姜黄素调控PI3K/AKT-Skp2-Cip/Kips通路诱导MCF-7,MDA-MB-231不同细胞毒性敏感性的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
姜黄素是植物姜黄的一个主要成分。它的药理作用广泛,主要特征为抗氧化和抗炎症。近些年大量文献报道姜黄素有抗癌活性,它能够抑制多种肿瘤细胞的增殖,侵袭,血管生成以及细胞代谢。与此同时,不同肿瘤细胞对姜黄素又表现出不同的敏感性,然而对其背后的机理却研究得很少。本课题探讨姜黄素作用于MCF-7和MDA-MB-231二种不同乳腺癌细胞的分子机理,从而进一步了解姜黄素的作用机制以及姜黄素成为潜在抗肿瘤药物的可能性。
     WST-1细胞毒性试验,克隆群落试验,流式周期检测和caspase-3活性检测试验结果显示姜黄素对MCF-7细胞和MDA-MB-231细胞均有抗增殖及致凋亡作用,而姜黄素对MDA-MB-231细胞毒性明显大于其对MCF-7细胞毒性。进一步研究发现,MCF-7和MDA-MB-231细胞对姜黄素呈现不同敏感性与细胞周期蛋白抑制蛋白Cip/Kips家族的p27和p21的激活相关,而与p57不相关。在MDA-MB-231细胞上,p27和p21的表达随姜黄素浓度及作用时问的递增而上调,而调控p27和p21降解的泛素化连接酶skp2则呈现随姜黄素浓度和时间梯度下调。在MCF-7细胞株中,仅当姜黄素浓度高且作用时间较长时,才出现显著的p27,p21上调以及skp2下调,40μM姜黄素作用MCF-7细胞3hr,6hr观察到skp2反而上调。结果提示,姜黄素在MCF-7和MDA-MB-231细胞上对skp2-Cip/Kips信号通路有不同的调控作用,而这种调控作用的差异与MCF-7和MDA-MB-231细胞对姜黄素毒性呈现敏感性差异有着密切关系。这在skp2RNA干扰(skp2-siRNA)的MCF-7以及MDA-MB-231细胞中得到了证实,即skp2RNA干扰后,这二种细胞的p27和p21明显上调,且skp2-siRNA和姜黄素联用显著提高了MCF-7细胞对姜黄素毒性的敏感性,细胞毒性与姜黄素诱导MDA-MB-231细胞毒性相当。Skp2-siRNA和姜黄素联用处理MDA-MB-231细胞有药物协同作用,诱导细胞毒性更大。
     为了解姜黄素作用下skp2-Cip/Kips的变化与其上游信号分子的作用关系,我们考察了作为skp2代谢的关键调控因子之一的AKT活性对姜黄素作用的响应。结果显示,姜黄素介导的AKT (ser473位点)磷酸化及其底物foxol及foxo3a磷酸化在MCF-7和MDA-MB-231细胞中呈相反的变化,提示PI3K/AKT信号通路也可能与姜黄素诱导的毒性敏感性差异存在重要作用关系。为确证姜黄素调控skp2与PI3K/AKT的作用关系,我们将wortmannin (PI3K特异性抑制剂)和姜黄素共同作用于耐药株MCF-7细胞,发现姜黄素引起的AKT磷酸化及其skp2上调都得到了逆转,提示姜黄素调控skp2的变化与AKT的磷酸化程度密切相关。使用wortmannin和姜黄素联合作用MCF-7细胞提高了MCF-7对姜黄素诱导细胞毒性的敏感性至姜黄素单独作用MDA-MB-231细胞毒性的水平。Wortmannin和姜黄素联用处理MDA-MB-231细胞有药物协同作用,联合用药诱导的MDA-MB-23细胞毒性更大
     综上所述,我们的结果揭示skp2是姜黄素作用乳腺癌MCF-7细胞和MDA-MB-231细胞重要的分子靶标。姜黄素诱导的细胞毒性与PI3K-Skp2-Cip/Kips信号通路的抑制程度相关,提示P-AKT及其skp2在预测姜黄素用于乳腺癌治疗效果中是非常重要的药理学分子标记物。PI3K/AKT通路抑制剂以及skp2依赖的泛素蛋白酶降解途径抑制剂和姜黄素联合用药可能为其治疗乳腺癌提供更好的策略。
     第一章姜黄素诱导MCF-7和MDA-MB-231细胞毒性研究
     为了考察姜黄素对乳腺癌细胞的作用机制,选择了两种典型的细胞株MCF-7和MDA-MB-231作为细胞模型。我们分别运用WST-1细胞毒性检测,克隆群落实验,细胞周期流式以及细胞形态学观察研究姜黄素对MCF-7和MDA-MB-231细胞的毒性作用。试验结果显示,姜黄素对两种细胞株均有毒性作用,但姜黄素对两个细胞株毒性的敏感性不一样,WST-1细胞毒性检测,克隆群落实验以及流式周期实验一致表明姜黄素对MDA-MB-231细胞表现出更大的毒性。
     第二章姜黄素对细胞凋亡调控因子caspase-3活性的影响
     因caspase-3是细胞凋亡的关键执行者,故我们采用Western Blotting方法检测姜黄素对其表达活性的影响。结果表明,姜黄素均可以上调两个乳腺癌细胞的caspase-3活性,其中MDA-MB-231细胞caspase-3活性上调更明显。Western Blotting的结果和第一章细胞毒性结果一致,姜黄素对MDA-MB-231细胞表现出更大的细胞毒性。同时提示姜黄素诱导乳腺癌细胞毒性的作用与caspase-3激活的细胞凋亡途径有关。
     第三章姜黄素调控MCF-7和MDA-MB-231细胞skp2-Cip/Kips信号通路的研究
     S期激酶相关蛋白2(skp2),作为细胞周期中重要的调节因子,广泛的参与到肿瘤的发生,转移,血管生成,以及药物抗逆性作用中。Skp2介导的泛素化降解底物Cip/Kips家族蛋白p27,p21,p57被广泛的报道与化疗药物作用肿瘤细胞的毒性敏感性相关,我们检测了姜黄素作用这两个细胞skp2-Cip/Kips蛋白的变化。结果显示,在mRNA和蛋白水平上姜黄素明显抑制了skp2的表达,伴随着p27和p21浓度梯度和时问梯度的上调。在MCF-7细胞,我们仅在药物高浓度作用长时间才观察到skp2的抑制作用并伴随p27和p21的上调。姜黄素处理MCF-7细胞和MDA-MB-231细胞,p57没有显著变化。与此同时40μM姜黄素作用MCF-7细胞3小时,skp2上调,6小时达到最高点。Skp2-SiRNA干扰skp2的表达后,MCF-7和MDA-MB-231细胞的skp2-SiRNA干扰株p27和p21均明显上调,P57变化不明显。结果提示姜黄素诱导细胞毒性的敏感性与其调控Skp2-Cip/Kips通路的抑制能力相关。同时WST-1细胞毒性测试结果显示姜黄素表现出对skp2-SiRNA干扰MCF-7细胞株和skP2-SiRNA干扰MDA-MB-231细胞株更强的细胞毒性,结果进一步肯定了skp2水平是姜黄素作用MCF-7和MDA-MB-231细胞毒性重要的决定因素。
     第四章姜黄素诱导不同细胞毒性差异性的分子机制研究(PI3K/AKT-Skp2通路)
     AKT磷酸化激活程度在决定细胞毒性的敏感性方面起重要的作用,同时AKT的活性是调节skp2变化的重要影响因子之一。我们进一步研究了姜黄素作用细胞PI3K/AKT相关信号通路的变化。结果显示姜黄素显著抑制了MDA-MB-231细胞AKT ser473位点磷酸化水平。相反,40μM姜黄素处理MCF-7细胞上调了其AKT ser473位点的磷酸化。同时我们观察到姜黄素处理两个细胞株AKT磷酸化底物p-foxol (Thr24), p-foxo3a(Ser318/321)的表达也呈现出相反的变化。1μM wortmannin (PI3K/AKT抑制剂)和40μM姜黄素联合处理MCF-7细胞6小时,扭转了姜黄素引起的p-AKT(ser473)以及skp2的上调。同时,我们观察到1μM wortmannin单独作用MCF-7细胞6小时,skp2蛋白表达并没有显著下调,结合第3章结果40μM姜黄素单独处理MCF-7细胞24小时,skp2下调,而p-AKT依旧维持在高表达水平,提示姜黄素调控skp2代谢除了p-AKT途径可能还有其他途径。进一步确认PI3K/AKT信号通路在决定姜黄素诱导MCF-7和MDA-MB-231细胞毒性敏感性中的作用。我们使用PI3K/AKT通路抑制剂(wortmannin)和姜黄素联用作用MCF-7和MDA-MB-231细胞。WST-l细胞毒性检测结果显示,对于抵抗株MCF-7细胞,药物联用克服(overcome)了姜黄素的抵抗且诱导的细胞毒性与姜黄度诱导敏感株细胞MDA-MB-231的毒性相当。对于敏感株细胞MDA-MB-231, wortmannin与姜黄素联用有药物协同作用,联合用药诱导的细胞毒性更大。
Curcumin, a major constituent of the spice turmeric, has been reported to inhibit proliferation, invasion, angiogenesis and metastasis in multiple tumor cells. Cell inhibition of curcumin also shows differently in multiple cancer cells, however the mechanism for the different cytotoxic effect of curcumin has been little explored. A better understanding of the downstream cellular targets of curcumin will provide information on its mechanism of action and help to explore the potential of using curcumin for chemotherapy.
     We presented in vitro evidence that curcumin exhibited much cytotoxic in MDA-MB-231cells than in MCF-7cells characterized by measurement of cell viability, clonogenic ability, and activation of caspase-3. This different sensitivity was associated with the induction of Cip/Kips (CDK interacting protein/kinase inhibitory protein) p27, p21expressions. In MDA-MB-231cells, we demonstrated dose-and time-dependent up-regulations of p27and p21that correlated with the reduced expression of skp2, an important regulator of Cip/Kips, while in MCF-7cells, we found the similar effect of curcumin only at a higher concentration and a longer treatment time. Further, we found that curcumin showed converse effects on AKT phosphorylation and its substrates p-foxo3a and p-foxol in MCF-7and MDA-MB-231cells, suggesting PI3K/AKT pathway may contribute greatly to the curcumin-induced differential expressions of skp2and Cip/Kips in MCF-7and MDA-MB-231cells. Wortmannin, a PI3K inhibitor could reverse curcumin-induced phosphorylation of AKT and up-regulation of skp2in MCF-7cells, and hereby enhanced the susceptibility of MCF-7cells to curcumin. Silencing the expression of skp2with a small interfering RNA resulted in an accumulation of p27, p21and enhanced cytotoxicity of curcumin in MCF-7and MDA-MB-231cells.
     Taken together, these results suggest that curcumin showed differential cytotoxicities in different kinds of human breast cancer cells, which were demonstrated to be associated, at least in part, with PI3K/AKT-Skp2-Cip/Kips pathway. These results also indicated that p-AKT and skp2levels were key determinants of antitumor responses to curcumin in breast cancer, highlighting them to be potential pharmacogenomic markers for predicting the sensitivity of human breast cancer cells to curcumin as well as skp2silencing and p-AKT inhibiting strategies.
     1Curcumin exhibits differential cytotoxicity on MCF-7and MDA-MB-231cells.
     To characterize the mechanisms of curcumin's action in breast cancer cells, two typical breast cell lines MCF-7and MDA-MB-231were used. The effects of curcumin on the morphology and cell cycle of MCF-7and MDA-MB-231cells were examined, respectively. Curcumin treatment caused MCF-7cells and MDA-MB-231cell shrinkage, rounding and partial-detachment, demonstrating the cytotoxic effects of curcumin on both MCF-7and MDA-MB-231cells. Curcumin arrested MCF-7cells at G2/M phase of the cell cycle. In MDA-MB-231cells, an obvious apoptotic peak, but no significant cell cycle arrest, was observed after curcumin treatment. The data obtained using two other experimental approaches (WST-1assays and clonogenic analysis) confirmed that MCF-7and MDA-MB-231cells responded to curcumin differentially, and MDA-MB-231cells were much more sensitive to curcumin than MCF-7cells.
     2Curcumin activates caspase-3in MCF-7and MDA-MB-231cells
     Substantive evidences have shown that curcumin could induce MCF-7and MDA-MB-231cells to apoptosis, while caspase-3activation has been shown to be one of the most important cell executioners for apoptosis. Therefore, we examined the effect of curcumin on the activation of caspase-3by western blotting analysis. Activation of caspase-3was observed in both MCF7and MDA-MB-231cells treated with curcumin. Notably, the activation of caspase-3seemed to be much more significant in MDA-MB-231than MCF-7cells, which was in agreement with the data showing differential cytotoxicity and clonogenic ability after curcumin treatment.
     3PI3K/AKT-Skp2-Cip/Kips is involved in curcumin-induced cytotoxicity in MCF-7and MDA-MB-231cells
     Since Cip/kips are often well positioned to function as both sensor and effectors of multiple cytotoxicity signals, we compared the changes in protein expression of p21, p27and p57following curcumin treatment by western blotting analysis to determine whether differences in the expression or activity of Cip/Kips could explain the heterogeneous response to curcumin in MCF-7and MDA-MB-231cells. Our results confirmed that the cellular response to curcumin may be deeply associated with the activation of p27and p21in MCF-7and MDA-MB-231cells, not p57. S-phase kinase-associated protein-2(skp2), a specific substrate-recognition subunit of the Skpl-Cullin-F-box protein (SCF) type ubiquitin ligase complex, has been reported to mediate ubiquitin-dependent degradation of some cell-cycle proteins, including p27Kip1,p21Cip1and p57Kip2. Results showed curcumin increased the protein level of both p27and p21, decreased the level of skp2simultaneously. It is indicated that eurcumin-elevated p27and p21level may result from the suppression of the negative regulatory protein skp2, which subsequently leads to the cytotoxicity in MCF-7and MDA-MB-231cells. In order to confirm the role of skp2in the regulation of p27and p21in MCF-7and MDA-MB-231cells, we next performed gene silencing experiments. Skp2siRNA knocked down the protein levels of skp2in cells compared with control siRNA transfectants and untreated ones (NEG). As expected, it indeed increased the protein levels of both p27and p21after transfection for48hr. The above results suggest curcumin-induced cytotoxicity is associated with the inhibition of skp2-Cip/Kips pathway. Silencing of skp2in MCF-7and MDA-MB-231cells increased cellular sensitivity to curcumin. In conclusion, our data indicates skp2level is a key determinant of cytotoxic responses to curcumin.
     4Effects of curcumin on expression and activity of AKT (PKB) and its substrates in MCF-7and MDA-MB-231cells
     It has been well verified that the activity of AKT is one of the key determinants in defining sensitivity to chemotherapeutic drugs and its role involved in skp2regulation by transcriptional level and post-translational modification has also been reported largely in various cell types. We found that curcumin showed converse effects on AKT phosphorylation and its substrates p-foxo3a and p-foxol, suggesting PI3K/AKT pathway may contribute greatly to the differential expression of skp2and Cip/Kips in MCF-7and MDA-MB-231cells treated with curcumin. We next investigated whether the combined treatment with curcumin and wortmannin, a selective PI3K inhibitor, would reverse curcumin-induced phosphorylation of AKT thus down-regulation of skp2in MCF-7cells. MCF-7cells were treated with both wortmannin and curcumin for6hr, wortmannin significantly down regulated curcumin-induced phosphorylation of AKT and reversed curcumin-caused up-regulation of skp2markedly. We did not find the use of combination of wortmannin and curcumin or single agent wortmannin could down regulate the expression of skp2significantly comparing to the control group. In order to confirm the relevance of PI3K/AKT pathway in the cellular response to curcumin in MCF-7and MDA-MB-231cells, we next performed cell viability assays to assess whether simultaneous treatment with curcumin and wortmannin could enhance curcumin-induced cytotoxicity. Results showed the combing using of curcumin with wortmannin enhanced the cytotoxicity of curcumin to MCF-7and MDA-MB-231cells.
引文
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Clinical Cancer Journal 61:69-90.
    2. Wang CX, Koay DC, Edwards A, Lu Z, Mor G, et al. (2005) In vitro and in vivo effects of combination of trastuzumab (Herceptin) and tamoxifen in breast cancer. Breast Cancer Research and Treatment 92:251-263.
    3. Ropero S, Menendez JA, Vazquez-Martin A, Montero S, Cortes-Funes H, et al. (2004) Trastuzumab plus tamoxifen:anti-proliferative and molecular interactions in breast carcinoma. Breast Cancer Research Treatment 86:125-137.
    4. Cline JM, Hughes CL, Jr. (1998) Phytochemicals for the prevention of breast and endometrial cancer. Cancer Treatment Research 94:107-134.
    5. Johnson IT (2007) Phytochemicals and cancer. Proceedings of the Nutrition Society 66:207-215.
    6. Liu JY, Lin SJ, Lin JK (1993) Inhibitory effects of curcumin on protein kinase C activity induced by 12-O-tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 14:857-861.
    7. Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2008) Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and-independent apoptosis in L929 cells. Free Radical Biology and Medicine 45: 1403-1412.
    8. Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Review 15:17-35.
    9. Iwao K, Miyoshi Y, Egawa C, Ikeda N, Noguchi S (2000) Quantitative analysis of estrogen receptor-beta mRNA and its variants in human breast cancers. International Journal of Cancer 88:733-736.
    10. Brown S (2012) Hormone replacement therapy and breast cancer:causation and epidemiology. Menopause 18:3-4.
    11. Ruan X, Seeger H, Mueck AO (2012) Breast cancer risk during hormone therapy: experimental versus clinical data. Minerva Endocrinol 37:59-74.
    12. Kaur M, Agarwal R (2007) Transcription factors:molecular targets for prostate cancer intervention by phytochemicals. Current Cancer Drug Targets 7:355-367.
    13. Hossain DM, Bhattacharyya S, Das T, Sa G (2012) Curcumin:the multi-targeted therapy for cancer regression. Front Bioscience (Schol Ed) 4:335-355.
    14. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin:a short review. Life Science 78:2081-2087.
    15. Chiu TL, Su CC (2009) Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappaBp65 expression in breast cancer MDA-MB-231 cells. International Journal of Molecular Medicine 23: 469-475.
    16. Holy JM (2002) Curcumin disrupts mitotic spindle structure and induces micronucleation in MCF-7 breast cancer cells. Mutation Research-Genetic Toxicology and Environmental Mutagenesis 518:71-84.
    17. Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, et al. (2010) Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells. Biochem Biophys Research Communication 394:476-481.
    18. Squires MS, Hudson EA, Howells L, Sale S, Houghton CE, et al. (2003) Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochemical Pharmacology 65:361-376.
    19. Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, et al. (2002) Curcumin exerts multiple suppressive effects on human breast carcinoma cells. International Journal of Cancer 98:234-240.
    20. Geldenhuys WJ, Bishayee A, Darvesh AS, Carroll RT (2012) Natural Products of Dietary Origin as Lead Compounds in Virtual Screening and Drug Design. Current Pharmaceutical Biotechnology 13:117-124.
    21. Sun Y, Peng ZL (2009) Programmed cell death and cancer. Postgrad Medicine Journal 85:134-140.
    22. Wolf BB, Schuler M, Echeverri F, Green DR (1999) Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. Journal of Biological Chemistry 274: 30651-30656.
    23. Mancini M, Nicholson DW, Roy S, Thornberry NA, Peterson EP, et al. (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution:Implications for apoptotic signaling. Journal of Cell Biology 140:1485-1495.
    24. Decker P, Isenberg D, Muller S (2000) Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis. J Biol Chem 275:9043-9046.
    25. Elmore S (2007) Apoptosis:a review of programmed cell death. Toxicol Pathology 35:495-516.
    26. Wolf BB, Green DR (1999) Suicidal tendencies:apoptotic cell death by caspase family proteinases. Journal of Biological Chemistry 274:20049-20052.
    27. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Current Opinion in Cell Biology 15:725-731.
    28. Boatright KM, Salvesen GS (2003) Caspase activation. Proteases and the Regulation of Biological Processes 70:233-242.
    29. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends in Cell Biology 10:369-377.
    30. Zhou TB, Qin YH, Zhou C, Lei FY, Zhao YJ, et al. (2012) Less expression of prohibitin is associated with increased Caspase-3 expression and cell apoptosis in renal interstitial fibrosis rats. Nephrology 17:189-196.
    31. Soldani C, Lazz MC, Bottone MG, Tognon G, Biggiogera M, et al. (2001) Poly(ADP-ribose) polymerase cleavage during apoptosis:When and where? Experimental Cell Research 269:193-201.
    32. Ben Amor N, Pariente JA, Salido GM, Bartegi A, Rosado JA (2006) Caspases 3 and 9 are translocated to the cytoskeleton and activated by thrombin in human platelets. Evidence for the involvement of PKC and the actin filament polymerization. Cellular Signalling 18:1252-1261.
    33. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458: 422-429.
    34. Maupin-Furlow J (2012) Proteasomes and protein conjugation across domains of life. Nature Reviews Microbiology 10:100-111.
    35. Allende-Vega N, Saville MK (2010) Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy. Semin Cancer Biology 20:29-39.
    36. Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature 458:438-444.
    37. Vucic D, Dixit VM, Wertz IE (2011) Ubiquitylation in apoptosis:a post-translational modification at the edge of life and death. Nature Reviews Molecular Cell Biology 12:439-452.
    38. Sun Y (2003) Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biological Theory 2:623-629.
    39. Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, et al. (2002) Oncogenic role of the ubiquitin ligase subunit skp2 in human breast cancer. Journal of Clinical Investigation 110:633-641.
    40. Traub F, Mengel M, Luck HJ, Kreipe HH, von Wasielewski R (2006) Prognostic impact of Skp2 and p27 in human breast cancer. Breast Cancer Research and Treatment 99:185-191.
    41. Sonoda H, Inoue H, Ogawa K, Utsunomiya T, Masuda TA, et al. (2006) Significance of skp2 expression in primary breast cancer. Clinical Cancer Research 12: 1215-1220.
    42. Pines J (1994) Cell cycle. p21 inhibits cyclin shock. Nature 369:520-521.
    43. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78:67-74.
    44. Hatada I, Mukai T (1995) Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nature Genetics 11:204-206.
    45. Denicourt C, Dowdy SF (2004) Cip/Kip proteins:more than just CDKs inhibitors. Genes& Development 18:851-855.
    46. Abbas T, Dutta A (2009) p21 in cancer:intricate networks and multiple activities. Nature Review of Cancer 9:400-414.
    47. Rao S, Lowe M, Herliczek TW, Keyomarsi K (1998) Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17:2393-2402.
    48. Oshita F, Kameda Y, Nishio K, Tanaka G, Yamada K, et al. (2000) Increased expression levels of cyclin-dependent kinase inhibitor p27 correlate with good responses to platinum-based chemotherapy in non-small cell lung cancer. Oncology Reports 7:491-495.
    49. Totary-Jain H, Sanoudou D, Dautriche CN, Schneller H, Zambrana L, et al. (2012) Rapamycin resistance is linked to defective regulation of skp2. Cancer Research 72: 1836-1843.
    50. Hung WC, Tseng WL, Shiea J, Chang HC (2010) Skp2 overexpression increases the expression of MMP-2 and MMP-9 and invasion of lung cancer cells. Cancer Letters 288:156-161.
    51. Li CF, Wang JM, Kang HY, Huang CK, Wang JW, et al. (2012) Characterization of Gene Amplification-Driven SKP2 Overexpression in Myxofibrosarcoma:Potential Implications in Tumor Progression and Therapeutics. Clinical Cancer Research 18: 1598-1610.
    52. Yokoi S, Yasui K, Iizasa T, Takahashi T, Fujisawa T, et al. (2003) Down-regulation of SKP2 induces apoptosis in lung-cancer cells. Cancer Science 94:344-349.
    53. Harada K, Supriatno, Kawashima Y, Itashiki Y, Yoshida H, et al. (2005) Down-regulation of S-phase kinase associated protein 2 (Skp2) induces apoptosis in oral cancer cells. Oral Oncology 41:623-630.
    54. Sun L, Cai L, Yu Y, Meng Q, Cheng X, et al. (2007) Knockdown of S-phase kinase-associated protein-2 expression in MCF-7 inhibits cell growth and enhances the cytotoxic effects of epirubicin. Acta Biochimica et Biophysica Sinica (Shanghai) 39:999-1007.
    55. Katagiri Y, Hozumi Y, Kondo S (2006) Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. Journal of Dermatological Science 42: 215-224.
    56. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, et al. (2002) Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma:modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Research 62:3819-3825.
    57. Einama T, Kagata Y, Tsuda H, Morita D, Ogata S, et al. (2006) High-level Skp2 expression in pancreatic ductal adenocarcinoma:correlation with the extent of lymph node metastasis, higher histological grade, and poorer patient outcome. Pancreas 32: 376-381.
    58. Traub F, Mengel M, Luck HJ, Kreipe HH, von Wasielewski R (2006) Prognostic impact of Skp2 and p27 in human breast cancer. Breast Cancer Research Treatment 99: 185-191.
    59. Zheng WQ, Zheng JM, Ma R, Meng FF, Ni CR (2005) Relationship between levels of Skp2 and P27 in breast carcinomas and possible role of Skp2 as targeted therapy. Steroids 70:770-774.
    60. Huang HC, Lin CL, Lin JK (2011) 1,2,3,4,6-penta-O-galloyl-beta-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-231 and BT474 cells through downregulation of Skp2 protein. Journal of Agriculture Food Chemistry 59:6765-6775.
    61. Sheaff RJ, Singer JD, Swanger J, Smitherman M, Roberts JM, et al. (2000) Proteasomal turnover of p21Cipl does not require p21Cipl ubiquitination. Molecular Cell 5:403-410.
    62. Touitou R, Richardson J, Bose S, Nakanishi M, Rivett J, et al. (2001) A degradation signal located in the C-terminus of p21(WAF1/CIP1) is a binding site for the C8 alpha-subunit of the 20S proteasome. The Embo Journal 20:2367-2375.
    63. Li XT, Amazit L, Long W, Lonard DM, Monaco JJ, et al. (2007) Ubiquitin-and ATP-independent proteolytic turnover of p21 by the REG gamma-proteasome pathway. Molecular Cell 26:831-842.
    64. Wong SCC, Chan JKC, Lee KC, Hsiao WLW (2001) Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast. Journal of Pathology 194:35-42.
    65. Shao ZM, Alpaugh ML, Fontana JA, Barsky SH (1998) Genistein inhibits proliferation similarly in estrogen receptor-positive and negative human breast carcinoma cell lines characterized by P21WAF1/CIP1 induction, G2/M arrest, and apoptosis. Journal of Cell Biochemistry 69:44-54.
    66. Cheng WL, Lin TY, Tseng YH, Chu FH, Chueh PJ, et al. (2011) Inhibitory effect of human breast cancer cell proliferation via p21-mediated G1 cell cycle arrest by araliadiol isolated from Aralia cordata Thunb. Planta Medica 77:164-168.
    67. Aggarwal BB, Banerjee S, Bharadwaj U, Sung B, Shishodia S, et al. (2007) Curcumin induces the degradation of cyclin E expression through ubiquitin-dependent pathway and up-regulates eyelin-dependent kinase inhibitors p21 and p27 in multiple human tumor cell lines. Biochemical Pharmacology 73:1024-1032.
    68. Chiu TL, Su CC (2009) Curcumin inhibits proliferation and migration by increasing the Bax to Bcl-2 ratio and decreasing NF-kappa Bp65 expression in breast cancer MDA-MB-231 cells. International Journal of Molecular Medicine 23: 469-475.
    69. Vivanco Ⅰ, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Reviews Cancer 2:489-501.
    70. Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway:Its functions and alterations in human cancer. Apoptosis 9:667-676.
    71. Knuefermann C, Lu Y, Liu B, Jin W, Liang K, et al. (2003) HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22:3205-3212.
    72. Perez-Tenorio G, Stal O, Group SSBC (2002) Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. British Journal of Cancer 86:540-545.
    73. Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K Pathway As Drug Target in Human Cancer. Journal of Clinical Oncology 28:1075-1083.
    74. Myatt SS, Lam EWF (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nature Reviews Cancer 7:847-859.
    75. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, et al. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82-85.
    76. Rodier G, Coulombe P, Tanguay PL, Boutonnet C, Meloche S (2008) Phosphorylation of Skp2 regulated by CDK2 and Cdc14B protects it from degradation byAPC(Cdh1) in G1 phase. The Embo Journal 27:679-691.
    77. Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, et al. (2009) Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nature Ceil Biology 11:420-432.
    78. Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, et al. (2009) Phosphorylation by Aktl promotes cytoplasmic localization of Skp2 and impairs APCCdhl-mediated Skp2 destruction. Nature Cell Biology 11:397-408.
    79. Boutonnet C, Tanguay PL, Julien C, Rodier G, Coulombe P, et al. (2010) Phosphorylation of Ser72 does not regulate the ubiquitin ligase activity and subcellular localization of Skp2. Cell Cycle 9:975-979.
    80. Bashir T, Pagan JK, Busino L, Pagano M (2010) Phosphorylation of Ser72 is dispensable for Skp2 assembly into an active SCF ubiquitin ligase and its subcellular localization. Cell Cycle 9:971-974.
    81. Maddika S, Ande SR, Wiechec E, Hansen LL, Wesselborg S, et al. (2008) Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. Journal of Cell Science 121:979-988.
    82. Zhang L, Wang C (2006) F-box protein Skp2:a novel transcriptional target of E2F. Oncogene 25:2615-2627.
    83. Reichert M, Saur D, Hamacher R, Schmid RM, Schneider G (2007) Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Research 67: 4149-4156.
    84. Reagan-Shaw S, Ahmad N (2007) The role of Forkhead-box Class O (FoxO) transcription factors in cancer:a target for the management of cancer. Toxicology and Applied Pharmacology 224:360-368.
    85. Hussain AR, Al-Rasheed M, Manogaran PS, Al-Hussein KA, Platanias LC, et al. (2006) Curcumin induces apoptosis via inhibition of PI3'-kinase/AKT pathway in acute T cell Leukemias. Apoptosis 11:245-254.
    86. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, et al. (2003) Molecular targeting therapy of cancer:drug resistance, apoptosis and survival signal. Cancer Science 94:15-21.
    87. Steelman LS, Navolanic P, Chappell WH, Abrams SL, Wong EWT, et al. (2011) Involvement of Akt and mTOR in chemotherapeutic and hormonal-based drug resistance and response to radiation in breast cancer cells. Cell Cycle 10:3003-3015.
    88. Arafa el SA, Zhu Q, Barakat BM, Wani G, Zhao Q, et al. (2009) Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Research 69:8910-8917.
    89. Han Z, Hong L, Han Y, Wu K, Han S, et al. (2007) Phospho akt mediates multidrug resistance of gastric cancer cells through regulation of P-gp, Bcl-2 and Bax. Journal of Experimental & Clinical Cancer Research 26:261-268.
    90. Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, et al. (2005) AKT phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. International Journal of Cancer 117:376-380.
    91. Jin W, Wu L, Liang K, Liu B, Lu Y, et al. (2003) Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells. British Journal of Cancer 89:185-191.
    92. Shapira M, Kakiashvili E, Rosenberg T, Hershko DD (2006) The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells. Breast Cancer Research 8:R46.
    93. Schaller MD (2010) Cellular functions of FAK kinases:insight into molecular mechanisms and novel functions. Journal of Cell Science 123:1007-1013.
    94. Bryant P, Zheng Q, Pumiglia K (2006) Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and -independent mechanisms. Molecular Cell Biology 26:4201-4213.
    95. Wu YJ, Bond M, Sala-Newby GB, Newby AC (2006) Altered S-phase kinase-associated protein-2 levels are a major mediator of cyclic nucleotide-induced inhibition of vascular smooth muscle cell proliferation. Circulation Research 98: 1141-1150.
    96. Somers-Edgar TJ, Scandlyn MJ, Stuart EC, Le Nedelec MJ, Valentine SP, et al. (2008) The combination of epigallocatechin gallate and curcumin suppresses ER alpha-breast cancer cell growth in vitro and in vivo. International Journal of Cancer 122:1966-1971.
    97. Wu YY, Shang XY, Sarkissyan M, Slamon D, Vadgama JV (2010) FOXO1A Is a Target for HER2-Overexpressing Breast Tumors. Cancer Research 70:5475-5485.
    98. Brunet A, Park J, Tran H, Hu LS, Hemmings BA, et al. (2001) Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Molecular Cell Biology 21:952-965.
    99. Hemmings BA (1997) Akt signaling:linking membrane events to life and death decisions. Science 275:628-630.
    100. Kong D, Yamori T (2008) Phosphatidylinositol 3-kinase inhibitors:promising drug candidates for cancer therapy. Cancer Science 99:1734-1740.
    101. Ihle NT, Powis G (2010) Inhibitors of phosphatidylinositol-3-kinase in cancer therapy. Molecular Aspects of Medicine 31:135-144.
    102. Parsons R (1998) Phosphatases and tumorigenesis. Curr Opin Oncol 10:88-91.
    103. Backer JM (2008) The regulation and function of Class Ⅲ PI3Ks:novel roles for Vps34. Biochemical Journal 410:1-17.
    104. Domin J, Waterfield MD (1997) Using structure to define the function of phosphoinositide 3-kinase family members. FEBS Letters 410:91-95.
    105. Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL (1999) Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. Journal of Biological Chemistry 274: 10963-10968.
    106. Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, et al. (2006) Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441:366-370.
    107. Bi L, Okabe I, Bernard DJ, Nussbaum RL (2002) Early embryonic lethality in mice deficient in the p110beta catalytic subunit of PI 3-kinase. Mammalian Genome 13:169-172.
    108. Jia S, Liu Z, Zhang S, Liu P, Zhang L, et al. (2008) Essential roles of PI(3)K-p1 10β in cell growth, metabolism and tumorigenesis. Nature 342:332-345.
    109. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, et al. (2002) Impaired B and T cell antigen receptor signaling in p1 10delta PI 3-kinase mutant mice. Science 297:1031-1034.
    110. Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, et al. (2000) Function of PI3K gamma in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040-1046.
    111. Hickey FB, Cotter TG (2006) BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. Journal of Biological Chemistry 281:2441-2450.
    112. Pene F, Claessens YE, Muller O, Viguie F, Mayeux P, et al. (2002) Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 21:6587-6597.
    113. Myatt SS, Lam EW (2007) The emerging roles of forkhead box (Fox) proteins in cancer. Nature Reviews Cancer 7:847-859.
    114. Gottlieb TM, Leal JFM, Seger R, Taya Y, Oren M (2002) Cross-talk between Akt, p53 and Mdm2:possible implications for the regulation of apoptosis. Oncogene 21: 1299-1303.
    115. Bartholomeusz C, Gonzalez-Angulo AM (2012) Targeting the PI3K signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets 16:121-130.
    116. Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Current Opinion of Genetical Development 20:87-90.
    117. Matter WF, Brown RF, Vlahos CJ (1992) The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs. Biochemical and Biophysical Research Communications 186:624-631.
    118. Arcaro A, Wymann MP (1993) Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor:the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochemical Journal 296 (Pt 2):297-301.
    119. Nakanishi S, Kakita S, Takahashi Ⅰ, Kawahara K, Tsukuda E, et al. (1992) Wortmannin, a microbial product inhibitor of myosin light chain kinase. Journal of Biological Chemistry 267:2157-2163.
    120. Vlahos CJ, Matter WF, Hui KY, Brown RF (1994) A specific inhibitor of phosphatidylinositol 3-kinase,2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). Journal of Biological Chemistry 269:5241-5248.
    121. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, et al. (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Molecular Cell 6:909-919.
    122. Norman BH, Shih C, Toth JE, Ray JE, Dodge JA, et al. (1996) Studies on the mechanism of phosphatidylinositol 3-kinase inhibition by wortmannin and related analogs. Journal of Medicinal Chemistry 39:1106-1111.
    123. Wipf P, Halter RJ (2005) Chemistry and biology of wortmannin. Organic& Biomolecular Chemistry 3:2053-2061.
    124. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, et al. (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125:733-747.
    125. Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, et al. (2007) Exploring the specificity of the PI3K family inhibitor LY294002. Biochemical Journal 404:15-21.
    126. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, et al. (2007) The selectivity of protein kinase inhibitors:a further update. Biochemical Journal 408:297-315.
    127. Zhu TM, Gu JX, Yu K, Lucas J, Cai P, et al. (2006) Pegylated wortmannin and 17-hydroxywortmannin conjugates as phosphoinositide 3-kinase inhibitors active in human tumor xenograft models. Journal of Medicinal Chemistry 49:1373-1378.
    128. Ihle NT, Williams R, Chow S, Chew W, Berggren MI, et al. (2004) Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Molecular Cancer Therapeutics 3:763-772.
    129. Ihle NT, Paine-Murrieta G, Berggren MI, Baker A, Tate WR, et al. (2005) The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Molecular Cancer Therapeutics 4:1349-1357.
    130. Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A (2008) Response and determinants of cancer cell susceptibility to PI3K inhibitors:combined targeting of PI3K and Mekl as an effective anticancer strategy. Cancer Biological Therapy 7: 307-315.
    131. Garlich JR, De P, Dey N, Su JD, Peng X, et al. (2008) A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Research 68:206-215.
    132. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, et al. (2006) A selective inhibitor of the p1 10 delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25: 6648-6659.
    133. Ihle NT, Paine-Murrieta G, Berggren MI, Baker A, Tate WR, et al. (2005) The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts. Molecular Cancer Therapeutics 4:1349-1357.
    134. Zheng L, Yang W, Zhang C, Ding WJ, Zhu H, et al. (2011) GDC-0941 sensitizes breast cancer to ABT-737 in vitro and in vivo through promoting the degradation of Mcl-1. Cancer Letters 309:27-36.
    135. O'Brien C, Wallin JJ, Sampath D, GuhaThakurta D, Savage H, et al. (2010) Predictive biomarkers of sensitivity to the phosphatidylinositol 3'kinase inhibitor GDC-0941 in breast cancer preclinical models. Clinical Cancer Research 16: 3670-3683.
    136. Prevo R, Deutsch E, Sampson O, Diplexcito J, Cengel K, et al. (2008) Class I PI3 kinase inhibition by the pyridinylfuranopyrimidine inhibitor PI-103 enhances tumor radiosensitivity. Cancer Research 68:5915-5923.
    137. Westhoff MA, Kandenwein JA, Karl S, Vellanki SH, Braun V, et al. (2009) The pyridinylfuranopyrimidine inhibitor, PI-103, chemosensitizes glioblastoma cells for apoptosis by inhibiting DNA repair. Oncogene 28:3586-3596.
    138. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, et al. (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Molecular Cancer Therapeutics 7:1851-1863.
    139. Foster PG (2007) Potentiating the antitumor effects of chemotherapy with the selective PI3K inhibitor XL 147. Molecular Cancer Therapeutics 6:3592s-3592s.
    140. Laird AD (2007) XL765 targets tumor growth, survival, and angiogenesis in preclinical models by dual inhibition of PI3K and mTOR. Molecular Cancer Therapeutics 6:351 1s-3512s.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700