg, et al. Low Voltage Ride Through Strategies for SCIG Wind Turbines in Distributed Power Generation Systems. In:IEEE Power Electronics Specialists Conference,2008: 2333-2339.
    [37]梁亮,李建林,许洪华.双馈感应式风力发电系统低电压穿越研究.电力电子技术,2008,42(3):19-21.
    [38]马洪飞,徐殿国,Chen Zhe.双馈风力发电系统故障不脱网运行能力研究.太阳能学报,2009,30(10):1408-1413.
    [39]李建林.风力发电系统低电压运行技术.北京:机械工业出版社,,2008:128-129.
    [40]A.D.Hansen, G.Michalke. Multi-pole permanent magnet synchronous generator wind turbines'grid support capability in uninterrupted operation during grid faults. IET Renewable Power Generation,2009,3(3):333-348.
    [41]P.Rodriguz, A.Luna. et al. Fault ride-through capability implementation in wind turbine converters using a decoupled double synchronous reference frame PLL. In:European Conference on Power Electronics and Applications,2007:1-10.
    [42]肖磊,黄守道,黄科元等.不对称电网故障下直驱永磁风力发电系统直流母线电压稳定控制.电工技术学报,25(7),2010:123-129,158.
    [43]李建林,周谦,刘剑等.直驱式变速恒频风力发电系统变流器拓扑结构对比分析.电源技术应用,,2007,,10(6):12-15
    [44]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[北京交通大学博士学位论文].北京:北京交通大学,2008,15-18
    [45]尹明,李庚银,张建成等.直驱式永磁同步风力发电机组建模及其控制策略.电网技术,2007,31(5):61-65.
    [46]Kenji Amei,Yukichi Takayasu,Takahisa Ohji,Masaaki Sakui.A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit. IEEE Transactions on Power Electronics,2002:1447-1452.
    [47]田旭,姜齐荣,谢小荣.电力系统次同步谐振抑制措施综述[J].电网技术,2010,,34(12):74-79.
    [48]高本锋,赵成勇,肖湘宁,等.高压直流输电系统附加次同步振荡阻尼控制器的设计与实现,高电压技术,,2010,36(2):501-506.
    [49]张帆,徐政.附加励磁阻尼控制抑制次同步谐振研究.电力系统自动化,2007,1(2):24-29.
    [50]唐酿,肖湘宁.李伟等.HVDC附加次同步阻尼控制器设计及其相位补偿分析.高电压技术2011,37(4):1015-1021.
    [51]张帆,徐政.采用TCR抑制发电机次同步谐振的仿真研究.高电压技术,2008,34(8):43-46.
    [52]张帆,徐政.励磁系统及电力系统稳定器对发电机组次同步谐振阻尼特性的影响.电网技术,2006,30(18):14-19.
    [53]张帆,徐政.TCSC对发电机组次同步谐振阻尼特性影响研究.高电压技术,2005,31(3):68-70.
    [54]严伟佳,蒋平.抑制区域间低频振荡的阻尼控制.高电压技术,2007,33(1):189-]72.
    [55]汤凡,刘天琪,李兴源.电力系统稳定器及附加励磁阻尼控制器对次同步谐振的影响.电网技术,2006,30(18):14-19.
    [56]Xu L, Wang Y. Dynamic modeling and control of DFIG based on wind turbines under unbalanced network conditions. IEEE Trans, on Power system,2007,22(1):314-323.
    [57]姜燕,陈顺,黄守道,黄科元.直驱型永磁风力发电系统的电网同步化方法研究,电网技术,2010,34(11):182-186.
    [58]周鹏,贺益康,胡家兵.电压不平衡状态下风电机组运行控制中电压同步信号的检测.电工技术学报,2008,23(5):108-113.
    [59]龚锦霞,解大,张延迟等.三相数字锁相环的原理及性能.电工技术学报,2009,24(10):94-99,121.
    [60]李彦栋.动态电压恢复器锁相及控制方法的研究:[西安交通大学硕士学位论文].西安:西安交通大学,2004:3.
    [61]Sang-Joon Lee,Jun-Koo Kang,Seung-Ki Sul. A New Phase Detecting Method for Power Conversion Systems Considering Distorted Conditions in Power System. In: Industry Applications Conf.34th IAS Annu. Meeting. USA,1999:2167-2172.
    [62]田桂珍,王生铁,林百娟.基于d-q变换的改进型锁相环设计.内蒙古工业大学学报,2009,28(1):64-68.
    [63]Pedro Rodriguze,Josep Pou Joan Bergas. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control. IEEE Transactions on Power Electronics,2000,22(2):584-592.
    [64]田桂珍,王生铁,林百娟.电压不平衡时风电系统中基于双同步变换的锁相环设计.电气传动,2010,40(7):53-57.
    [65]陈顺.直驱风力发电网侧变流器的同步方法与控制策略研究[硕士学位论文],长沙:湖南大学,2010.04:48-49.
    [66]P.Rodriguz, A.Luna, et al. Advanced grid synchronization system for power converters under unbalanced and distorted operating conditions. In:32nd Annual Conference on Digital Object Identifier,2006:5173-5178.
    [67]P.RIOUAL, H.POULIQUEN. Regulation of a PWM rectifier in the unbalanced network state using a generalized model. IEEE Transactions on Power Electronics,1996,11 (3):495-502.
    [68]H.S.SONG K.NAM. Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Transactions on Industrial Electronics,1999,46(5):953-959.
    [69]叶杭冶.风力发电机的设计、运行与维护.北京:电子工业出版社,2010.
    [70]霍志红,郑源,左潞等.风力发电机组控制技术.北京:中国水利水电出版社,2010.05.
    [71]Ming Yin,Gengyin Li,Ming Zhou. Modeling of the Wind Turbine with a Permanent Magnet S ynchronous G eneratorfor Integration, in:Power Engineering Society General Meeting, Tampa, FL.2007:1-6.
    [72]吴迪,张建文.变速直驱永磁风力发电机控制系统的研究.大电机技术2006(6):51-55.
    [73]Shigeo Morimoto, Hajime Kato,Masayuki Sanada,Yoji Takeda. Output Maximization Control for Wind Generation System with Interior Permanent Magnet Synchronous Generator, in: Industry Applications Conference,41st IAS Annual Meeting. Tampa, FL. 2006:503-509.
    [74]Tomohiko Nakamura,Shigeo Moromoto, Masayuki Sanada,Yoji Takeda. Optimum Control of IPMSG for Wind Generation System. IEEE PCC-Osaka,2002:1435-1440.
    [75]R.J. Wai, C.Y. Lin. Implementation of Novel Maximum-Power-Extraction Algorithm for PMSG Wind Generation System without Mechanical Sensors. IEEE Robotics, Automation and Mechatronics,2006:1-6
    [76]R.J. Wai, C.Y. Lin, YR. Cheng. Novel Maximum-Power-Extraction Algorithm for PMSG Wind Generation System. IET Electr. Power Appl,2007,1 (2):275-283.
    [77]Kelvin Tan,Syed Islam. Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Transactions On Energy Conversion,2004,19(2):392-399.
    [78]Antonino O.Di Tommaso,Rosario Miceli, Guiseppe Ricco Galluzo, Macro Trapanese. Efficiency Maximization of Permanent Magnet Synchronous Generator Coupled to Wind Turbines. in:Power Electronics Specialists Conference, Orlando, FL. 2007(2):1267-1272.
    [79]王丰收,沈传文,刘伟.风力发电系统控制策略研究.电气传动自动化,2006,28(5):1-5.
    [80]Tomonobu Senjyu, Satoshi Tamaki, Naomitsu Urasaki, Katsumi Uezato. Wind Velocity and Rotor Position Sensorless Maximum Power Point Tracking Control for Wind Generation System. In:IEEE Power Electronics Specialists Conference. 2004(35):2023-2028.
    [81]王丰收,沈传文,孟永庆.基于MPPT算法的风力永磁发电系统的仿真研究.电气传动,2007,37(1):6-10.
    [82]闫耀民,范瑜,汪至中.永磁同步电机风力发电系统的自寻优控制.电工技术学报,2002,17(6):82-86.
    [83]胡虔生,胡敏强.电机学.北京:中国电力出版社,2009.07:228-229.
    [84]林伟杰.永磁同步电机两种磁场定向控制策略的比较.电力电子技术,2007.41(1):26-28
    [85]Monica Chinchilla, Santiago Arnaltes, Juan Carlos Burgos. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion,2006,21(3):130-135
    [86]Ana I. Estanqueiro, et al. A Dynamic Wind Generation Model for Power Systems Studies. IEEE Trans, on Power Systems,2007,22(3):920-928.
    [87]史伟伟,蒋全,胡敏强等.三相电压型PWM整流器的数学模型和主电路设计.东南大学学报(自然科学版),2002,32(1):50-55.
    [88]瞿兴鸿,廖勇等.永磁同步直驱风力发电系统的并网变流器设计.电力电子技术,2008,42(3):22-24.
    [89]陈伯时,陈敏逊.交流调速系统(第二版).北京:机械工业出版社,2005:112-116.
    [90]张红光,张粒子,陈树勇等.大容量风电场接入电网时的频率控制特性.电力系统自动化,2008,32(1):29-32.
    [91]周宏林,杨耕.大型DFIG风电场的LCC-HVDC并网及控制.电力自动化设备,2009,29(7):8-12.
    [92]迟永宁,王伟胜,刘燕华.大型风电场对电力系统暂态稳定性的影响.电力系统自动化,2006,30(15):10-14.
    [93]程浩忠,吴浩.电力系统无功与电压稳定性.北京:中国电力出版社,2004:20-28.
    [94]李庚银,吕鹏飞,李广凯等.轻型高压直流输电技术的发展与展望.电力系统自动 化,2003,27(4):77-81.
    [95]刘志刚,汪至中,范瑜等.新型可再生能源发电馈网系统研究.电工技术学报,2003,18(4):108-112.
    [96]张国新.风力发电并网技术及电能质量控制策略.电力自动化设备,2009,29(6):130-133.
    [97]别朝红,刘辉,李甘等.含风电场电力系统电压波动的随机潮流计算与分析.西安:西安交通大学学报,2008,42(12):1500-1505.
    [98]曹娜,李岩春,赵海翔,戴慧珠.不同风电机组对电网暂态稳定性的影响.电网技术;2007,31(9):53-57.
    [99]王伟胜;范高锋;赵海翔.风电场并网技术规定比较及其综合控制系统初探.电网技术,2007,31(18):73-77.
    [100]曹娜.赵海翔,戴慧珠.常用风电机组并网运行时的无功与电压分析,电网技术,2006,30(22):41-45.
    [101]王海超,周双喜,鲁宗相,吴俊玲;含风电场的电力系统潮流计算的联合迭代方法及应用.电网技术,2005,29(18):59-62.
    [102]赵海翔;陈默子,戴慧珠.风电并网引起闪变的测试系统仿真.太阳能学报,2005,26(1):28-33.
    [103]J. Morren, J.T.G. Pierik, S.W.H. de Haan. Voltage Dip Ride-through Control of Direct-drive Wind Turbines. In:39th International Universities Power Engineering Conference,2004(2):934-938.
    [104]Yasser Abdel-Rady, Ibrahim Mohamed. Direct instantaneous torque control in direct drive permanent magnet synchronous motors-a new approach. IEEE Transaction on Energy Conversion,2007,22(4):829-838.
    [105]郭栋.动态电压恢复器的锁相与控制策略研究[硕士学位论文],合肥,合肥工业大学,2008:16-21.
    [106]杨淑英.双馈型风力发电变流器及其控制.合肥:合肥工业大学,2007:58-64.
    [107]Anca D. Hansen, Florin Iov, et, al. Dynamic wind turbine models in power system simulation tool DIgSILENT. RisΦR-1400(ed.2)(EN),2007:50-58.
    [108]A.J.G.Westlake, J.R.Bumby,E.Spooner. Damping the power-angle oscillations of a permanent-magnet synchronous generator with particular reference to wind turbine applications. IEE, Proc.-Elctr. Power Appl.143(3):269-279.
    [109]蔺红,晁勤.新疆电网电力系统稳定器设计与仿真.电网技术,2009,33(9):40-43.
    [110]苏渊.三峡左岸电站电力系统稳定器现场试验[J].中国电力,2006,39(2):10-13.
    [111]P.Rodriguz, R.Teodordecu,I.Candela et al. New positive voltage detector for grid synchronization of power converters under faulty grid conditions. in:Power Electronics Specialists Conference,2006:1-7.
    [112]李彦栋,王凯斐,卓放等.新型软件锁相环在动态电压恢复器中的应用.电网技术,2004,28(2):42-45.
    [113]Masoud Karimi Ghartemani, M. Reza Iravani. A method for synchronization of power electronic converters in polluted and variable-frequency environments. IEEE Transactions on Power Systems,2004,19(3):1263-1270.
    [114]Hong-seok Song, Hyun-gyu Park, Kwanghee Nam. An instantaneous phase angle detection algorithm under unbalanced line voltage condition. in:Power Electronics Specialists Conference, Charleston, SC, USA.1999:533-537.
    [115]王福昌,鲁昆生.锁相技术.武汉:华中科技大学出版社,1997:3-28.
    [116]Giuseppe Saccomando,Jan Svensson. Transient operation of grid-connected voltage source converter under unbalanced voltage conditions. In:Industry Applications Conf. 36th IAS Annu. Meeting. USA,2001:2419-2424
    [117]Fainan A Magueed,Ambra Sannino,Jan Svensson. Transient performance of voltage source converter under unbalanced voltage dips. In:35th IEEE Power Electronics Specialists Annual Conference. Germany,2004: 1163-1168
    [118]M Bongiorno,Jan Svesson,Ambra Sannino. Dynamic performance of vetor current controllers for grid-connected VSC under voltage dips. In:Industry Applications Conf. Fortieth IAS Annu. Meeting. Hong Kong,2005:904-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700