促红细胞生成素治疗宫内感染致新生大鼠脑白质损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     早产儿脑白质损伤(white matter damage,WMD)被认为是脑瘫发生的最主要的危险因素,给家庭和社会带来了巨大的负担。目前,早产儿WMD的机制尚不十分清楚,流行病学和动物实验研究均表明宫内感染在早产儿WMD的发生机制中起重要作用。WMD的病理特点主要是脑白质的凝固性坏死,坏死部位出现反应性星形胶质化、少突胶质细胞的丢失、髓鞘损伤和轴突损害。近年来研究认为,WMD的发生与脑内细胞因子的关系非常密切。细胞因子能以多种机制导致脑白质损伤:1.损伤少突胶质细胞、星形胶质细胞、髓鞘和轴突等;2.通过诱导其他细胞因子而进一步产生细胞损害;3.介导一氧化氮(nitric oxide,NO)的神经毒性作用等。官内感染导致早产儿WMD的机制可以推测为由细胞因子介导的一系列脑组织中各种细胞和蛋白合成的变化所致。
     近年来的研究发现促红细胞生成素(erythropoietin,EPO)在脑和其它脏器中具有促红细胞生成以外的其它重要功能。EPO可能作为一种中枢神经系统炎症病理变化中的保护性细胞因子,对脑内的免疫反应有保护作用,这一作用可能通过影响脑内细胞因子的合成并发挥生物效应来实现。研究表明外周静脉或腹腔内注入重组人促红细胞生成素(recombinant human erythropoietin,rhEPO)能通过血脑屏障而直接在脑内产生神经保护作用。目前国内外对EPO与脑损伤的关系及机制研究主要集中于EPO对缺氧缺血性脑损伤的神经保护作用,而EPO与早产儿WMD的关系以及相关机制研究目前仍较少。
     因此,本研究通过建立宫内感染导致WMD的新生大鼠模型,并给宫内感染后的新生大鼠腹腔注射一定剂量的rhEPO,观察rhEPO干预对宫内感染后的新生大鼠脑白质中的2′,3′-环核苷3′-磷酸二脂酶(2′,3′-cyclic nucleotide 3′phosphodiesterase,CNPase)、神经微丝(neurofilament,NF)和胶质纤维酸性蛋白(glial fibrillary acidicprotein,GFAP)表达水平的影响;观察rhEPO干预对宫内感染后的新生大鼠脑内细胞因子和诱导型一氧化氮合酶(inducible nitrie oxide synthase,iNOS)的基因表达以及NO含量的影响,从细胞、分子水平来说明EPO对宫内感染导致的新生大鼠WMD可能存在的治疗作用。该研究将为临床治疗早产儿WMD提供丰富的动物实验信息及依据,为今后进一步研究早产儿WMD的防治提供新的途径。
     方法:
     1.实验分组:对照组1(A组)、对照组2(B组)、宫内感染组(C组)、宫内感染+rhEPO低剂量治疗组(D组)、宫内感染+rhEPO中剂量治疗组(E组)、宫内感染+rhEPO高剂量治疗组(F组),每组8只SD孕鼠。对照组1为正常对照,对照组2为胎龄15天的孕鼠左右两侧宫颈内各注射生理盐水0.2 mL,宫内感染组为胎龄15天的孕鼠左右两侧宫颈内各注射大肠杆菌稀释液0.2 mL,宫内感染+rhEPO低(中、高)剂量治疗组为宫内感染母鼠分娩后,新生大鼠于生后即刻腹腔注射1000(3000、5000)IU/kg rhEPO。
     2.标本采集:按照新生1、3、7日龄分别随机选取各组中的新生大鼠经断头处死,迅速取出脑组织,将脑组织中性甲醛固定、石蜡包埋,或将脑组织经液氮速冻后-80℃冰箱中保存。
     3.实验方法:应用苏木素-伊红(hematoxylin eosin,HE)染色观察各组新生1、3、7日龄大鼠脑室周围白质组织病理变化特点。免疫组化染色检测各组新生1、3、7日龄大鼠脑组织CNPase、NF和GFAP的表达,Western blot检测各组新生1、3、7日龄大鼠脑组织CNPase、NF和GFAP的蛋白水平,荧光定量RT-PCR检测各组新生1、3、7日龄大鼠脑内细胞因子肿瘤坏死因子(tumor necrosis factor,TNF)-α、白细胞介素(interieukin,IL)-1β、巨噬细胞炎性蛋白(macrophageinflammatoryprotein,MIP)-1α、MIP-1βmRNA和iNOSmRNA的表达,硝酸还原酶法检测各组新生1、3、7日龄大鼠脑内的NO含量。
     结果:
     1.48只孕鼠活动、进食均正常,无1例发生死亡。孕鼠分娩情况:A组共92只幼鼠,B组共85只幼鼠,C组共84只幼鼠,D组共89只幼鼠,E组共95只幼鼠,F组共78只幼鼠。宫内大肠杆菌感染的孕鼠子宫壁及胎盘内血管充血、水肿,并见大量中性粒细胞浸润。对照组的孕鼠子宫及病理检测均未见明显的炎症反应。
     2.新生7日龄大鼠脑室周围白质部位HE染色可见:A、B两组脑白质组织结构正常,染色清晰;C、D两组脑白质染色淡,结构稀疏呈筛网状改变;E组脑白质染色偏淡,结构稀疏化程度较C组有所减轻;F组脑白质染色清晰,结构稀疏化程度较C组明显减轻。
     3.宫内感染后的新生7日龄大鼠脑组织CNPase、NF表达显著下降,rhEPO治疗使宫内感染后的新生7日龄大鼠脑组织CNPase、NF表达有所上升。C组新生7日龄大鼠脑组织CNPase、NF蛋白水平较A、B两组均显著降低,E、F两组CNPase蛋白水平则较C组显著升高,F组NF蛋白水平亦较C组显著升高。宫内感染后的新生7日龄大鼠脑组织GFAP表达显著上升,rhEPO治疗使宫内感染后的新生7日龄大鼠脑组织GFAP表达有所下降。C组新生7日龄大鼠脑组织GFAP蛋白水平较A、B两组显著升高,F组GFAP蛋白水平则较C组显著降低。
     4.宫内感染后新生1日龄大鼠脑内TNF-αmRNA的表达水平显著升高,中、高剂量的rhEPO治疗使宫内感染后新生1日龄大鼠脑内TNF-αmRNA的表达水平显著下降。宫内感染后新生1、3日龄大鼠脑内IL-1βmRNA的表达水平显著升高,中、高剂量的rhEPO治疗使宫内感染后新生大鼠1日龄脑内IL-1βmRNA的表达水平显著下降。宫内感染后新生1、3日龄大鼠脑内MIP-1αmRNA的表达水平显著升高,高剂量的rhEPO治疗使宫内感染后新生1、3日龄大鼠脑内MIP-1αmRNA的表达水平显著下降。宫内感染后新生1日龄大鼠脑内MIP-1βmRNA的表达水平显著升高,中、高剂量的rhEPO治疗使宫内感染后新生1日龄大鼠脑内MIP-1βmRNA的表达水平显著下降。
     5.宫内感染后新生1、3日龄大鼠脑内iNOS mRNA的表达水平显著升高,中、高剂量的rhEPO治疗使宫内感染后新生1、3日龄大鼠脑内iNOS mRNA的表达水平显著下降。宫内感染后新生1、3日龄大鼠脑内NO含量显著升高,高剂量的rhEPO治疗使宫内感染后新生1、3日龄大鼠脑内NO含量显著下降。
     结论:
     1.宫颈接种大肠杆菌建立的官内感染大鼠模型能导致新生大鼠脑白质结构产生稀疏化表现,宫内感染后新生大鼠的脑白质组织存在少突胶质细胞损伤、轴突损害和反应性星形胶质化,提示宫内感染能够导致新生大鼠WMD。
     2.通过给宫内大肠杆菌感染后的新生大鼠生后即刻腹腔注射一定剂量的rhEPO能够减轻宫内感染后新生大鼠脑白质出现的少突胶质细胞损伤、轴突损害和反应性星形胶质化,提示EPO对宫内感染导致的新生大鼠WMD具有一定的治疗作用。
     3.宫内大肠杆菌感染后新生大鼠脑内的细胞因子TNF-α、IL-1β、MIP-1α和MIP-1βmRNA在生后早期有一过性表达增高的特点,提示由宫内感染导致的细胞因子级联反应在WMD的发生、发展中起着关键作用。
     4.通过给宫内大肠杆菌感染后的新生大鼠生后即刻腹腔注射一定剂量的rhEPO可以抑制宫内感染后新生大鼠脑内细胞因子TNF-α、IL-1β、MIP-1α和MIP-1βmRNA的一过性表达增高,提示在宫内感染致新生大鼠WMD的早期炎症反应阶段,EPO可能通过抑制宫内感染后新生大鼠脑内细胞因子的大量表达,减轻炎症反应,从而起到保护作用。
     5.宫内大肠杆菌感染后新生大鼠脑内iNOS mRNA在生后早期有一过性表达增高的特点,并相应出现NO含量的一过性升高,提示iNOS与其诱导产生的NO在宫内感染导致早产儿WMD的过程中可能起重要作用。
     6.通过给宫内大肠杆菌感染后的新生大鼠生后即刻腹腔注射一定剂量的rhEPO可以抑制宫内感染后新生大鼠脑内iNOS mRNA的一过性表达增高和NO含量的一过性升高,提示在宫内感染致新生大鼠WMD的生后早期阶段,抑制iNOS的表达和NO的过量生成可能是EPO发挥治疗宫内感染导致的WMD的主要作用机制之一。
Objective:
     White mater damage(WMD)in the preterm infant is the most important risk factorfor cerebral palsy,which brings heavy burdens to family and our society.Although theexact mechanism involved in WMD still remains unclear,the epidemiologic evidenceand study on animal models supported the view that one of the most important prenatalfactors that associated with WMD appeared to be intrauterine infection.The majorneuropathology of WMD consists of white mater astrocytosis,oligodendrocyte injury,myelination retardation and axonal damage.Recent studies showed a close relationshipbetween WMD and cytokines in the brain.Several mechanisms by which cytokines leadto WMD are recognized.Cytokines could(1)cause damage to oligodendrocyte,astrocyte,myelin,and axon;(2)stimulate other cytokines to cause further damage;(3)mediate the neurotoxicity of nitric oxide(NO).Therefore,the mechanism of intrauterineinfection caused WMD is supposed to be a series of changes occurred in cells andproteins induced by cytokines in the brain.
     Recently,erythropoietin(EPO)has been shown to be beneficial in the brain and other organs.EPO might act as a protective cytokine in inflammatory pathologies of thecentral nervous system,and this protective effect may be carried out by influencing theproduction of cytokines after intrauterine infection.Studies have demonstratedrecombinant human erythropoietin(rhEPO)administered to the systemic circulationcould cross the blood-brain barrier and directly exert its neuroprotective effect in thebrain.Most of the recent studies focused on the effects of EPO on hypoxic-ischemicencephalopathy,and there were few reports on whether EPO had protective effectagainst WMD in the preterm infant.
     In the present study,a rat model of intrauterine Escherichia coli infection wasestablished and a single intraperitoneal injection of rhEPO was given to the neonatalrats immediately after birth.In order to investigate the possible ameliorating effect ofrhEPO on WMD in developing rat brain after intrauterine infection,we examinedalterations in protein level of 2',3'-cyclic nucleotide 3'-phosphodiesterase(CNPase),neurofilament(NF)and glial fibrillary acidic protein(GFAP),and expression ofproinflammatory cytokines mRNA and inducible nitric oxide synthase(iNOS)mRNAas well as concentration of NO in the neonatal brain.This study may offer lots ofexperimental information and evidence on the clinical treatment of preterm WMD andmay provide new insight into the future therapeutic method.
     Methods:
     1.Group:control group 1(A),control group 2(B),intrauterine infection group(C),intrauterine infection plus low-dose rhEPO treated group(D),intrauterine infection plusmoderate-dose rhEPO treated group(E),intrauterine infection plus high-dose rhEPOtreated group(F).In intrauterine infection group,pregnant rats at 15 days of gestationwere inoculated endocervically with 0.4 mL of Escherichia coli suspension.Controlgroup 1 is the normal control group,and in control group 2,the rats were injected endocervically with 0.4 mL of sterile saline solution instead.In intrauterine infectionplus low(moderate,high)-dose rhEPO treated group,following matemal Escherichiacoli inoculation,the neonatal rats received a single intraperitoneal injection of rhEPO ata dose of 1000(3000,5000)IU/kg body weight immediately after birth.
     2.Sample collection:The neonatal rats were sacrificed by decapitation at postnatalday 1(P1),P3 and P7,and the brains were fixed in neutral formaldehyde or stored at-80℃freezer.
     3.Experimental methods:Hematoxylin-eosin(HE)staining determined thecerebral WMD of neonatal rats at P1,P3 and P7.Immunohistochemistry and westernblot analysis were used for evaluation of CNPase,NF and GFAP protein levels inneonatal rat brains at P1,P3 and P7.Real-time quantitative RT-PCR was used toanalyze necrosis factor(TNF)-α,interleukin(IL)-1β,macrophage inflammatory protein(MIP)-1αand MIP-1βmRNA as well as iNOS mRNA expression in neonatal rat brainsat P1,P3 and P7.Nitrate reductase method was used for detection of NO concentrationin neonatal rat brains at P1,P3 and P7.
     Results
     1.All the dams had normal food intake and activity,and none died afterinoculation.After delivery,92 live pups from group A,85 live pups from group B,84live pups from group C,89 live pups from group D,95 live pups from group E and 78live pups from group F were eligible for the study.Intrauterine Escherichia coliinoculation produced inflammation of uterus and placenta,but all cases of control grouphad no histologic evidence of intrauterine infection.
     2.HE staining procedures revealed clear staining and normal structure ofperiventricular white matter from P7 rats of group A and B.Weak staining and focalrarefaction of periventricular white matter were shown in P7 rats of group C and D.HE staining of periventricular white matter from P7 rats in group E was still weak butslightly stronger than those in group C and D.The staining of periventricular whitematter from P7 rats in group F became obviously stronger than those in group C and D.
     3.At P7,significant decreases in protein levels of CNPase and NF in neontal ratbrains of the intrauterine infection group were observed compared with the controls,however,rhEPO treatment markedly increased the protein levels of CNPase and NF inneontal rat brains as compared with the intrauterine infection group.GFAP protein levelwas markedly increased in neonatal rat brains of intrauterine infection group at P7 whencompared with the controls.In intrauterine infection plus high-dose rhEPO treatedgroup,the protein level of GFAP in neonatal rat brains at P7 was significantly decreasedas compared with the intrauterine infection group.
     4.After intrauterine infection,the mRNA level of TNF-αin neonatal rat brains wassignificantly higher than the controls at P1.Moderate and high-dose rhEPO treatmentremarkably reduced intrauterine infection-induced elevation in TNF-αmRNA level atP1.In intrauterine infection group,the expression of IL-1βmRNA increased in neonatalrat brains at P1 and P3.Moderate and high-dose rhEPO treatment also significantlyreduced intrauterine infection-induced elevation in IL-1βmRNA level at P1.ThemRNA level of MIP-1αin intrauterine infection group increased at P1 and P3 ascompared with the controls,and MIP-1βmRNA was also significantly higher than thosein the controls at P1.High-dose rhEPO treatment could decrease the elevated expressionof MIP-1αmRNA after intrauterine infection at P1 and P3.Moderate and high-doserhEPO treatment also reduced the increased MIP-1βmRNA after intrauterine infectionat P1.
     5.The expression of iNOS mRNA and concentration of NO in neonatal rat brainsof the intrauterine infection group were higher than those in the controls at P1 and P3. Moderate and high-dose rhEPO treatment could reduce intrauterine infection-inducedelevation in iNOS mRNA at P1 and P3,and high-dose rhEPO treatment could decreasethe elevated concentration of NO after intrauterine infection at P1 and P3.
     Conclusion:
     1.Focal rarefaction of cerebral white matter and changes in protein levels ofCNPase,NF and GFAP in neonatal rat brains after maternally endocervical Escherichiacoli inoculation,suggest that oligodendrocyte injury,axonal degeneration and reactiveastrogliosis really occurred in cerebral white matter and intrauterine infection could leadto WMD in neonatal rat brain.
     2.Intraperitoneal injection ofrhEPO at a certain dose immediately after birth couldameliorate oligodendrocyte injury,axonal degeneration and reactive astrogliosis causedby intrauterine Escherichia coli infection,suggesting that EPO administration may exerta protective effect against WMD in neonatal rat brain after intrauterine infection.
     3.The transient increase in mRNA levels of TNF-α,IL-1β,MIP-1αand MIP-1βinneonatal rat brains after intrauterine Escherichia coli infection,suggests that thecytokine cascade induced by intrauterine infection may play a pivotal role in thegeneration and development of WMD.
     4.Intraperitoneal injection of rhEPO at a certain dose immediately after birth couldreduce intrauterine infection-induced elevation in mRNA levels of TNF-α,IL-1β,MIP-1αand MIP-1βin neonatal rat brains,suggesting that EPO administration mayexert a protective effect against WMD by inhibiting cytokine induction and attenuatinginflammation in the early stage after intrauterine infection.
     5.The transient increase in iNOS mRNA level followed by the going-up NOconcentration after intrauterine Escherichia coli infection suggests that iNOS and NOmight play an important role in intrauterine infection induced WMD.
     6.Intraperitoneal injection of rhEPO at a certain dose immediately after birth couldreduce intrauterine infection-induced elevations in iNOS mRNA level and NOconcentration,suggesting that inhibition of iNOS expression and NO overproduction inthe early stage of inflammation may be one of the mechanisms invovled in theprotective effect of EPO against WMD after intrauterine infection.
引文
[1]Michael O'shea T,Dammann O.Antecedents of cerebral palsy in very low-birth weight infants[J].Clin Perinatol,2000,27:285-301.
    [2]Leviton A,Paneth N,Reuss ML,et al.Maternal infection,fetal inflammatory response,and brain damage in very low birth weight infants.Development Epidemiology Network Ivestigators[J].Pediatr Res,1999,46:566-575.
    [3]Yoon BH,Romero R,Kim CJ,et al.Amniotic fluid interleukin-6:A sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity[J].Am J Obstet Gynecol,1995,172:960-970.
    [4]Dammann O,Leviton A.Maternal intrauterine infection,cytokine,and brain damage in the preterm newborn[J].Pediatr Res,1997,42(1):1-8.
    [5]Wu YW,Colford JM.Chorioamnioitis as a risk factor for cerebral palsy.A meta-analysis[J].JAMA,2000,284(11):1417-1424.
    [6]Debillon T,Gras-Leguen C,Verielle V,et al.Intrauterine infection induces programmed cell death in rabbit periventricular white matter[J].Pediatr Res,2000,47:736-742.
    [7]袁天明,俞惠民.新生儿脑白质损伤的病理特点和免疫学机制[J].国外医学妇幼保健分册,2003,14(2):110-112.
    [8]Aloisi F,Ria F,Adorini L.Regulation of T-cell responses by CNS antigenpresenting cells:different roles for microglia and astrocytes[J].Immunol Today,2000,21(3):141-147.
    [9]Gomez R,Romero R,Ghezzi F,et al.The fetal inflammatory response syndrome [J].Am J Obstet Gynecol,1998,179(1):194-202.
    [10]Yoon BH,Jun JK,Romero R,et al.Amniotic fluid inflammatory cytokine (interleukin-6,interleukin-1,tumor necrosis factor-α),neonatal brain white matter lesions,and cerebrral palsy[J].Am J Obstet Gynecol,1997,177(1):19-26.
    [11] Kadhim H, Tabarki B, VerellenQ, et al. Inflammatory cytokines in the pathogenesis of periventricular leukomalacia[J]. Neurology, 2001, 56: 1278-1284.
    [12] Yu HM, Yuan TM, Gu WZ, et al. Expression of glial fibrillary acidic protein in developing rat brain after intrauterine infection[J]. Neuropathology, 2004, 24(2):136-143.
    [13] Aktan F. iNOS-mediated nitric oxide production and its regulation[J]. Life Sci,2004, 75: 639-653.
    [14] Mackenzie-Graham AJ, Mitrovic B, Smoll A, et al. Differential sensitivity to nitric oxide in immortalized, cloned murine oligodendrocyte cell lines. Dev Neurosci, 1994, 16: 162-171.
    [15] Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury[J]. J Neurosci, 2001, 21: 1302-1312.
    [16] Sola A, Wen TC, Hamrick SE, et al. Potential for protection and repair following injury to the developing brain: a role for erythropoietin[J]? Pediatr Res, 2005, 57:110R-117R.
    [17] Juul SE, Anderson DK, Li Y, et al. Erythropoietin and erythropoietin receptor in the developing human central nervous system[J]. Pediatr Res, 1998, 43: 40-49.
    [18] Agnello D, Bigini P, Villa P, et al. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis[J].Brain Res, 2002, 952: 128-134.
    [19] Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury[J]. Proc Natl Acad Sci USA,2000,97:10526-10531.
    [20] Juul S. Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage[J]. Acta Pediatr, 2002, Suppl 438: 36-42.
    [21] Kenyon SL, Jaylor DJ, Tarnow-Mordi W, et al. Broad-spectrum antibiotics for preterm, prelabour rupture of fetal membrane: the ORACLE Ⅰrandomised trial[J].Lancet, 2001, 357(9261): 979-988.
    [22] Kumral A, Uysal N, Tugyan K, et al. Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats[J].Behav Brain Res, 2004,153(1): 77-86.
    [23] Keller M, Yang J, Griesmaier E, et al. Erythropoietin is neuroprotective against NMDA-receptor-mediated excitotoxic brain injury in newborn mice[J]. Neurobiol Dis, 2006, 24(2): 357-366.
    [24] Kurumatani T, Kudo T, Ikura Y, et al. White matter changes in the Gerbil brain under chronic cerebral hypoperfusion[J]. Stroke, 1998,29:1058-1062.
    [25] Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system[J]. Physiol Rev, 2001 Apr, 81(2): 871-927.
    [26] Bona E, Andersson AL, Blomgren K, et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats[J]. Pediatr Res, 1999 Apr, 45(4):500-509.
    [27] Goncalves J, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity[J]. Ment Retard Dev Disabil Res Rev, 2002, 8: 3-13.
    [28] Bell MJ, Hallenbeck JM. Effects of intrauterine inflammation on developing rat brain[J]. J Neurosci Res, 2002, 70: 570-579.
    [29] Inder TE, Anderson NJ, Spencer C, et al. White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term[J]. AJNR Am J Neuroradiol, 2003, 24: 805-809.
    [30] Volpe JJ. Brain injury in the premature infant-from pathogenesis to prevention[J].Brain Dev, 1997, 19:519-534.
    [31] Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia—ischemia[J]. J Neurosci, 2002, 22(2): 455-463.
    [32] Dammann O, Hagberg H, Leviton A. Is periventricular leukomalacia an axonopathy as well as an oligopathy[J]? Pediatr Res, 2001,49: 453-457.
    [33] Gomes FC, Paulin D, Moura Neto V. Glial fibrillary acidic protein (GFAP):modulation by growth factors and its implication in astrocyte differentiation[J].Braz J Med Biol Res, 1999, 32: 619-631.
    [34] Debillon T, Gras-Leguen C, Leroy S, et al. Patterns of cerebral inflammatory response in a rabbit model of intrauterine infection-mediated brain lesion[J].Brain Res Dev Brain Res, 2003, 145: 39-48.
    [35] Kumral A, Ozer E, Yilmaz O et al. Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats[J]. Biol Neonate, 2003, 83:224-228.
    [36] Genc K, Genc S, Baskin H, et al. Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes[J].Physiol Res, 2006, 55(1): 33-38.
    [37] Yatsiv I, Grigoriadis N, Simeonidou C et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury[J]. FASEB J, 2005, 19:1701-1703.
    [38] Olsen NV. Central nervous system frontiers for the use of erythropoietin[J]. Clin Infect Dis, 2003, 37 Suppl 4: S323-330.
    [39] Solaroglu T, Solaroglu A, Kaptanoglu E, et al. Erythropoietin prevents ischemiareperfusion from inducing oxidative damage in fetal rat brain[J]. Childs Nerv Syst,2003,19: 19-22.
    [40] Kumral A, Genc S, Ozer E, et al. Erythropoietin downregulates bax and DP5 proapoptotic gene expression in neonatal hypoxic-ischemic brain injury[J]. Biol Neonate, 2006, 89(3): 205-210.
    [41] Marti HH, Bernaudin M, Petit E, et al. Neuorprotection and angiogenesis: dual role of erythropoietin in brain ischemia[J]. News Physiol Sci, 2000, 15: 225-229.
    [42] Coleman TR, Westenfelder C, T(?)gel FE, et al. Cytoprotective doses of erythropoietin or carbamylated erythropoietin have markedly different procoagulant and vasoactive activities[J]. Proc Natl Acad Sci USA, 2006, 103:5965-5970.
    [43] Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis[J]. J Exp Med, 2003, 198: 971-975.
    [44] Kumral A, Baskin H, Yesilirmak DC et al. Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain[J].Neonatology, 2007, 92: 269-278.
    [45] Yoon BH, Romero R, Kim CJ, et al. High expression of tumor necrosis factor-α and interleukin-6 in periventricular leukomalacia[J]. Am J Obstet Gynecol, 1997,177:406-411.
    [46] Lee SC, Liu W, Dickson DW, et al. Cytokine production by human fetal microglia and astrocytes[J]. J Immunol, 1993,150: 2659-2667.
    [47] Michie HR, Manogue KR, Spriggs DR, et al. Detection of circulating tumor necrosis factor after endotoxin administration[J]. N Engl J Med, 1988, 318:1481-1486.
    [48] Suffredini AF, Reda D, Banks SM, et al. Effects of recombinant dimeric TNF receptor on inflammatory responses following intravenous endotoxin administration[J]. J Immunol, 1995,155: 5038-5045.
    [49] McLaurin J, D' souza S, Stewart J, et al. Effect of tumor necrosis factor alpha and beta on human oligodendrocytes and neurons in culture[J]. Int J Dev Neurosci, 1995, 13: 369-381.
    [50] Cammer W. Effects of TNF-α on immature and mature oligodendrocytes and their progenitors in vitro[J]. Brain Res, 2000, 864: 213-219.
    [51] Liu J, Zhao ML, Brosnan CF, et al. Expression of type Ⅱ nitric oxide synthase in primary human astrocytes and microglia: role of IL-1 beta and IL-1 receptor antagonist[J]. J Immunol, 1996,157(8): 3569-3576.
    [52] Dammann O, Leviton A. Brain damage in preterm newborns: biological response modification as a strategy to reduce disabilities[J]. J Pediatr, 2000, 136(4):433-438.
    [53] Rosenman SJ, Shrikant P, Dubb L, et al. Cytokine-induced expression of vascular cell adhesion molecule-1 (VCAM) by astrocytes and astrocytoma cell lines[J]. J Immunol, 1995,154:1888-1899.
    [54] Cai ZW, Pan ZL, Pang Y, et al. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration[J]. Pediatr Res, 2000,47: 64-72.
    [55] Sun Y, Calvert JW, Zhang JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration[J]. Stroke, 2005, 36: 1672-1678.
    [56] Minami M, Satoh M. Chemokines and their receptors in the brain:pathophysiological roles in ischemic brain injury[J]. Life Science, 2003, 74:321-327.
    [57] McManus CM, Brosnan CF, Berman JW. Cytokine induction of MIP-1α and MIP-1β in human fetal microglia[J]. J Immunol, 1998, 160: 1449-1455.
    [58] Takami S, Minami M, Nagata I, et al. Chemokine receptor antagonist peptide, viral MIP-Ⅱ, protects the brain against focal cerebral ischemia in mice[J]. J Cereb Blood Flow Metab, 2001, 21: 1430-1435.
    [59] Pang L, Ye W, Che XM, et al. Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression[J].Stroke, 2001, 32(2): 544-552.
    [60] Shukaliak JA, Dorovini-Zis K. Expression of the beta-chemokines RANTES and MIP-1 beta by human brain microvessel endothelial cells in primary culture[J]. J Neuropathol Exp Neurol,2000,59(5):339-352.
    [61]Boven LA,Montagne L,Nottet HS,et al.Macrophage inflammatory protein-1 alpha (MIP-1 alpha),MIP-1 beta,and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions[J].Clin Exp Immunol,2000,122(2):257-263.
    [62]McMahon E J,Cook DN,Suzuki K,et al.Absence of macrophage-inflammatory protein-1 α delays central nervous system demyelination in the presence of an intact blood-brain barrier[J].J Immunol,2001,167(5):2964-2971.
    [63]Moncada S,Palmer RM,Higgs EA.Nitric oxide:physiology,pathophysiology and pharmacology[J].Pharmacol Rev,1991,43:109-142.
    [64]Haynes RL,Folkerth RD,Keefe RJ,et al.Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia[J].J Neuropathol Exp Neurol,2003,62(5):441-450.
    [65]沈盈,俞惠民.促红细胞生成素对围产期脑损伤的神经保护作用[J].国际儿科学杂志,2008,35(2):105-108.
    [66]Alderton WK,Cooper CE,Knowles RG.Nitric oxide synthases:structure,function and inhibition[J].Biochem J,2001,357:593-615.
    [67]Li J,Baud O,Vartanian T,et al.Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes[J].Proc Natl Acad Sci U S A,2005,102(28):9936-9941.
    [68]Rao KM.Molecular mechanisms regulating iNOS expression in various cell types[J].J Toxicol Environ Health B Crit Rev,2000,3:27-58.
    [69]Merrill JE,Ignarro L J,Sherman MP,et al.Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide[J].J Immunol,1993,151:2132-2141.
    [70]Baud O,Li J,Zhang Y,Volpe J J,et al.Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation[J].Eur J Neurosci,2004,20:1713-1726.
    [71]沈盈,俞惠民.一氧化氮及诱导型一氧化氮合酶与早产儿脑室周围白质软化[J].国际儿科学杂志,2006,33(1):55-57.
    [72]Calapai G,Marciano MC,Corica F,et al.Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation[J].Eur J Pharmacol,2000,401:349-356.
    [73]Digicaylioglu M,Lipton SA.Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappa B signalling cascades[J].Nature,2001,412:641-647.
    [74]Kumral A,Baskin H,Gokmen N,et al.Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats:is it an explanation for the protective role of erythropoietin[J]? Biol Neonate,2004,85(1):51-54.
    [75]Molina-Holgado E,Vela JM,Arevalo-Martin A,et al.LPS/IFN-gamma cytotoxicity in oligodendroglial cells:role of nitric oxide and protection by the anti-inflammatory cytokine IL-10[J].Eur J Neurosci,2001,13:493-502.
    [1] Hack M, Wilson-Costello D, Friedman H, et al. Neurodevelopement and predictors of children with birth weights of less than 1000g: 1992-1995[J]. Arch Pediatr Adolesc Med, 2000,154:725-731.
    [2] Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system[J]. Neuropathology, 2002, 22(3):106-132.
    [3] Perlman JM. White matter injury in the preterm infant: an important determination of abnormal neurodevelopment outcome[J]. Early Hum Dev, 1998,53(2): 99-120.
    [4] Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia[J]. J Neurosci, 2002, 22(2): 455-463.
    [5] Yoon BH, Park CW, Chaiworapongsa T. Intrauterine infection and the development of cerebral palsy[J]. BJOG, 2003, 110(20): 124-127.
    [6] Bracci R, Buonocore G.. Chorioamnionitis: a risk factor for fetal and neonatal morbidity[J]. Biol Neonate, 2003, 83(2): 85-96.
    [7] Debillon T, Gras-Leguen C, Verielle V, et al. Intrauterine infection induces programmed cell death in rabbit periventricular white matter[J]. Pediatr Res, 2000,47(6): 736-742.
    [8] Yu HM, Yuan TM, Gu WZ, et al. Expression of glial fibrillary acidic protein in developing rat brain after intrauterine infection[J]. Neuropathology, 2004, 24(2):136-143.
    [9] Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases:structure, function and inhibition[J]. Biochem J, 2001, 357: 593-615.
    [10] Yoon BH, Ronero R, Kin CT, et al. High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia[J]. Am J Obstet Gynecol, 1997, 177(2): 406-411.
    [11] Aktan F. iNOS-mediated nitric oxide production and its regulation[J]. Life Sci, 2004,75:639-653.
    [12] Li J, Baud O, Vartanian T, et al. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes[J].Proc Natl Acad Sci U S A, 2005,102(28): 9936-9941.
    [13] Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury[J]. J Neurosci, 2001, 21(4): 1302-1312.
    [14] Haynes RL, Folkerth RD, Keefe RJ, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia[J]. J Neuropathol Exp Neurol, 2003, 62(5): 441-450.
    [15] Wang H, Li J, Follett PL, et al. 12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes[J]. Eur J Neurosci, 2004, 20(8): 2049-2058.
    [16] Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant[J].Pediatr Res, 2001, 50(5): 553-562.
    [17] Follett PL, Rosenberg PA, Volpe JJ, et al. NBQX attenuates excitotoxic injury in developing white matter[J]. J Neurosci, 2000, 20(24): 9235-9241.
    [18] Mishra NC, Kumar S. Apoptosis: a mitochondrial perspective on cell death[J].Indian J Exp Biol, 2005, 43(1): 25-34.
    [19] Baud O, Li J, Zhang Y, et al. Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation[J]. Eur J Neurosci, 2004, 20(7): 1713-1726.
    [20] Brune B, Von Knethen A, Sandau KB. Transcription factors p53 and HIF-1alpha as targets of nitric oxide[J]. Cell Signal, 2001, 13(8): 525-533.
    [1] Sola A, Wen TC, Hamrick SE, et al. Potential for protection and repair following injury to the developing brain: a role for erythropoietin?[J]. Pediatr Res, 2005,57(5Pt2): 110R-117R.
    [2] Marti HH. Erythropoietin and the hypoxic brain[J]. J Exp Biol, 2004, 207(Pt18):3233-3242.
    [3] Yu X, Shacka JJ, Eells JB, et al. Erythropoietin receptor signaling is required for normal brain development[J]. Development, 2002,129(2): 505-516
    [4] Fandrey J. Oxygen-dependent and tissue-specific regulation of erythropoietin gene expression[J]. Am J Physiol Regul Integr Comp Physiol, 2004, 286(6):R977-988.
    [5] Prass K, Scharff A, Ruscher K, et al. Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin[J]. Stroke, 2003, 34(8): 1981-1986.
    [6] Ruscher K, Freyer D, Karsch M, et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model[J]. J Neurosci,2002, 22(23): 10291-10301.
    [7] Wen TC, Rogido M, Genetta T, et al. Permanent focal cerebral ischemia activates erythropoietin receptor in the neonatal rat brain[J]. Neurosci Lett, 2004, 355(3):165-168.
    [8] Kumral A, Uysal N, Tugyan K, et al. Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats[J].Behav Brain Res, 2004, 153(1): 77-86.
    [9] Spandou E, Soubasi V, Papoutsopoulou S, et al. Erythropoietin prevents hypoxia/ischemia-induced DNA fragmentation in an experimental model of perinatal asphyxia[J]. Neurosci Lett, 2004, 366(1): 24-28.
    [10] Sola A, Rogido M, Lee BH, et al. Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats[J]. Pediatr Res, 2005, 57(4): 481-487.
    [11] Chang YS, Mu D, Wendland M, et al. Erythropoietin improves functional and histological outcome in neonatal stroke[J]. Pediatr Res, 2005, 58(1): 106-111.
    [12] Grasso G, Buemi M, Alafaci C, et al. Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage[J]. Proc Natl Acad Sci USA, 2002, 99(8): 5627-5631.
    [13] Keller M, Yang J, Griesmaier E, et al. Erythropoietin is neuroprotective against NMDA-receptor-mediated excitotoxic brain injury in newborn mice[J].Neurobiol Dis, 2006,24(2): 357-366.
    [14] Solaroglu T, Solaroglu A, Kaptanoglu E, et al. Erythropoietin prevents ischemia-reperfusion from inducing oxidative damage in fetal rat brain[J]. Childs Nerv Syst, 2003,19(1): 19-22.
    [15] Kumral A, Baskin H, Gokmen N, et al. Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats: is it an explanation for the protective role of erythropoietin? [J]. Biol Neonate, 2004, 85(1): 51-54.
    [16] Gene K, Genc S, Baskin H, et al. Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes[J]. Physiol Res, 2006, 55(1): 33-38.
    [17] Kumral A, Genc S, Ozer E, et al. Erythropoietin downregulates bax and DP5 proapoptotic gene expression in neonatal hypoxic-ischemic brain injury[J]. Biol Neonate, 2006, 89(3): 205-210.
    [18] Olsen NV. Central nervous system frontiers for the use of erythropoietin[J]. Clin Infect Dis, 2003, 37 Suppl 4: S323-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700