咪唑类离子液体对尖膀胱螺的发育毒性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体的化学组成仅有离子,是在室温条件下呈熔融状态的盐。它们具有一系列典型的特征,如:几乎不蒸发不挥发,高热且不可燃,有较高的溶解度且化学性质稳定,这些特征使得它们将来可以被用于有机物合成,催化,化学分离和电化学。尤其是在近几年,离子液体有望被用于环境保护和对生物资源的再利用,例如吸收有害气体CO2,降解作物茎秆中的纤维素等。而且,由于其几乎可以忽略的蒸发性,离子液体可以减少空气污染的风险。因此离子液体被认为是环保的“绿色溶剂”,化学家强烈推荐用它来作为传统有机溶剂的替代物。然而,大部分离子液体是水溶性的,它们在生产和应用的过程中被排放到水环境中可能会对水生生物产生危害。因此,离子液体可能会对水生生态系统产生环境风险,正是如此近几年离子液体对水生生物的毒性研究被热切关注。
     咪唑类离子液体不仅被广泛的应用在化学工业,而且它们与传统的有机溶剂相比具有明显的优势;它们通常对生物具有中等或者相对较低的毒性。更重要的是,根据之前我们的研究,生物对该类离子液体的毒性反应严格符合剂量依赖反应,而且这个毒性检测的结果可以代表常见的离子液体。因此,咪唑类离子液体被用于目前的研究中以确定其对Physa acuta的胚胎毒性和胚后发育毒性,并且通过测定暴露在[C_8mim]Br离子液体中的Physa acuta内脏团抗氧化系统和脂质过氧化水平来阐述离子液体的生化毒性机制。
     胚胎毒性试验结果表明[C_8mim]Br离子液体可抑制螺胚胎的孵化率,提高胚胎的死亡率。同时,[C_8mim]Br离子液体更敏感,这也表明[C_8mim]Br离子液体的毒性是阶段敏感的,而且,我们还发现幼螺和成螺比螺胚胎对离子液体的抵抗性强。另外,这项研究还表明较长的碳链能够增加咪唑类离子液体对螺的毒性。
     研究还发现,暴露96h后,[C_8mim]Br离子液体抑制SOD和GST的活性,同时提高CAT的活性和增加谷胱甘肽的含量。与对照组相比,所有处理组中MDA的含量都有所提高,这表明[C_8mim]Br离子液体可导致脂质过氧化。这些结果表明活性氧和脂质过氧化可能与[C_8mim]Br离子液体对螺的毒性机制有关。
     最后,根据目前的研究结果,认为P.acuta可能是一个比较好的毒理学实验模型并且可作为水污染的一个有效的指示生物。
Ionic liquids(ILs)are room-temperature molten salts which chemically consist only of ions. They possess a series of preponderant properties, such as almost no vapour pressure and nonvolatility, high thermal and non-flammability, and high solvent capacity and chemical stability, which promote them to be used in organic synthesis, catalysis, chemical separation, and electrochemistry in the future. Especially in the recent years, ILs have been promised to be used in environmental protection and the utilization of biotic resources, for example, absorption of harmful gas CO2, and degradation of cellulose from the crop stalks. Furthermore, ILs may reduce the risk of air pollution due to their negligible vapor pressure. Therefore ILs have been claimed to be environmentally benign "green solvent" strongly recommended to be the substitutes for conventional organic solvents by chemists. However, most ILs are hydrosoluble and they may be released to water and cause damage to aquatic organisms during the generation and application. Therefore, ILs may pose environmental risks to aquatic ecosystems, and thus IL-toxicity on aquatic organisms is much concerned in the near years.
     The imidazolium-based ILs have been not only widely applied in the chemical industry, they also possess the excellent and advantageous properties over the conventional organic solvents. Moreover, they usually have moderate or relatively lower toxicity on organisms. The most important is that the toxic response of organisms to the exposure of imidazolium-ILs is in a remarkable dose-dependent manner according to our previous studies and the result of toxicity-testing can be the representation for the common ILs. Therefore the imidazolium-based IL was adopted in the present study to evaluate their embryonic and post-embryonic developmental toxicities on the snail Physa acuta and to elucidate the biochemical mechanism of IL-toxicity by determining the responses of the antioxidant system and the level of lipid peroxidation in the viscera of Physa acuta exposed to1-octyl-3-methylimidazolium bromide([C8mim] Br)in the present study.
     The results of embryonic toxicity tests showed that[Csmim]Br inhibited the hatching rate of snail embryos while promote the embryonic death rate. Meanwhile, the results reveal that the stage veliger is more sensitive to[Csmim]Br than the stages of blastula and gastrula, indicating that[Csmim]Br-toxicity is stage-sensitive. Moreover, we also find that the juvenile or adult snail is more resistant to the ionic liquids than snail embryo. In addition, this study also indicates that longer alkyl chains can increase the toxicity of the imidazolium ionic liquids on snails.
     We also find that[Csmim]Br inhibits the activities of superoxide dismutase and glutathione S-transferase while promotes the activity of catalase and increases glutathione content after96h of exposure. Malondialdehyde levels increase in all treatment groups compared to the control, indicating that[C8mim]Br induce lipid peroxidation. These results suggest that reactive oxygen species and lipid peroxidation may involved in the toxicity mechanism of[Csmim]Br for the snail.
     Finally, we suggest that P. acuta may be a good model of toxicity tests and a valuable indicator of water pollution according to the results of the present study.
引文
[1]Clark J H. Green chemistry:challenges and opportunities. Green Chemistry,1999,1:1-8.
    [2]蒋伟燕,余文轴.离子液体的分类、合成及应用[J].金属材料与冶金工程,2008,36(4):51-54.
    [3]石家华,孙逊,杨春和,等.离子液体研究进展[J].化学通报,2002,65(4):243-250.
    [4]梁飞,张磊,方伟成,等.离子液体的分类、合成及其在氟化工艺中的应用[J].化工技术与开发,2007,36(12);17-20.
    [5]李汝雄,王建基.离子液体的合成与应用[J].化学试剂,2001,23(4):211-215.
    [6]张英锋,李长江.离子液体的分类、合成与应用[J].化学教育,2005,(2):728-734.
    [7]Var ma R S, NamboodiriVV[J]. Chemical Communications,2001,(7):643-644.
    [8]Gui, J. Z., Deng, Y. Q., Hu, Z. D, et al. A novel task-specific ionic liquid for Beckman rearrangement: a simple and effective way for product separation[J]. Tetrahedron Letters,2004,45:2681-2683.
    [9]Zhang, Q H, Shi, F., GU, Y. L, et al. Efficient and eco-friendly process for the synthesis of N-substitutel4-methylene-2-oxazolidinones in ionic liquids[J]. Tetrahedron Letters,2005,46:5907-5911.
    [10]Sun, J. M., Fujita, S., Arai, M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids[J]. Journal of Organometallic Chemistry,2005,690:3490-3497.
    [11]Olivier, H., Magna, L. Ionic liquids:perspectives for organic and catalytic reactions[J]. Journal of Molecular Catalysis A:Chemical,2002,182-183:419-437.
    [12]Zhang, X. Y., Fan, X. S., Niu, H. Y, et al. An ionic liquid as arecyclable medium for the green preparation of aa'—bis(substituted benzylidene)cycloalkanones catalyzed by FeCl3.6H2O[J]. Green Chemistry,2003,5(2):267-269.
    [13]李雪辉,赵东滨等.离子液体的功能化及其应用[J].中国科学B辑化学,2006,36(3):181-196.
    [14]王均凤,张锁江,陈慧萍等.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003,3(2):177-185.
    [15]Demberelnyamba, D., Chen, B. K., Lee, H. Ionic liquids based on N-vinyl-gamma-butyrolactam: potentlal liquid electrolytes and green solvents[J]. Chemical Communications,2002,21(14):1538-1539.
    [16]Zhao, D. B., Wu, M., Kou, Y, et al. Ionic L iquids:Applications in Catalysis[J]. Catalysis Today,2002,74:157-189.
    [17]Pei, Y. C., Wang, J. J., Xuan, X. P, et al. Factors affecting ionic liquids based removal of anionic dyes from water[J]. Environmental Science Technology,2007,41(14):5090-5095.
    [18]方东,施群荣,巩凯等.咪唑型离子液体的绿色合成研究[J].化学试剂,2007,29(1):4-6.
    [19]Koch V R, miller L L, Oster young R A. Electroinitinted Friedel-Crafts trans alkyations in a room-temperature-salt medium[J]. Jounal of American Chemistry Society,1976,98(18):5277-5280.
    [20]Huang J, jiang T, HanB, et al. Hydrogenation of defines using Ligand-stabilized palladium nanoparticles in an ionic liquid[J]. Chemistry Communications,2003,14:1654-1655.
    [21]Carmichasel A J, Haddelon D M, Bon S A F, et al. copper(I)mediated living medical polymerization an ionic liquid[J]. Chemical communications,2000,14:1237-1238.
    [22]WasserS P, Waffen S H, Mechnitiki P, et al. Cationic phosphine ligands with phenylguanidinium modified xanthenen moieties----a successful concept for highly regioselective, biphasic hydroformylation of oct—I—ene in hexafluorpho sphere ionic liquids [J]. chemical communications,2001:0(5).
    [23]J. Ranke, K. Molter, F. Stock etal. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1cell viability assays [J]. Ecotoxicology and Environmental Safety,2004,58(3):396-404.
    [24]P. Luis, I. Ortiz, R. Aldaco, et al. A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50)of ionic liquids [J]. Ecotoxicology and Environmental Safety,2007,6:423-429.
    [25]Juliusz Pernak, Joanna Feder-Kubis. Chiral pyridinium-based ionic liquids containing the(1R,2S,5R)-1-menthyl group Tetrahedron:Asymmetry[J].2006,7:1728-1737.
    [26]Andrea M. Dunn, Stephen E. Silliman, Srisuda Dhamwichukorn etal. Demonstration of microbial transport into the capillary fringe via advection from below the water table Journal of Hydrology [J].2005,3:50-58.
    [27]Garcia M T, Gathergood N, Scammells P J. Biodegradable ionic liquidsb(Part Ⅱ):Effect of the anion and toxicology [J]. Green Chemical,2005,7:9-14.
    [28]Swatloski R P, Holbrey J D, Rogers R D, et al. Using Caenorhabditis elegans to probe toxicity of1-alkyl-3methylimidazolium chloride based ionic liquids [J]. Chemistry Communication,2004,6:668-669.
    [29]Carlo Pretti, Cinzia Chiappe, Daniela Pieraccini et al. Acute toxicity of ionic liquids to the zebrafish(Danio rerio)[J]. Gianfranca Monni and Luigi Intorre, Green Chemical.,2006,8,238-240.
    [30]Stepnowski P, Skladanowsklkl A C, Ludwicza kud A, et al. Evaluating the cytotoxicity of ionic liquids using human cell line HeLa[J]. Human&Experimental Toxicology,2004,23(11):513-517.
    [31]F. Stock J. Ranke, K. Molter, etal. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1cell viability assays Ecotoxicology and Environmental Safety[J].2004,58(3):396-404.
    [32]Jastorff B, Molter K. Behrend P, et al. Progress in evaluation of risk potential of ionic liquids-basis for an ecodesign of sustainable products[J]. Green Chemistry,2005,7:362-372.
    [33]Jastorff B. Ranke J. Stock F, et al. How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation [J]. Green Chmistry,2003(2):136-142
    [34]Adam Latala, Piotr Stepnowski, Marcin Nedzi et al. Marine toxicity assessment of imidazolium ionic liquids:Acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana[J]. Aquatic Toxicology,2005,73(1):91-98.
    [35]Li X. Y., Luo Y. R., Yun M. X., et al. Effects of1-methyl-3-octylimidazolium bromide on the anti-oxidant system of earthworm[J]. Chemosphere,2010,78(7):853-858.
    [36]Li X. Y., Zhou J., Yu M., et al. Toxic effects of1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata[J]. Ecotoxicology and Enviomental safety,2009,72(2):552-556.
    [37]Li X. Y., Zeng S. H., Dong X. Y., et al. Acute toxicity and responses of antioxidant systems to1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish [J]. Ecotoxicology,2012,21(1):253-259.
    [38]Li X. Y., Miao X. Q., Zhang L. F., et al. Immunotoxicity of1-methyl-3-octylimidazolium bromide on brocarded carp(Cyprinus carpio L.)[J]. Ecotoxicology and environmental safety,2012,75(1):180-186.
    [39]Luo Y. R., Wang S. H., Li X. Y., et al. Toxicity of ionic liquids on the growth, reproductive ability, and ATPase activity of earthworm[J]. Ecotoxicology and environmental safety,2010,73(5):1046-1050.
    [40]Luo Y. R., Li X. Y., Chen X. X., et al. The Developmental Toxicity of1-octyl-3-methylimidazolium bromide ionic liquid on Daphnia magna[J]. Environmental Toxicology,2008,23(6):736-744.
    [41]Wang S. H., Huang P. P., Li X. Y., et al. Embryonic and Developmental Toxicity of the Ionic L iquid1-Methyl-3-octylimidazolium bromide on Goldfish[J]. Envionmengtal Toxicology,2010,25(3):243-250.
    [42]Yu M., Li S. M., Li X. Y., et al. Acute effects of1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver[J]. Ecotoxicology and Enviomental safety,2008,71(3):903-908.
    [43]Kinzelbach R. Neozoans in European waters-Exemplifying the worldwide process of invasion and species mixing[J]. Basel:Birkh User Verlag,1995:526-538.
    [44]刘月英,张文珍,王耀先.医学贝类学[M].北京:海洋出版社,1993:601.
    [45]Beckmann M C,何全源,杨建等.太湖首次发现楣螺和尖膀胱螺[J].南方水产,2006,2(6):63-65.
    [46]郭云海,王承民,罗静等.北京发现尖膀胱螺[J].动物学杂志,2009,44(2):127-128.
    [47]Tsitrone A, Jarne P, David P. Delayed selfing and resource reallocations in relation to mate availability in the freshwater snail Physa acuta[J]. American Naturalist,2003,162:474-488.
    [48]Bousset L, Henry P-Y, SourrouilleP et al. Population biology of the invasive freshwater snail Physa acuta approached through genetic markers, ecological characterization and emography[J]. Molecular Ecology,2004,13:2023-2036.
    [49]Liliana Zalizniak, Ben J. Kefford., Dayanthi Nugegoda Effects of different ionic compositions on survival and growth of Physa acuta[J], Aquatic Ecology,2009,43:145-156.
    [50]W Lobato Paraense, Jean-Pierre Pointier, Physa acuta Draparnaud,1805(Gastropoda:Physidae):a Study of Topotypic Specimens[J], Memorias do Instituto Oswaldo Cruz,2003,98:513-517.
    [51]Facon B, Ravigne V, Sauteur L et al. Effect of mating history on gender preference in the hermaphroditic snail physa acuta[J]. Animal Behaviour,2007,74:1455-1461.
    [52]Musee N, Oberholster P J, Sikhwivhilu L et al. The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta(Draparnaud,1805)[J]. Chemosphere,2010:1196-1203.
    [53]Dillon R T, McCullough T E. Estimates of natural allosperm storage capacity and self-fertilization rate in the hermaphroditic freshwater pulmonate snail, Physa acuta[J]. Invertebrate Reproduction and Development,2005,47:111-115.
    [54]Facon B, Ravigne V, Goudet J. Experimental evidence of inbreeding avoidance in the hermaphroditic snail Physa acuta[J]. Evolutionary Ecology,2006,20:395-406.
    [55]Jarne P, Perdieu M-A, Pernot A-F et al. The influence of self-fertilization and grouping on fitness attributes in the freshwater snail Physa acuta:population and individual inbreeding depression[J]. Journal of Evolutionary Biology,2000,13:645-655.
    [56]Ohbayashi-Hodoki K, Ishihama F, Shimada M. Body size-dependent gender role in a simultaneous hermaphrodite freshwater snail, Physa acuta[J]. Behavioral Ecology,2004,15:976-981.
    [57]Ben J Kefford, Dayanthi Nugegoda. No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta[J]. Environmental pollution,2005,134:377-383.
    [58]Cheung C C C, Lam P K S. Effect of cadmium on the embryos and juveniles of a tropical freshwater snail, Physa acuta(Draparnaud,1805)[J]. Water Science and Technology,1998,38:263-270.
    [59]Wilkesjs, Leviiskyja, Wilsonra, et al. Althy linid dazoliume hloroa luminatemelts:a new class of room tempera tureion icliquids for elect roch emistry spect ros copy and ynthesis[J]. Inorganic Chemistry,1982,21(12):1263-1268.
    [60]Matsumoto M, Mochiduki K, Kondo K. J. Bioscience. Bioengineering,2004,98(5):344-347.
    [61]Pretti, C., Chiappe, C., Pieraccini, D., et al.,2006. Acute toxicity of ionic liquids to the zebrafish(Danio rerio)[J]. Green Chemistry,8:238-240.
    [62]Ranke, J., Molter, K., Stock, F., et al., Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1cell viability assays [J]. Ecotoxicology and Environmental Safety,2004,58:396-404.
    [63]顾浩,方岩雄,张煜.室温离子液体的性质和应用[J].精细与专用化学品,2005,13(7):10-11.
    [64]汪群拥,尹占兰.谈谈室温离子液体的新进展[J].陕西师范大学继续教育学报,2006,23(3):107-110.
    [65]张保芳,蒲敏,陈标华等.一类新型绿色环保的介质材料——咪唑类离子液体[J].材料科学与工程学报,2006,24(1):165-168.
    [66]张铣,刘毓谷.1997.毒理学[M].北京:北京医科大学,中国协和医科大学联合出版社,230-231.
    [67]Aydin, R., Koprucu, K., et al Acute toxicity of diazinon on the common carp(Cyprinus carpio L.)embryos and larvae[J]. Pesticide Biochemistry Physiology,2005,82:220-225.
    [68]孟紫强等.环境毒理学[M].北京:中国环境科学出版社,2000,99-100.
    [69]Pretti, C., Chiappe, C., Pieraccini, D., Gregori, M., Abramo, F., Monni, G., Intorre, L. Acute toxicity of ionic liquids to the zebrafish(Danio rerio)[J]. Green Chemistry,2006,8:238-240.
    [70]汪学英,卢祥云,李春梅等.重金属离子对黑斑蛙胚胎及蝌蚪的毒性影响[J].四川动物,2001,20(2):59-61.
    [71]Dial, N. Methylmercury:teratogenic and lethal effects in frog embryos [J]. Teratology,1976,13:327-334.
    [72]吕秀芬,王书颖.污水对蛙类胚胎发育的影响[J].北京师范学院学报(自然科学版),1989,10(4):59-62.
    [73]Mann, R. M., Bidwell, J. R., Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs [J]. Aquatic Toxicology,2000,51:19-29.
    [74]李辛夫.浮选剂黄药对蛙类胚胎的致畸毒性[J].环境科学学报,1990,10(2):212-216.
    [75]卢祥云,陈海波,韩曜平.几种农药对黑斑蛙胚胎及蝌蚪的毒性[J].四川动物,2002,21(2):84-86.
    [76]Fort, D. J., Stover, E. L., Bantle, J. A., Finch, R. A. Evaluation of the developmental toxicity of Thalidomide using Frog Embryo Teratogenesis Assay-Xenopus(FETAX):biotransformation and detoxification[J]. Teratogenesis, Carcinogenesis, and Mutagenesis,2000,20:35-47.
    [77]Davis, K. R., Schultz, T. W., Dumont, J. N., Toxic and teratogenic effects of selected aromatic amines on the embryos of the amphibian Xenopus laevis [J]. Archives of Environmental Contamination and Toxicology.1981,10:371-391.
    [78]Takimoto, Y., Hagino, S., Yamada, H., Miyamoto, J., The acute toxicity of fenitrothion to killifish(Oryzias latipes)at twelve different stage of its life history[J]. Pesticide Science,1984,9:463-470.
    [79]Berrill, M., Coulson, D., McGillivray, L., et al. Toxicity of endosulfan to aquatic stages of anuran amphibians [J]. Environmental Toxicology Chemistry,1998,17:1738-1744.
    [80]Gutleb, A. C., Appelman, J., Bronkhorst, M. C., et al. Delayed effects of pre-and early-life time exposure to polychlorinated biphenyls on tadpoles of two amphibian species(Xenopus laevis and Rana temporaria)[J]. Environmental Toxicology,1999,8:1-14.
    [81]Bridges, C. M, Semlitsch, R. D. Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline[J]. Conservation Biology.2000,14:1490-1499.
    [82]Aydin, R., Koprucu, K. Acute toxicity of diazinon on the common carp(Cyprinus carpio L.)embryos and larvae[J]. Pesticide Biochemistry Physiology,2005,82:220-225.
    [83]Yu, M., Wang, S. H., Luo, Y. R., Li, X. Y., Zhang, B. J., Wang, J. J.. Effects of the1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna[J]. Ecotoxicology Environmental Safety,2009,72,1798-1804.
    [84]Zhou ZL, Chen LQ. Assessment of various biomarkers in Carassius auratus exposed to benzo[a] pyrene[J]. Environment Science,2006,19(1):91-96.
    [85]Ren JY, Pan LQ, Miao JJ. Effects of benzo(a)pyrene and benzo(k)fluoranthene mixture on the toxicology parameter of scallop Chlamys farrerri[J]. Environment Science,2006,26(7):1180-1186.
    [86]P, Woford H W. Effects of cadmium and aroclor1254on lipid peroxidation, glutathione peorxidase acvitity, and selected antioxidants in Atlantic croaker tissues[J]. Aquatic Toxicology,1993,27:159-178.
    [87]Thomas J P, Maiorino M, Ursini F, Girotti AW. Portective action of phospho-lipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation [J]. Biology Chemistry,1990,265:454-461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700