HMGB1酸性尾端抗菌相关功能位点解析及以该分子为靶点的抗炎措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分HMGB1酸性尾端抗菌相关功能位点解析
     研究目的:高迁移率族蛋白B1(high-mobility group box-1,HMGB1)属高迁移率族蛋白超家族成员,由A box、B box及酸性尾端三个结构域组成,其广泛存在于真核细胞核内,也可存在于胞浆及细胞外等多个部位,在机体正常生理活动维持和某些疾病状态下发挥多种重要功能。相对于其他功能而言,抗菌活性是HMGB1的一项新功能。我们前期在对HMGB1功能机制进行研究时发现:重组人HMGB1具有抗菌活性,然而缺失由30个氨基酸残基组成的酸性尾端的突变体蛋白则丧失抗菌能力;另外,我们还证实了单独的A box和B box不具有抗菌活性。因此,HMGB1酸性尾端对其抗菌活性的发挥至关重要。但是,针对我们获得的这一新发现,至少还有两个问题需进一步探讨:酸性尾端区域中参与抗菌作用的详细功能位点尚待解析;单独的酸性尾端是否即有抗菌能力还有待鉴定。本部分实验旨在寻找HMGB1酸性尾端中抗菌相关功能位点,并观察单独酸性尾端的抗菌活性。
     方法及结果:
     1.人HMGB1酸性尾端不同位点缺失突变体的制备
     (1)用已克隆于pUC19载体中测序正确的、编码人HMGB1的cDNA为模板,经常规PCR或一步反向PCR致突变策略分别扩增得到11种人HMGB1酸性尾端不同位点缺失突变体蛋白的编码序列,并成功的构建了重组质粒:pUC19/mHMGB1 -211-215、pUC19/mHMGB1 -206-215、pUC19/mHMGB1 -201-215、pUC19/mHMGB1 -196-215、pUC19/mHMGB1 -191-215、pUC19/mHMGB1 -186-200、pUC19/mHMGB1 -196-210、pUC19/mHMGB1 -196-205、pUC19/mHMGB1 -198-207、pUC19/mHMGB1 -201-210、pUC19/mHMGB1 -201-205。
     (2)将上述测序正确的各突变体编码序列分别亚克隆到适于表达毒性蛋白的原核表达载体pQE-80L中,成功地构建了重组原核表达质粒pQE-80L/mHMGB1 -211-215、pQE-80L/mHMGB1 -206-215、pQE-80L/mHMGB1 -201-215、pQE-80L/mHMGB1 -196-215、pQE-80L/mHMGB1 -191-215、pQE-80L/mHMGB1 -186-200、pQE-80L/mHMGB1-196-210、pQE-80L/mHMGB1 -196-205、pQE-80L/mHMGB1 -198-207、pQE-80L/mHMGB1 -201-210、pQE-80L/mHMGB1 -201-205。
     (3)将上述重组原核表达质粒分别转化于大肠杆菌DH5α,在终浓度0.5mmol/L的IPTG、37℃诱导表达3h。SDS-PAGE分析可见,目的蛋白相对分子质量均在30kDa- 25kDa之间,均主要以分泌形式表达。经Ni2+-NTA系统有效纯化后,我们成功的制备了11种人HMGB1酸性尾端不同位点缺失的突变体蛋白:mHMGB1 -211-215、mHMGB1 -206-215、mHMGB1 -201-215、mHMGB1 -196-215、mHMGB1 -191-215、mHMGB1 -186-200、mHMGB1 -196-210、mHMGB1 -196-205、mHMGB1 -198-207、mHMGB1 -201-210、mHMGB1 -201-205。
     2.人HMGB1酸性尾端不同位点缺失突变体抗菌功能的检测与比较
     体外抗菌实验(试管稀释法、琼脂扩散法)结果证实:11种人HMGB1酸性尾端不同位点缺失突变体中mHMGB1 -211-215、mHMGB1 -206-215、mHMGB1 -186-200对金黄色葡萄球菌、大肠杆菌JM109、ATCC25922、DH5α具有不同程度的抗菌活性,其中对DH5α抗菌活性最弱;而对绿脓杆菌则无此抗菌活性。其余突变体抗菌活性均消失。上述实验结果表明:人HMGB1酸性尾端中201-205氨基酸残基对其抗菌功能的发挥至关重要。3.人工合成的人HMGB1酸性尾端抗菌活性研究
     (1)人工合成30个氨基酸残基组成的人HMGB1酸性尾端肽段。
     (2)体外抗菌实验(试管稀释法、琼脂扩散法)结果显示:该肽段对金黄色葡萄球菌、大肠杆菌JM109、ATCC25922、DH5α具有不同程度的抗菌活性,其中对DH5α抗菌活性最弱;而对绿脓杆菌则无此抗菌活性。因此,单独的人HMGB1酸性尾端肽段即具有抗菌活性。
     结论:
     1.人HMGB1酸性尾端中201-205氨基酸残基在抗菌活性的发挥中起至关重要的作用。
     2.人工合成30个氨基酸残基组成的人HMGB1酸性尾端肽段对部分细菌具有明确的抗菌活性,从另一侧面证实HMGB1的酸性尾端对其抗菌功能的发挥至关重要。
     第二部分HMGB1为靶点的抗炎措施研究
     研究目的:HMGB1是一种具有宽治疗窗口期的关键炎症因子,在多种急、慢性炎症疾病的发生和发展过程中起着极为重要的作用,目前以该分子为靶标的抗炎措施越来越受到人们的关注。现有研究证实,其发挥致炎作用的主要功能域为B box。然而,体外表达的单独A box能抑制HMGB1致炎活性,有明确的抗炎功能。同时,酸性尾端具有调节A box、B box结构和功能的作用。如果能将HMGB1具有抗炎功能的A box与具有抗菌功能的酸性尾端融合就有可能得到兼具抗炎、抗菌双功能的衍生分子。又有研究显示,被分泌至细胞外的HMGB1除是一种重要的炎症细胞因子外,还参与激活机体自身免疫系统,与多种自身免疫性疾病密切相关。中药提纯单体青藤碱(sinomenine,SIN)具有抗炎、免疫抑制等药理作用,广泛应用于临床治疗类风湿性关节炎(RA)、系统性红斑狼疮(SLE)、干燥综合征(SS)等慢性炎性自身免疫性疾病,并取得较好疗效。然而,SIN是否可影响HMGB1表达目前尚未见报道。本部分实验以HMGB1为靶点,制备由HMGB1 A box及酸性尾端组成的兼具抗炎、抗菌双功能的衍生分子;同时研究SIN对HMGB1表达的影响,并初步探讨其可能机制。
     方法及结果:
     1.HMGB1 A box和酸性尾端融合分子的制备
     (1)以克隆于pUC19载体中测序正确的、编码人HMGB1的cDNA为模板,经一步反向PCR,在缺失B box编码序列的同时,将A box与酸性尾端的编码序列直接相连(此连接为刚性连接),命名为pUC19/rHMGB1 A+T。
     (2)再用上述克隆于pUC19载体上测序正确的、处于刚性连接的A box与酸性尾端编码序列为模板,经多次一步反向PCR在A box与酸性尾端编码序列之间引入一个柔性连接子(Gly4Ser)3的编码序列(此连接为柔性连接),命名为pUC19/rHMGB1 A+Linker+T。
     (3)将测序正确的A box与酸性尾端刚性、柔性连接融合分子编码序列分别亚克隆于原核表达载体pQE-80L,分别命名为pQE-80L/rHMGB1 A+T、pQE-80L/rHMGB1 A+Linker+T,并在大肠杆菌DH5α中进行诱导表达上述融合蛋白。SDS-PAGE分析可见,两融合蛋白的相对分子质量分别约为16kDa和18kDa。经Ni2+-NTA纯化系统,两融合蛋白得到有效纯化,纯化后的目的蛋白在SDS-PAGE上均呈现单一条带。
     2.HMGB1 A box和酸性尾端融合分子抗炎功能的鉴定与比较
     (1)体外抗炎实验证实,两融合蛋白与单独A box类似均能抑制重组HMGB1诱导的人单核细胞THP-1分泌炎症因子肿瘤坏死因子a(TNF-a)和白细胞介素6(IL-6),两融合蛋白抑制炎症因子作用均比单独的A box强,且柔性连接的融合蛋白抗炎能力是三者中最强的。
     (2)在LPS诱导的小鼠内毒素血症模型(模拟内毒素引起的系统性炎症)中两融合蛋白均能降低血清炎症因子TNF-a、IL-6的浓度并能提高小鼠的存活率;同体外实验结果类似柔性连接的融合蛋白降低血清中炎症因子浓度及提高小鼠存活率作用更强。
     3.HMGB1 A box和酸性尾端融合分子抗菌功能的检测与比较
     体外抗菌实验(试管稀释法、琼脂扩散法)结果显示,A box与酸性尾端刚性连接和柔性连接两融合蛋白均能不同程度抑制金黄色葡萄球菌、大肠杆菌(JM109、ATCC25922、DH5α)生长,但二者的抑制细菌生长能力并无统计学差异;均对绿脓杆菌无抗菌活性。
     4.盐酸青藤碱抑制基础水平和LPS诱导的HMGB1表达
     (1)在人内皮细胞EA.hy926中盐酸青藤碱可抑制基础水平的HMGB1 mRNA和蛋白质表达,且呈剂量依赖性。
     (2)在人内皮细胞EA.hy926中盐酸青藤碱可抑制LPS诱导水平的HMGB1 mRNA和蛋白质表达,且呈剂量依赖性。
     5.盐酸青藤碱抑制HMGB1基因启动子活性
     (1)成功克隆到具有活性的HMGB1基因5’上游启动子区域(-2484~+200),并构建长度不同的HMGB1基因启动子区域截短突变体(-1998~+200、-1598~+200、-1198~+200、-798~+200、-397~+200)报告基因检测质粒。
     (2)荧光素酶(Luc)报告基因检测实验结果知,盐酸青藤碱可抑制-2484~+200、-1998~+200、-1598~+200、-1198~+200报告基因质粒启动子活性,但对-798~+200、-397~+200报告基因质粒启动子活性无影响,此结果表明HMGB1基因5’上游启动子区域-1198~-798序列在青藤碱抑制HMGB1转录中起至关重要的作用。
     结论:
     1.人HMGB1 A box与酸性尾端刚性连接和柔性连接两种衍生分子均是兼具抗炎、抗菌的双功能分子;酸性尾端可增强A box的抗炎活性,且柔性连接的融合分子抗炎活性强于刚性连接的融合分子,但其二者在抗菌活性方面无差异;
     2.青藤碱可抑制基础水平及LPS诱导的HMGB1表达,且HMGB1基因5’上游启动子区域-1198~-798序列与青藤碱抑制HMGB1转录密切相关。
Part I Analysis of antibacterial-associated functional sites in human HMGB1 acidic tail
     Objective: High-mobility group box 1(HMGB1) belongs to high-mobility group superfamily named for its characteristic rapid mobility in polyacrylamide gel electrophoresis (PAGE). Structurally, HMGB1 has 215 amino acid residues, including three main functional domains: A box, B box and C-terminal acidic tail (C tail). HMGB1 has been shown multiple important functions in nucleus, cytoplasm even extracellular enviroment. In physiological situation, as a potent antibacterial protein, HMGB1 is an important part of innate immunity defensive barrier of the human body that can resist bacterial infection in vivo. But the functional domain for this new effect is presently unknown. In our previous reseaches, we identified that the full-length recombination human HMGB1 presented antibacterial activity, nevertheless, the A box and the B box domains of the molecule and the truncated HMGB1 lacking its C tail failed to inhibit bacterial multiplication, which demonstrated that the C tail was the key domain for the antibacterial activity of HMGB1. But there are still remained some futhur reseaches such as which region in C tail is mainly responsible for the antibacterial activity of HMGB1, and whether the acidic tail alone peptide has antibacterial function.
     Methods and Results: The encoding fragements of eleven different deleted mutants in C tail of human HMGB1 were constructed by PCR or one-step opposite-direction PCR, which were laking its amino acid residues 211-215, 206-215, 201-215, 196-215, 191-215, 186-200, 196-210, 196-205, 198-207, 201-210, 201-205 respectively. They were consistent with the sequence reported in GenBank. These mutants were successfully expressed in the prokaryotic expression systerm. The relative molecular masses of them were about from 30kDa to 25kDa. The expressed proteins were purified by Ni2+-NTA chromatography. SDS-PAGE analysis showed that the target proteins were highly purified. The acidic tail peptide alone (C peptide) was synthesized. The antibacterial activities of these mutants and C peptide to Staphylococcus aureus (SA), E.coli (JM109, ATCC25922, DH5α), P. aeruginosa (PA) were compared by bacteria dilution in the test tubes and dispersion method. The results showed that the truncated mutants which lacking its amino acid residues 211-215, 206-215, 186-200 respectively and C peptide could inhibit the proliferation of SA, E.coli.JM109, ATCC25922 and DH5αefficiently in vitro. However, other mutants had no antibacterial function. Moreover, all of the mutants and C peptide couldn’t inhibit PA growth.
     Conclusion: We concluded that the amino acid residues 201-205 in C-terminal acidic tail region are the core functional site for the antibacterial activity of the molecule. And C peptide could exert antibacterial function.
     Part II Analysis of anti-inflammation strategies against HMGB1
     Objective: HMGB1 has been identified as a mediator of endotoxin lethality and become a new therapeutic target in recent years, which plays a critical role in the processes of many kinds of acute and chronic inflammation, including autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sj?gren Syndrome (SS) and so on. B box of HMGB1 is the inflammation functional domain. Interestingly, HMGB1 A box can antagonize HMGB1-induced inflammation. Moreover, the C tail contributed to the spatial structure of both A box and B box and regulated HMGB1 DNA binding specificity. However, it is unknown whether the C tail can enhance the anti-inflammatory activity of the A box, and whether the fusion proteins based on the A box and C tail have antibacterial and anti-inflammation activity. Then in order to investigate whether the novel fusion molecules have antibacterial activity and anti-inflammation activity, which consist of the human HMGB1 antibacterial acidic tail and A box possessing anti-inflammation action, we prepared two fusion molecules consisting of the human HMGB1 A box and acidic tail linked directly and by a flexible linker sequence (Gly4Ser)3 respectively. The effects of these fusion molecules were compared by antibacterial and anti-inflammation assays in vitro and in vivo.
     Sinominine, a purified alkaloid extracted from sinomenium acutum, has a variety of pharmacological effects including anti-inflammation, immunosuppression, and anti-angiogenesis, which is treated to RA, SLE. It is not sure whether sinominine can influence the expression of HMGB1. Finally, we tested whether sinomenine inhibits the expression of HMGB1.
     Methods and Results: The fusion molecules consisting of the human HMGB1 antibacterial acidic tail and A box possessing anti-inflammation action linked directly and by a flexible linker sequence (Gly4Ser)3 were successfully prepared. The relative molecular masses of the two fusion molecules were about 16kDa and 18kDa. Antibacterial assays showed that these two molecules had equal abilities to inhibit the proliferation of SA, E.coli.JM109, ATCC25922 and DH5αin vitro. They could inhibit TNF-a and IL-6 release in vitro and in vivo and increase the survival rate of endotoxemia mouse. And the flexible linker fusion molecule had more powerful anti-inflammation activity. We also detected that sinomenine could inhibit both basal and LPS stimulated HMGB1 expression in human endothelial cell EA.Hy926 by Real-time PCR and Western blotting. Morover, we cloned the promoter of HMGB1. Luciferase assay showed that sinomenine could suppress the transcription activity of HMGB1 promoter and tightly related with -1198~-798 of the promoter region.
     Conclusion: In summary, the novel fusion molecules have antibacterial and anti-inflammation activity. The fused C tail can enhance the anti-inflammatory effect of the A box. And sinomenine could inhibit HMGB1 expression by suppressing the transcription activity of -1198~-798 in HMGB1 promoter region.
引文
1. Smerdon MJ, Isenberg I: Interactions between the subfractons of calf thymus H1 and nonhistone chromosomal proteins HMG1 and HMG2. Biochemistry 1976, 15(19):4242-4247.
    2. Knapp S, Muller S, Digilio G, Bonaldi T, Bianchi ME, Musco G: The long acidic tail of high mobility group box 1 (HMGB1) protein forms an extended and flexible structure that interacts with specific residues within and between the HMG boxes. Biochemistry 2004, 43(38):11992-11997.
    3. Watson M, Stott K, Thomas JO: Mapping intramolecular interactions between domains in HMGB1 using a tail-truncation approach. J Mol Biol 2007, 374(5):1286-1297.
    4. Ito I, Mitsuoka N, Sobajima J, Uesugi H, Ozaki S, Ohya K, Yoshida M: Conformational difference in HMGB1 proteins of human neutrophils and lymphocytes revealed by epitope mapping of a monoclonal antibody. J Biochem 2004, 136(2):155-162.
    5. Murua Escobar H, Meyer B, Richter A, Becker K, Flohr AM, Bullerdiek J, Nolte I: Molecular characterization of the canine HMGB1. Cytogenet Genome Res 2003, 101(1):33-38.
    6. Yang H, Tracey KJ: High mobility group box 1 (HMGB1). Crit Care Med 2005, 33(12 Suppl):S472-474.
    7. Walker JM, Gooderham K, Hastings JR, Mayes E, Johns EW: The primary structures of non-histone chromosomal proteins HMG 1 and 2. FEBS Lett 1980, 122(2):264-270.
    8. Lange SS, Vasquez KM: HMGB1: The jack-of-all-trades protein is a master DNA repair mechanic. Mol Carcinog 2009.
    9. Prasad R, Liu Y, Deterding LJ, Poltoratsky VP, Kedar PS, Horton JK, Kanno S-I, Asagoshi K, Hou EW, Khodyreva SN et al: HMGB1 Is a Cofactor in Mammalian Base Excision Repair. Molecular Cell 2007, 27(5):829-841.
    10. Dong Xda E, Ito N, Lotze MT, Demarco RA, Popovic P, Shand SH, Watkins S, Winikoff S, Brown CK, Bartlett DL et al: High mobility group box I (HMGB1)release from tumor cells after treatment: implications for development of targeted chemoimmunotherapy. J Immunother 2007, 30(6):596-606.
    11. Gnanasekar M, Thirugnanam S, Ramaswamy K: Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int J Oncol 2009, 34(2):425-431.
    12. Takahashi M: High-mobility group box 1 protein (HMGB1) in ischaemic heart disease: beneficial or deleterious? Cardiovasc Res 2008, 80(1):5-6.
    13. Volp K, Brezniceanu ML, Bosser S, Brabletz T, Kirchner T, Gottel D, Joos S, Zornig M: Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut 2006, 55(2):234-242.
    14. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth PP, Bierhaus A et al: The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 2008, 28(46):12023-12031.
    15. Basta G: Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 2008, 196(1):9-21.
    16. Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, Maruyama I: HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol 2007, 16(3):136-143.
    17. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, Suffredini AF: Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 2003, 101(7):2652-2660.
    18. Jiao Y, Wang HC, Fan SJ: Growth suppression and radiosensitivity increase by HMGB1 in breast cancer. Acta Pharmacol Sin 2007, 28(12):1957-1967.
    19. Ulloa L, Messmer D: High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 2006, 17(3):189-201.
    20. Angus DC, Yang L, Kong L, Kellum JA, Delude RL, Tracey KJ, Weissfeld L: Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit Care Med 2007, 35(4):1061-1067.
    21. Eriksson M: Should high mobility group box-1 protein (HMGB1) be measured in patients with severe sepsis and septic shock? If so, when, where, and how? Crit Care Med 2005, 33(3):682-683.
    22. Sunden-Cullberg J, Norrby-Teglund A, Rouhiainen A, Rauvala H, Herman G, Tracey KJ, Lee ML, Andersson J, Tokics L, Treutiger CJ: Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit Care Med 2005, 33(3):564-573.
    23. O'Connor KA, Hansen MK, Rachal Pugh C, Deak MM, Biedenkapp JC, Milligan ED, Johnson JD, Wang H, Maier SF, Tracey KJ et al: Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects. Cytokine 2003, 24(6):254-265.
    24. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L et al: HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285(5425):248-251.
    25. Chen G, Ward MF, Sama AE, Wang H: Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res 2004, 24(6):329-333.
    26. Goldstein RS, Bruchfeld A, Yang L, Qureshi AR, Gallowitsch-Puerta M, Patel NB, Huston BJ, Chavan S, Rosas-Ballina M, Gregersen PK et al: Cholinergic anti-inflammatory pathway activity and High Mobility Group Box-1 (HMGB1) serum levels in patients with rheumatoid arthritis. Mol Med 2007, 13(3-4):210-215.
    27. Bianchi ME, Manfredi AA: High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007, 220:35-46.
    28. Pisetsky DS, Erlandsson-Harris H, Andersson U: High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 2008, 10(3):209.
    29. Lotze MT, Tracey KJ: High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005, 5(4):331-342.
    30. Pan HF, Wu GC, Li WP, Li XP, Ye DQ: High Mobility Group Box 1: a potential therapeutic target for systemic lupus erythematosus. Mol Biol Rep 2009.
    31. Ek M, Popovic K, Harris HE, Naucler CS, Wahren-Herlenius M: Increased extracellular levels of the novel proinflammatory cytokine high mobility groupbox chromosomal protein 1 in minor salivary glands of patients with Sjogren's syndrome. Arthritis Rheum 2006, 54(7):2289-2294.
    32. Zetterstrom CK, Bergman T, Rynnel-Dagoo B, Erlandsson Harris H, Soder O, Andersson U, Boman HG: High mobility group box chromosomal protein 1 (HMGB1) is an antibacterial factor produced by the human adenoid. Pediatr Res 2002, 52(2):148-154.
    33.人HMGB1酸性尾端对其抗菌活性的影响.中国生物化学与分子生物学报2006, 22(7):524-529.
    34.重组小鼠高迁移率族蛋白B1抗菌活性研究.第三军医大学学报2006, 28(9):939-941.
    35. Zetterstrom CK, Strand ML, Soder O: The high mobility group box chromosomal protein 1 is expressed in the human and rat testis where it may function as an antibacterial factor. Hum Reprod 2006, 21(11):2801-2809.
    36. Sambrook J, Russell D: Molecular cloning A Laboratory Manual. 2002.
    37. Boman HG: Innate immunity and the normal microflora. Immunol Rev 2000, 173:5-16.
    38. Ganz T, Lehrer RI: Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today 1999, 5(7):292-297.
    39. Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, Susarla SM, Ulloa L, Wang H, DiRaimo R et al: Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 2004, 101(1):296-301.
    40. Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, Harris HE, Czura CJ, Wang H, Ulloa L et al: Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med 2003, 9(1-2):37-45.
    41. Waterer GW: High-mobility group box 1 (HMGB1) as a potential therapeutic target in sepsis--more questions than answers. Crit Care Med 2007, 35(4):1205-1206.
    42. Wang H, Zhu S, Zhou R, Li W, Sama AE: Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med 2008, 10:e32.
    43. Wang H, Ward MF, Sama AE: Novel Hmgb1-Inhibiting Therapeutic Agents for Experimental Sepsis. Shock 2009.
    44. Tang Y, Lv B, Wang H, Xiao X, Zuo X: PACAP inhibit the release and cytokine activity of HMGB1 and improve the survival during lethal endotoxemia. Int Immunopharmacol 2008, 8(12):1646-1651.
    45. Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R, Czura CJ, Fink MP, Tracey KJ: Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci U S A 2002, 99(19):12351-12356.
    46. Fink MP: Ethyl pyruvate: a novel treatment for sepsis. Novartis Found Symp 2007, 280:147-156; discussion 156-164.
    47. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ et al: Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004, 10(11):1216-1221.
    48. Chen G, Li J, Qiang X, Czura CJ, Ochani M, Ochani K, Ulloa L, Yang H, Tracey KJ, Wang P et al: Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res 2005, 46(4):623-627.
    49. Cato L, Stott K, Watson M, Thomas JO: The interaction of HMGB1 and linker histones occurs through their acidic and basic tails. J Mol Biol 2008, 384(5):1262-1272.
    50. Tang YM, Ning BT, Cao J, Shen HQ, Qian BQ: Construction and expression of single-chain antibody derived from a new clone of monoclonal antibody against human CD14 in CHO cells. Immunopharmacol Immunotoxicol 2007, 29(3-4):375-386.
    51. Zhou H, Wong YF, Wang J, Cai X, Liu L: Sinomenine ameliorates arthritis via MMPs, TIMPs, and cytokines in rats. Biochem Biophys Res Commun 2008, 376(2):352-357.
    52. Xu M, Liu L, Qi C, Deng B, Cai X: Sinomenine versus NSAIDs for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. Planta Med 2008, 74(12):1423-1429.
    53. Kok TW, Yue PY, Mak NK, Fan TP, Liu L, Wong RN: The anti-angiogenic effect of sinomenine. Angiogenesis 2005, 8(1):3-12.
    54. Mouri F, Tsukada J, Mizobe T, Higashi T, Yoshida Y, Minami Y, Izumi H, Kominato Y,Kohno K, Tanaka Y: Intracellular HMGB1 transactivates the human IL1B gene promoter through association with an Ets transcription factor PU.1. European Journal of Haematology 2008, 80(1):10-19.
    55. Yuan Z, Chen J, Zhang Y, Peng Y: Construction and characterization of the HMGB1 mutant as a competitive antagonist to HMGB1 induced cytokines release. Biochem Biophys Res Commun 2008, 372(4):703-707.
    56. Lutz W, Stetkiewicz J: High mobility group box 1 protein as a late-acting mediator of acute lung inflammation. International Journal of Occupational Medicine and Environmental Health 2004, 17(2):245-254.
    57. Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, Sauaia A, Silliman CC, Banerjee A, Abraham E: Hmgb1 Is Markedly Elevated within Six Hours of Mechanical Trauma in Humans. Shock 2008.
    58. Kokkola R, Andersson A, Mullins G, Ostberg T, Treutiger CJ, Arnold B, Nawroth P, Andersson U, Harris RA, Harris HE: RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 2005, 61(1):1-9.
    59. Rauvala H, Rouhiainen A: RAGE as a receptor of HMGB1 (Amphoterin): roles in health and disease. Curr Mol Med 2007, 7(8):725-734.
    60. Mollen K, Mollen K, Kaczorowski D, Yoneyama T, Vallabhaneni R, Kilgore T, Bo M, Lotze M, Billiar T: MD2 and CD14 mediate toll-like receptor 4 (TLR4) activation by high mobility group box 1 (HMGB1). Journal of the American College of Surgeons 2007, 205(3, Supplement 1):S28-S28.
    61. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H: HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 2006, 26(2):174-179.
    62. van Zoelen MA, Yang H, Florquin S, Meijers JC, Akira S, Arnold B, Nawroth PP, Bierhaus A, Tracey KJ, van der Poll T: Role of Toll-Like Receptors 2 and 4, and the Receptor for Advanced Glycation End Products (Rage) in Hmgb1 Induced Inflammation in Vivo. Shock 2008.
    63. Liu H, Yao YM, Yu Y, Dong N, Yin HN, Sheng ZY: Role of Janus kinase/signal transducer and activator of transcription pathway in regulation of expression andinflammation-promoting activity of high mobility group box protein 1 in rat peritoneal macrophages. Shock 2007, 27(1):55-60.
    64. Zhang Y, Zhao ZF, Han DW, Wang F, Xu RL, Liu MS: Rapamycin-induced inhibition of Janus kinase/signal transducer and activator of transcription pathway affects expression of high-mobility group box 1 in rats with acute liver injury. World Chinese Journal of Digestology 2006, 14(19):1916-1920.
    65. Treutiger CJ, Mullins GE, Johansson ASM, Rouhiainen A, Rauvala HME, Erlandsson-Harris H, Andersson U, Yang H, Tracey KJ, Andersson J et al: High mobility group 1 B-box mediates activation of human endothelium. Journal of Internal Medicine 2003, 254(4):375-385.
    66. Riuzzi F, Sorci G, Donato R: The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness: Functional inactivation of RAGE in l6 myoblasts results in tumor formation in vivo. Journal of Biological Chemistry 2006, 281(12):8242-8253.
    67. Unoshima M: [Therapeutic effect of anti-HMGB1 antibody and anti-RAGE antibody on SIRS/sepsis]. Nippon Rinsho 2004, 62(12):2323-2329.
    68. Sheng Z, Lu J, Zhang L, Yao Y: Sodium butyrate prevents lethality of sepsis induced by cecal ligation and puncture in rats. Burns 2007, 33(1, Supplement 1):S29-S29.
    69. Hagiwara S, Iwasaka H, Noguchi T: Nafamostat mesilate inhibits the expression of HMGB1 in lipopolysaccharide-induced acute lung injury. J Anesth 2007, 21(2):164-170.
    70. Chen X, Li W, Wang H: More tea for septic patients?--Green tea may reduce endotoxin-induced release of high mobility group box 1 and other pro-inflammatory cytokines. Med Hypotheses 2006, 66(3):660-663.
    71. Taniguchi N, Kawahara KI, Yone K, Hashiguchi T, Yamakuchi M, Goto M, Inoue K, Yamada S, Ijiri K, Matsunaga S et al: High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis and Rheumatism 2003, 48(4):971-981.
    72. Marchini G, Hultenby K, Nelson A, Yektaei-Karin E, Stabi B, Lonne-Rahm S, UlfgrenAK, Brismar H: Increased expression of HMGB-1 in the skin lesions of erythema toxicum. Pediatric Dermatology 2007, 24(5):474-482.
    73. Karin M, Lawrence T, Nizet V: Innate Immunity Gone Awry: Linking Microbial Infections to Chronic Inflammation and Cancer. Cell 2006, 124(4):823-835.
    74. Fernandez D, Perl A: Metabolic control of T cell activation and death in SLE. Autoimmunity Reviews 2009, 8(3):184-189.
    75. Qing X, Pitashny M, Thomas DB, Barrat FJ, Hogarth MP, Putterman C: Pathogenic anti-DNA antibodies modulate gene expression in mesangial cells: Involvement of HMGB1 in anti-DNA antibody-induced renal injury. Immunology Letters 2008, 121(1):61-73.
    76. Ou YQ, Chen LH, Li XJ, Lin ZB, Li WD: Sinomenine influences capacity for invasion and migration in activated human monocytic THP-1 cells by inhibiting the expression of MMP-2, MMP-9, and CD147. Acta Pharmacol Sin 2009, 30(4):435-441.
    77. Qian L, Xu Z, Zhang W, Wilson B, Hong JS, Flood PM: Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation 2007, 4:23.
    78. Wang WJ, Wang PX, Li XJ: [The effect of sinomenine on cyclooxygenase activity and the expression of COX-1 and COX-2 mRNA in human peripheral monocytes]. Zhongguo Zhong Yao Za Zhi 2003, 28(4):352-355.
    79. Huang J, Lin Z, Luo M, Lu C, Kim MH, Yu B, Gu J: Sinomenine suppresses TNF-alpha-induced VCAM-1 expression in human umbilical vein endothelial cells. J Ethnopharmacol 2007, 114(2):180-185.
    1. Lange SS, Mitchell DL, Vasquez KM: High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc Natl Acad Sci U S A 2008, 105(30):10320-10325.
    2. Lange SS, Reddy MC, Vasquez KM: Human HMGB1 directly facilitates interactions between nucleotide excision repair proteins on triplex-directed psoralen interstrand crosslinks. DNA Repair (Amst) 2009, 8(7):865-872.
    3. Prasad R, Liu Y, Deterding LJ, Poltoratsky VP, Kedar PS, Horton JK, Kanno S, Asagoshi K, Hou EW, Khodyreva SN, Lavrik OI, Tomer KB, Yasui A, Wilson SH: HMGB1 is a cofactor in mammalian base excision repair. Mol Cell 2007, 27(5):829-841.
    4. El Gazzar M, Yoza BK, Chen X, Garcia BA, Young NL, McCall CE: Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 2009, 29(7):1959-1971.
    5. Bonanno G, Raiteri L, Milanese M, Zappettini S, Melloni E, Pedrazzi M, Passalacqua M, Tacchetti C, Usai C, Sparatore B: The high-mobility group box 1 cytokine induces transporter-mediated release of glutamate from glial subcellular particles (gliosomes) prepared from in situ-matured astrocytes. Int Rev Neurobiol 2007, 82:73-93.
    6. Rong LL, Trojaborg W, Qu W, Kostov K, Yan SD, Gooch C, Szabolcs M, Hays AP, Schmidt AM: Antagonism of RAGE suppresses peripheral nerve regeneration. Faseb J 2004, 18(15):1812-1817.
    7. Merenmies J, Pihlaskari R, Laitinen J, Wartiovaara J, Rauvala H: 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J Biol Chem 1991, 266(25):16722-16729.
    8. Shen X, Hong L, Sun H, Shi M, Song Y: The expression of high-mobility group protein box 1 correlates with the progression of non-small cell lung cancer. Oncol Rep 2009, 22(3):535-539.
    9. Kusume A, Sasahira T, Luo Y, Isobe M, Nakagawa N, Tatsumoto N, Fujii K, Ohmori H, Kuniyasu H: Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology 2009, 76(4):155-162.
    10. Campana L, Bosurgi L, Rovere-Querini P: HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol 2008, 20(5):518-523.
    11. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA: Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 2008, 28(5):927-938.
    12. Chung KY, Park JJ, Kim YS: The role of high-mobility group box-1 in renal ischemia and reperfusion injury and the effect of ethyl pyruvate. Transplant Proc 2008, 40(7):2136-2138.
    13. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbaurl H, Nawroth PP, Remppis A, Katus HA, Bierhaus A: High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008, 117(25):3216-3226.
    14. Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, Maruyama I: HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol 2007, 16(3):136-143.
    15. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ: HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285(5425):248-251.
    16. Wang H, Zhu S, Zhou R, Li W, Sama AE: Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med 2008, 10:e32.
    17. Chen G, Ward MF, Sama AE, Wang H: Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res 2004, 24(6):329-333.
    18. Zetterstrom CK, Bergman T, Rynnel-Dagoo B, Erlandsson Harris H, Soder O, Andersson U, Boman HG: High mobility group box chromosomal protein 1 (HMGB1) is an antibacterial factor produced by the human adenoid. Pediatr Res 2002, 52(2):148-154.
    19. Zetterstrom CK, Strand ML, Soder O: The high mobility group box chromosomalprotein 1 is expressed in the human and rat testis where it may function as an antibacterial factor. Hum Reprod 2006, 21(11):2801-2809.
    20. Gong W, Li Y, Chao F, Huang G, He F: Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1. J Biomed Sci 2009, 16(1):83.
    21. Baker C, Isenberg I, Goodwin GH, Johns EW: Physical studies of the nonhistone chromosomal proteins HMG-U and HMG-2. Biochemistry 1976, 15(8):1645-1649.
    22. Kawase T, Sato K, Ueda T, Yoshida M: Distinct domains in HMGB1 are involved in specific intramolecular and nucleosomal interactions. Biochemistry 2008, 47(52):13991-13996.
    23. Najima Y, Yahagi N, Takeuchi Y, Matsuzaka T, Sekiya M, Nakagawa Y, Amemiya-Kudo M, Okazaki H, Okazaki S, Tamura Y, Iizuka Y, Ohashi K, Harada K, Gotoda T, Nagai R, Kadowaki T, Ishibashi S, Yamada N, Osuga J, Shimano H: High mobility group protein-B1 interacts with sterol regulatory element-binding proteins to enhance their DNA binding. J Biol Chem 2005, 280(30):27523-27532.
    24. Stros M, Ozaki T, Bacikova A, Kageyama H, Nakagawara A: HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem 2002, 277(9):7157-7164.
    25. Gaillard C, Strauss F: High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops. BMC Mol Biol 2000, 1:1.
    26. Furuita K, Murata S, Jee J, Ichikawa S, Matsuda A, Kojima C: NMR studies of DNA recognition mechanism of HMGB1 protein. Nucleic Acids Symp Ser (Oxf) 2009(53):89-90.
    27. Zhang J, McCauley MJ, Maher LJ, 3rd, Williams MC, Israeloff NE: Mechanism of DNA flexibility enhancement by HMGB proteins. Nucleic Acids Res 2009, 37(4):1107-1114.
    28. Lv B, Wang H, Tang Y, Fan Z, Xiao X, Chen F: High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thromb Haemost 2009, 102(2):352-359.
    29. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M,Rossetti G, Nawroth PP, Bierhaus A, Schwaninger M: The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 2008, 28(46):12023-12031.
    30. Kao YH, Jawan B, Goto S, Hung CT, Lin YC, Nakano T, Hsu LW, Lai CY, Tai MH, Chen CL: High-mobility group box 1 protein activates hepatic stellate cells in vitro. Transplant Proc 2008, 40(8):2704-2705.
    31. Chung HW, Lee SG, Kim H, Hong DJ, Chung JB, Stroncek D, Lim JB: Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med 2009, 7:38.
    32. Lim SC, Choi JE, Kim CH, Duong HQ, Jeong GA, Kang HS, Han SI: Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. Int J Mol Med 2007, 20(2):187-192.
    33. Yan SF, Ramasamy R, Schmidt AM: Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. J Mol Med 2009, 87(3):235-247.
    34. Kokkola R, Andersson A, Mullins G, Ostberg T, Treutiger CJ, Arnold B, Nawroth P, Andersson U, Harris RA, Harris HE: RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 2005, 61(1):1-9.
    35. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H: Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 2002, 62(16):4805-4811.
    36. Buhimschi CS, Baumbusch MA, Dulay AT, Oliver EA, Lee S, Zhao G, Bhandari V, Ehrenkranz RA, Weiner CP, Madri JA, Buhimschi IA: Characterization of RAGE, HMGB1, and S100beta in inflammation-induced preterm birth and fetal tissue injury. Am J Pathol 2009, 175(3):958-975.
    37. Zhu XM, Yao YM, Liang HP, Xu S, Dong N, Yu Y, Sheng ZY: The Effect of High Mobility Group Box-1 Protein on Splenic Dendritic Cell Maturation in Rats. J Interferon Cytokine Res 2009.
    38. Bianchi ME, Manfredi AA: High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007, 220:35-46.
    39. Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, Yang H, Tracey KJ, Billiar TR,Wilson MA: Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol 2007, 178(10):6573-6580.
    40. Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, Billiar TR: HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 2007, 204(12):2913-2923.
    41. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H: HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 2006, 26(2):174-179.
    42. Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira JP, Delaloge S, Andre F, Tursz T, Kroemer G, Zitvogel L: The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007, 220:47-59.
    43. Kaczorowski DJ, Nakao A, Vallabhaneni R, Mollen KP, Sugimoto R, Kohmoto J, Zuckerbraun BS, McCurry KR, Billiar TR: Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation 2009, 87(10):1455-1463.
    44. Liu H, Yao YM, Yu Y, Dong N, Yin HN, Sheng ZY: Role of Janus kinase/signal transducer and activator of transcription pathway in regulation of expression and inflammation-promoting activity of high mobility group box protein 1 in rat peritoneal macrophages. Shock 2007, 27(1):55-60.
    45. Kim JH, Kim SJ, Lee IS, Lee MS, Uematsu S, Akira S, Oh KI: Bacterial endotoxin induces the release of high mobility group box 1 via the IFN-beta signaling pathway. J Immunol 2009, 182(4):2458-2466.
    46. Hui L, Yao Y, Wang S, Yu Y, Dong N, Li H, Sheng Z: Inhibition of Janus kinase 2 and signal transduction and activator of transcription 3 protect against cecal ligation and puncture-induced multiple organ damage and mortality. J Trauma 2009, 66(3):859-865.
    47. Silva E, Arcaroli J, He Q, Svetkauskaite D, Coldren C, Nick JA, Poch K, Park JS, Banerjee A, Abraham E: HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acutelung injury. Intensive Care Med 2007, 33(10):1829-1839.
    48. Porto A, Palumbo R, Pieroni M, Aprigliano G, Chiesa R, Sanvito F, Maseri A, Bianchi ME: Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. Faseb J 2006, 20(14):2565-2566.
    49. Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E, Bianchi ME, Cossu G, Manfredi AA, Brunelli S, Rovere-Querini P: Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 2009, 85(5):779-787.
    50. Takada M, Hirata K, Ajiki T, Suzuki Y, Kuroda Y: Expression of receptor for advanced glycation end products (RAGE) and MMP-9 in human pancreatic cancer cells. Hepatogastroenterology 2004, 51(58):928-930.
    51. He Q, Liang CH, Lippard SJ: Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc Natl Acad Sci U S A 2000, 97(11):5768-5772.
    52. Wang Q, Zeng M, Wang W, Tang J: The HMGB1 acidic tail regulates HMGB1 DNA binding specificity by a unique mechanism. Biochem Biophys Res Commun 2007, 360(1):14-19.
    53. Jain A, Akanchha S, Rajeswari MR: Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein. Biochimie 2005, 87(8):781-790.
    54. Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, Ferrari S, Bianchi ME: The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 1999, 22(3):276-280.
    55. Sundberg E, Fasth AE, Palmblad K, Harris HE, Andersson U: High mobility group box chromosomal protein 1 acts as a proliferation signal for activated T lymphocytes. Immunobiology 2009, 214(4):303-309.
    56. Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B, Moroni F, Chiarugi A: High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem 2007, 103(2):590-603.
    57. Kallijarvi J, Haltia M, Baumann MH: Amphoterin includes a sequence motif which is homologous to the Alzheimer's beta-amyloid peptide (Abeta), forms amyloid fibrils in vitro, and binds avidly to Abeta. Biochemistry 2001, 40(34):10032-10037.
    58. Rouhiainen A, Imai S, Rauvala H, Parkkinen J: Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb Haemost 2000, 84(6):1087-1094.
    59. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A: The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 2002, 3(10):995-1001.
    60. Pelovsky P, Pashev IG, Pasheva E: Interplay between in vitro acetylation and phosphorylation of tailless HMGB1 protein. Biochem Biophys Res Commun 2009, 380(1):138-142.
    61. Scaffidi P, Misteli T, Bianchi ME: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002, 418(6894):191-195.
    62. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME: Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. Embo J 2003, 22(20):5551-5560.
    63. Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ: HMG-1 as a mediator of acute lung inflammation. J Immunol 2000, 165(6):2950-2954.
    64. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ: High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000, 192(4):565-570.
    65. Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, Harris HE, Czura CJ, Wang H, Ulloa L, Wang H, Warren HS, Moldawer LL, Fink MP, Andersson U, Tracey KJ, Yang H: Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med 2003, 9(1-2):37-45.
    66. Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, Susarla SM, Ulloa L, Wang H, DiRaimo R, Czura CJ, Wang H, Roth J, Warren HS, Fink MP, Fenton MJ, Andersson U, Tracey KJ: Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A 2004,101(1):296-301.
    67. Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL, Sauaia A, Silliman CC, Banerjee A, Abraham E: Hmgb1 Is Markedly Elevated within Six Hours of Mechanical Trauma in Humans. Shock 2008.
    68. Dumitriu IE, Bianchi ME, Bacci M, Manfredi AA, Rovere-Querini P: The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol 2007, 81(1):84-91.
    69. Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ: High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 2007, 81(1):59-66.
    70. Wang H, Ward MF, Fan XG, Sama AE, Li W: Potential role of high mobility group box 1 in viral infectious diseases. Viral Immunol 2006, 19(1):3-9.
    71. Unoshima M: [Therapeutic effect of anti-HMGB1 antibody and anti-RAGE antibody on SIRS/sepsis]. Nippon Rinsho 2004, 62(12):2323-2329.
    72. Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, Bianchi ME, Kirschning C, Wagner H, Manfredi AA, Kalden JR, Schett G, Rovere-Querini P, Herrmann M, Voll RE: Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 2008, 205(13):3007-3018.
    73. Pisetsky DS, Erlandsson-Harris H, Andersson U: High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther 2008, 10(3):209.
    74. Pan HF, Wu GC, Li WP, Li XP, Ye DQ: High Mobility Group Box 1: a potential therapeutic target for systemic lupus erythematosus. Mol Biol Rep 2009.
    75. Goldstein RS: High mobility group box-1 protein as a tumor necrosis factor-independent therapeutic target in rheumatoid arthritis. Arthritis Res Ther 2008, 10(3):111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700