应用基于质谱技术的代谢组学研究肝损伤标志物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏是机体代谢的枢纽,承担了大部分的合成、分解、转化等代谢过程,其中某些酶系和功能是肝脏所特有的,因此,系统研究肝脏损伤后的代谢组变化非常重要。代谢组学主要研究细胞调节过程的终端产物,研究结果能够定量、定性的反映生物体对基因或环境变化的复杂响应,为了解生命奥秘提供了一个新途径。本文将液相色谱-质谱联用技术和化学计量学相结合,整合建立了一个代谢组学的研究平台,并将该平台应用于研究肝损伤的标志物。
     给Wistar大鼠口服了经典的肝毒性化合物四氯化碳,建立肝毒性模型。在给药前一天和给药后六天内,连续收集了实验动物的尿液和胆汁。采用具有较广泛样品适应性的液相色谱作为分离手段,以高灵敏度、高选择性的质谱作为检测仪器,分析复杂生物样品。在大鼠尿液中找出的病理标志物表明,四氯化碳减缓了大鼠的能量代谢,引起急性肝、肾损伤。大鼠的胆汁排泄也因肝功能受损而减缓,并发现胆汁中卵磷脂的含量有所增加。
     用代谢组学的研究方法对乙肝病人和正常病人的血清样品进行比对,发现病人血清中的一些组分例如肌酸苷、苏氨酸、酪氨酸和鹅脱氧胆酰甘氨酸等会因为受到病毒感染而浓度升高。实验同时证实临床案例存在很大的个体差异,增加了代谢组学应用于疾病诊断的复杂性。
     本文通过建立代谢组学平台比较动物模型和人肝损伤的标志物后发现,如果肝实质细胞受损,体内的能量代谢减缓,胆汁酸合成也受影响。本文是代谢组学在肝毒性研究和临床诊断方面应用的另一次尝试。
Liver is the key organ for metabolism, because it is responsible for most of the anabolism, catabolism and transforlation in vivo. Some metabolic enzymes are only found in liver, so it’s essential to investigate metabolic mechanisms of liver for the better perspective of hepatic diseases. Metabonomics broadly aims to measure the global, dynamic metabolic response of living systems to biological stimuli or genetic manipulation. It focuses on tracing systemic changes according to time in complex multicellular systems. In this dissertation, there is an integrated metabonomic platform established basing on liquid chromatography-mass spectrometry technique and chemometric methods for the profiling of hepatic injury biomarkers.
     Urine and bile pre- and post dose are collected for seven-day long from a hepatotoxic model of Wistar rat induced by a single oral dosage of carbon tetrachloride (CCl4). The fluctuations of these urinary components characterize the disfunction of Kerbs Circle as well as an energy decline, proving an acute hepatotoxicity and nephrotoxicity right after the oral exposure of CCl4. Meanwhile, the excretion of bile is slowed down and the concentrations of phosphatidylcholine in bile are elevated.
     Serums of hepatitis B virus infected people and healthy people are compared through the metabonomic platform. Some components in serum including creatinine, L-Threonine, L-Tyrosine and glycohenodeoxycholic acid or its isomer glycodeoxycholic acid are upregulated after hepatitis B infection. The results also reveal individual variations of clinical samples, which increase challenges of metabonomic investigation.
     After comparing the hepatic injury biomarkers of hepatotoxic animal model and hepatitis B infected human, we find out that the energy circle is slowed down and biosythesis of bile acid is badly affected if the hepatic cell is injured. The current study is another approach of metabonomics applied in toxicology and clinical diagnosis.
引文
[1] Nicholson JK, Lindon JC. Metabonomics. Nature. 2008; 455: 1054-1056.
    [2] Nicholson JK, Lindon JG, Holmes E.‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999; 29: 1181-1189.
    [3] Cornish-Bowden A. Metabolic control therapy and biochemical systems theory: different objectives, different asumptions, different results. J. Theor. Biol. 1989; 136: 365-377.
    [4] Derr RF. Modern metabolic control theory1: Fundamental theorems. Biochem. Arch. 1986; 1: 239-247.
    [5] Tweeddale H, Notley-McRobb L, Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool (“metabolome”) analysis. J. Bacteriol. 1998; 180: 5109-5116.
    [6] Fiehn O. Combinging genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genomics. 2001; 2: 155-168.
    [7] Davidov E, Holland J, Marple E, et al. Advancing drug discovery through systems biology. Drug Discov. Today. 2003; 8: 175-183.
    [8] Cho CR, Labow M, Reinhardt M, et al. The application of systems biology to drug discovery. Curr. Opin. Chem. Biol. 2006; 10: 294-302
    [9] Lindon JC, Nicholson JK, Holmes E, et al. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magnetic Resonance Part A. 2000; 12: 289-320.
    [10] Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst, 2005; 130: 606-625.
    [11] Villas-Boas SG, Mas S, Akesson M, et al. Mass spectrometry in metabolome analysis. Mass Spectrome Rev, 2005; 24: 613-646.
    [12] Van der GJ, Stroobant P, van der HR. The role of analytical sciences in medical systems biology. Curr Opin Chem Biol. 2004; 8: 559-565.
    [13] Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analysist. 2005; 130: 442-465.
    [14] Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007; 26: 51-78.
    [15] Katajamaa M, Ore?i?. Data processing for mass spectrometry-based metabolomics. Journal of Chromatography A. 2007; 1158: 318-328.
    [16] Davis RA, Charlton AJ, Godward J, et al. Adaptive binning: an improved binning method for metabolomics data using the undecimated wavelet transform. Chemometrics and Intelligent Laboratory Systems. 2007; 85: 144-154.
    [17]林艳萍,司端运,刘昌孝。液相色谱和质谱联用技术结合化学计量学应用于代谢组学的研究进展。分析化学,2007; 35: 1535-1539.
    [18] Katz JE, Dumlao DS, Clarke S, et al. A new technique (COMSPARI) to facilitate the identification of minor compounds I complex mixtures by GC/MS and LC/MS: tools for the visualizaiton of matched datasets. J. Am. Soc. Mass Spctrom. 2004; 15: 580-584.
    [19] Baran R, Kochi H, Saito N, et al. MathDAMP: a package for differential analysis of metabolite profiles. BMC Bioinformatics. 2006; 7: 530.
    [20] Broeckling CD, Reddy IR, Duran AL, et al. MET-IDEA: data extraction tool for mass spectrometry-based metabolomic. Anal. Chem. 2006; 78: 4334-4341.
    [21] Duran SL, Yang J, Wang LJ, et al. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics. 2003; 19: 2283-2293.
    [22] Katajamaa M, Miettinen J, Oresic M. Mzmine: toolobx for processing and visualizaion of mass spectrometry based molecular pofile data. Bioinformatics. 2006; 22: 634-636.
    [23] Katajamaa M, Oresic M. Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics. 2005; 6: 179.
    [24] Smith CA, Want EJ, O’Maille G, et al. XCMS: processing mass spectrometry data for metabolte profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006; 78: 779-787.
    [25]李晶,吴晓健,刘昌孝,元英进。代谢组学研究中数据处理新方法的应用。药学学报,2006; 41(1): 47-53.
    [26] Derrick TS, McCord EF, Larive CK. Analysis of protein/ligand interactions with NMR diffusion measurements: the impartance of eliminating the protein background. J. Magn. Reson. 2002; 155: 217-225.
    [27] Waters NJ, Homes E, Williams A, et al. NMR and pattern recognition studies on the time-related metabolic efects of alpha- naphthylisothiocyanate on liver, urine, and plasma in the rat: an integrative metabonomic approach. Chem. Res. Toxicol. 2001; 14: 1401-1412.
    [28] Van QN, Chmurny GN, Veenstra TD. The depletion of protien signals in metabonomics analysis with the WET-CPMG pulse sequence. Biochem. Biophys. Res. Commun. 2003; 301: 952-959.
    [29] Keun HC, Beckonert O, Griffin JL, et al. Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal. Chem. 2002; 74: 4588-4593.
    [30] Reo NV. NMR-based metabolomics. Drug Chem. Toxicol. 2002; 25: 375-382.
    [31] Zhang F, Dossey AT, Zachariah C, et al. Strategy for automated analysis of dynamic metbolic mixtures by NMR. Application to an insect venom. Anal. Chem. 2007; 79: 7748-7752.
    [32] Waters NJ, Holmes E, Willianms A, et al. NMR and pattern recognition sudies on the time-related metabolic effects of alpha-naphthylisothiocyanante on liver, urine, and plasma in the rat: an integrative metabonomic approach. Chem. Res. Toxicol. 2001; 14: 1401-1412.
    [33] Skordi E, Yap IK, Claus SP, et al. Analysis of time-related metabolic fluctuations induced by ethionine in the rat. J. Proteome Res. 2007; 6: 4572-4581.
    [34] Yang Y, Li C, Nie X, et al. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J. Proteome. Res. 2007; 6: 2605-2614.
    [35] Daykin CA, Corcoran O, Hansen SH, et al. Application of directly coupled HPLC NMR to separation and characterization of lipoproteins from human serum. Anal. Chem. 2001; 73: 1084-1090.
    [36] Plumb RS, Stumpf CL, Granger JH, et al. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commu. Mass Spectrom. 2003; 17: 2632-2638.
    [37] Yan B, AJ, Wang G, et al. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. J. Appl. Physiol. 2008; ahead of print.
    [38] Woo HM, Kim KM, Choi MH, et al. Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clin. Chim. Acta. 2008; ahead of print.
    [39] Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007; 26: 51-78.
    [40] Ackermann BL, Hale JE, Duffin KL. The role of mass spectrometry in biomarker discovery and measurement. Curr. Drug Metab. 2006; 7: 525-539.
    [41] Dunn WB, Ellis DI. Metabolomics: Current analytical platforms and methodologies. Trends Anal. Chem., 2005; 24: 285-294.
    [42] Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Protomics. 2006; 6: 4716-4723.
    [43] Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst. 2005; 130: 606-625.
    [44] Viljoen A, Sigh DK, Twomey PJ, Farrington K. Analytical quality goals for parathyroid hormone based on biological variaion. Clin. Chem. Lab. Med. 2008; 46: 1438-1442.
    [45] Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989; 246: 64-71.
    [46] Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization-principles and practice. Mass Spectrome. Rev., 1990; 9: 37-70.
    [47] Dumas ME, Barton RH, Toye A, et al. Metabolic profiling reveals contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA. 2006; 103: 12511-12516.
    [48] Feng B, Wu S, Lv S, et al. Metabolic profiling analysis of a D-galactosamine/ lipopolysaccharide-induced mouse model of fulminant hepatic failure. J. Proteome Res. 2007; 6: 2161-2167.
    [49] Anthony ML, Holmes E, McDowell PC, et al. 1H NMR spectroscopic studies on the reactions of haloalkylamines with bicarbonate ions: formation of N-carbamates and 2-oxazolidones in cell culture media and blood plasma. Chem Res Toxicol. 1995; 8: 1046-1053.
    [50] Bailey NJ, Oven M, Homes E, et al. Metabolomic anlaysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry. 2003; 62: 851-858.
    [51] Griffin JL, Pole JC, Nicholson JK, et al. Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectrosopy. Biochim. Biophys. Acta. 2003; 1619: 151-158.
    [52] Hassel B, Sonnewald U, Unsqard G, et al. NMR spectroscopy of cultured astrocytes: effects of glutamine and the gliotoxin fluorocitrate. J. Neurochem. 1994; 62: 2187-2194.
    [53] Klen? TG, Kiehr B, Baunsqaard D, et al. Combination of’omics’data to investigate the mechanism(s) of hydrazine-induced hepatotoxicty in rats and to identify potential biomarkers. Biomarkers. 2004; 9: 116-138.
    [54] Tinnerberg H, Sennbro CJ, J?nsson BA. Aniline in hydrolyzed urine and plasma-possible biomarkers for phenylisocyanate exposure. J. Occup. Environ. Hyg. 2008; 5: 629-632.
    [55] Bollard ME, Keun HC, Beckonert O, et al. Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol. Appl. Pharmacol. 2005; 204: 135-151.
    [56] Fischer HP. Towards quantitative biology: Integration of biological information to elucidate disease pathways and to guide drug discovery. Biotechnol. Annu. Rev. 2005; 11: 1-68.
    [57] Lindon JC, Holemes E, Billard ME, et al. Metabonomics technologies and their applicationsin physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers. 2004; 9: 1-31.
    [58] Shockcor, JP, Holmes E. Metabonomic applications in toxicity screening and disease diagnosis. Curr. Top Med. Chem. 2002; 2: 35-51.
    [59] Witkamp RF. Genomics and systems biology-how relevant are the developments to veterinary pharmacology, toxicology and therapeutics? J. Vet. Pharmacol. Ther. 2005; 28: 235-245.
    [60] Saghatelian A,Cravatt BF. Global strategies to integrate the proteome and metabolome. Curr. Opin. Chem Biol. 2005; 9: 62-68.
    [61] Soga T, Baran R, Suematsu M, et al. Differential metabolomics reveals opthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J. Biol. Chem. 2006; 281: 16781-16776.
    [62] Wu G, Fang YZ, Yang S, et al. Glutathione metabolism and its implications for health. J. Nutr. 2004; 134: 489-492.
    [63] McMillan JM, McMillan DC. S-adenosylmethionine but not glutathione protects against galactosamine-induced cytotoxicity in rat hepatocyte cultures. Toxicology. 2006; 222: 175-184.
    [64] Feng B, Wu S, Lv S, et al. Metabolic profiling analysis of a galactosamine /lipopolysaccaride-induced mouse model of fulminant hepatic failure. J. Protome Res. 2007; 6: 2161-2167.
    [65] Coen M, Hong YS, Clayton TA, et al. The mechanism of galactosamine toxicity revisited : A metabonomic study. J. Protome Res. 2007; 6: 2711-2719.
    [66] Griffin JL, Kauppinen RA. A metabolomics perspective of human brain tumours. FEBS J. 2007; 274: 1132-1139.
    [67] Rantalainen M, Cloarec O, Beckonert O, et al. Statistically integrated metabonomci-proteomic studies on a human prostate cancer xenograft model in mice. J. Proteome Res. 2006; 5: 2642-2655.
    [68] Jordan KW, Cheng LL. NMR-based metabolomics approach to target biomarkers for human prostate cancer. Expert Rev. Protomics. 2007; 4: 389-400.
    [69] Claudino WM, Wuattrone A, Biganzoli L, et al. Metabolomics: available results, current research projects in breast cancer, and future applications. J. Clin. Oncol. 2007; 25: 2840-2846.
    [70] Odunsi K, Wollman RM, Ambrosone CB, et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics Int. J. Cnacer. 2005; 113: 782-788.
    [71] Paige LA, Mitchell MW, Krishnan KR, et al. A preliminary mtabolomic analysis of older adults with and without depression. Int. J. Geriatr. Psychiatry. 2007; 22: 418-423.
    [72] Weljie AM, Dowlatabadi R, Miller BJ, et al. An inflammatoryu arthritis-associated metaboite biomarker pattern revealed by 1H NMR spectroscopy. J. Proteome Res. 2007; 6: 3456-3464.
    [73] Niemann CU, Serkova NJ. Biochemical mechanisms of nephrotoxicity: Applciation for metabolomics. Expert Opin Drug Metab Toxicol. 2007; 3: 527-544.
    [74] Akira K, Imachi M, Hashimoto T. Investigation into biochemical changes of genetic hypertensive rats using 1H nuclear magnetic resonance-based metabonomcis. Hypertens Res. 2005; 28: 425-430.
    [75] Griffin JL, Nicholls AW. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics. 2006; 7: 1095-1107.
    [76] Hodavance MS, Ralston SL, Pelczer I. Beyond blood sugar: The potential of NMR-based metabonomics for type 2 human diabetes, and the horse as a possible model. Anal. Bioanal. Chem. 2007; 387: 533-537.
    [77] Van Doorn M, Vogels J, Tas A, et al. Evaluation of metabolite profiles as biomarkers for the pharmacological effects of thiazolidinediones in type 2 diabetes mellitus patients and healthy volunteers. Br. J. Clin. Pharmacol. 2007; 63: 562-574.
    [78] Kao HJ, Cheng CF, Chen YH, et al. ENU mutagenesis identifies mice with cardiac fibrosis and hepatic steatosis caused by a mutation in the mitochondrial trifunctional proteinβ-subunit. Hum. Mol. Genet. 2006; 15: 3569-3577.
    [79] Watson AD. Thematic review series: Systems biology approaches to mtabolic and cardiovascular disorders. Lipidomics: A global approach to lipid analysis in biological systems. J. Lipid Res. 2006; 47: 2101-2111.
    [80] Marchesi JR, Holmes E, Khan F, et al. Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J. Proteome Res. 2007; 6: 546-551.
    [81] Carraro S, Rezzi S, Reniero F, et al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am. J. Respir. Crit. Care Med. 2007; 175: 986-990.
    [82] Coen M, O’Sullivan M, Bubb WA, et al. Proton nuclear nagnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin. Infect Dis. 2005; 41: 1582-1590.
    [83] Kaddurah-Daouk R, MCEvoy J, Baillie RA, et al. Metabolomci mapping of a typical antipsychotic effects in scizophrenia. Mol. Psychiatry. 2007; 12: 934-945.
    [84] Bilello JA. The agony and ecstasy of“OMIC”technologies in drug development. Curr. Mol.Med. 2005; 5: 39-52.
    [85] Lindon JC, Holemes E, Bollard ME, et al. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers. 2004; 9: 1-31.
    [86] Lindon JC, Holmes E, Nicholson JK. Metabonomics and its role in drug development and disease diagnosis. Expert Rev. Mol. Diagn. 2004; 4: 189-199.
    [87] Nebert DW, Vesell ES. Advances in pharmacogenenomics and individualized drug therapy: Exciting challenges that lie ahead. Eur. J. Pharmacol. 2004; 500: 267-280.
    [88] Keun HC. Metabonomic modeling of drug toxicity. Pharmacol Ther. 2006; 109: 92-106.
    [89] Lindon JC, Holmes E, Nicholson JK. Metabonomics techniques and applications to pharmaceutical research & development. Pharm. Res. 2006; 23: 1075-1088.
    [90] Plumb RS, Stumpf CL, Granger JH, et al. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun. Mass Spectrom. 2003; 17: 2632-2638.
    [91] Plumb RS Stumpf CL, Gorenstein MV, et al. Metabonomics: The use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun. Mass Spectrom. 2002; 16: 1991-1996.
    [92] Lenz EM, Bright J, Knight R, et al. Metabonomics with 1H-NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamycin-induced nephrotoxicity in the rat. Biomarkers. 2005; 10: 173-187.
    [93] Lindon JC, Keun HC, Ebbels TMD, et al. The consortium for metabonomic toxicology (COMET): aims, activities and achievements. Pharmacogenomics. 2005; 6: 691-699.
    [94] Lindon JC, Nicholson JK, Holmes E, et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol. Appl. Pharmacol. 2003; 187: 137-146.
    [95] Ebbels TM, Keun HC, Beckonert OP, et al. Prediction and classificaiton of drug toxicity using probabilistic modeling of temporal metabolic data: the consortium on metabonomic toxicology screening approach. J. Proteome Res. 2007; 6: 4407-4422.
    [96]刘昌孝。代谢组学助推中药现代研究。医学研究杂志,2007; 36 (7): 1
    [97]刘昌孝,司端运,万仁忠,林艳萍,许妍妍。代谢组学与天然药物和中药研究。中国天然药物,2008; 6 (2): 82-88.
    [98] Robertson DG. Metabonomics in toxicology: a review. Toxicological Sciences. 2005; 85: 809-822.
    [99] Robertson DG, Reily MD, Sigler RE, et al. Metabonomics : Evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screeing of liver and kidney toxicants. Toxicol. Sci. 2000; 57: 326-337.
    [100] Robertson DG, Reily MD, Albassam M, et al. Metabonomic assessment of vasculitis in rats. Cardiovasc. Toxicol. 2001; 1: 7-19.
    [101] Yang C, He WY, Li LJ, et al. Using nuclear magnetic resonance and MS/MS spectroscopy fot the identificaton of brodimoprim metabolites in rat urine. Chinese Chemical Letters. 2001; 12: 513-516.
    [102] Yanping Lin, Duanyun Si, Changxiao Liu. An approach for detecting and identifying in vivo metabolites of brodimoprim via LC/ESI-MS with data-dependent scanning. Chemical Research in Chinese Universities. 2008; 24: 430-436.
    [103] Huang X, Shao L, Gong Y, et al. A metabonomic characterization of CCl4-induced acute liver failure using partial least square regression based on the GC-MS metabolic profiles of plasma in mice. J. Chromatography B. 2008; 870: 178-185.
    [104] Fiehn, O. Combingin genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics. 2001; 2: 155-168.
    [105] Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics: a platform for studying drug toxicity and gene function. Nature Review Drug Discovery, 2002; 1: 153-161
    [106] Klingensmith JS, Mehendale HM. Potentiation of CCl4 lethality by chlordecone. Toxicol. Lett. 1982; 11: 145-149.
    [107] Jia N, Liu X, Wen J, et al. A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes. Toxicology. 2007; 237:1-11.
    [108] Nordstrom A, O’Maille G, Qin C, et al. Nonlinear data anlignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal. Chem. 2006; 78: 3289-3295.
    [109] Moco SIA, Bino RJ, Vos RCH de, et al. Metabolomics technologies and metabolite identification. Trends in Analytical Chemistry. 2007; 26: 855-866.
    [110] Hurtley S, Szuromi P. Round-the-clock metabolism. Science. 2005; 308: 922.
    [111] Alpert AJ. Hydrophic-interaction chromatography for the separationg of peptides, nucleic acids and other polar compounds. J. Chromatogr. 1990; 499: 177-196.
    [112] Grumbach ES, Wagrowski-Diehl DM, Mazzeo JR, et al. Hydrophilic interaction chromatography using silica columns for the retention of polar analytes and enhanced ESI-MS sensitivity. LC GC North America. 2005; FEV: 89-96.
    [113] Shou WZ, Naidong W. Simple means to alleviate sensitivity loss by trifluoroacetic acid (TFA) mobile phase in the hydrophilic interaction chromatography-electrospray tandem mass spectrometric (HILIC-ESI/MS/MS) bioanalysis of basic compounds. J. Chromatogr. B. 2005; 825: 186-192.
    [114] Holmes E, Nicholls AW, Lindon JC, et al. Development of model for classificaiton of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition. NMR Biomed. 1998; 11: 235-244.
    [115] Singh KK, 2007. Oxidative Stress, Disease and Cancer. Imperial College Press, London.
    [116] Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol. Rev. 2000; 80: 1107-1213.
    [117] Yang J, Zhao X, Liu X, et al. High performance liquid chromatography-mass spectrometry for metabonomics : potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J. Proteome Res. 2006; 5: 554-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700