Femtocell辅助蜂窝系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信技术的进步使通信速率不断提高,例如,国际电信联盟(ITU)高级国际移动通信(IMT-Advanced)标准的吞吐量已可达吉量级,在稳定、可靠的高数据速率接入网支撑下,丰富的无线多媒体业务飞速发展并得到普遍应用,导致无线数据业务量呈现井喷式增长。由于可用频谱资源有限,当系统通信量需求大大超过其容量时,用户的有效通信速率会因为系统容量的限制而降低。根据统计,目前超过70%的移动数据业务发生在室内环境,并且这一比例还在继续增长。因此,毫微微小区(Femtocell)作为一种提供室内无线宽带覆盖的低功率、微型无线接入技术,被学术界与产业界视为解决移动蜂窝网络所面临的巨大容量压力的有效手段,并引起了广泛的关注
     Femtocell引入到传统移动通信蜂窝系统则构成双层网络系统,为了更加清楚表达两层网络间的关系,本论文称其为Femtocell辅助蜂窝系统。本论文对Femtocell辅助蜂窝系统中的若干关键技术进行了研究。首先,本论文对业界关注的3种Femtocell系统频率资源分配方案(即全局频率复用方案、正交频率划分方案与混合频率复用方案)下的干扰管理、资源管理以及相关的技术进行了一系列的研究;然后,对Femtocell辅助蜂窝系统中的移动性管理进行了研究。本论文研究内容以及创新点如下:
     对Femtocell辅助蜂窝系统中的全局频率复用方案进行了研究,提出了一种基于伪切换的子信道与功率自适应分配策略。相应研究内容主要包括3部分:1)在满足Femtocell中用户通信速率要求的条件下,以最小化Femtocell对临近用户的干扰功率为目标,建立了问题模型;2)基于3GPP LTE-A标准,提出了一种基于伪切换方法的跨层与同层信息交互方案;3)基于内容2)所获取的调度信息,原问题模型可以转化为功率与子信道联合优化分配问题,并提出了一种改进的比例公平与注水功控迭代算法。通过仿真与横向的性能比较,验证了本研究所提出策略能够有效的抑制跨层干扰与同层干扰,降低Femtocell功耗,并提高频谱效率。
     在Femtocell与宏小区间频率资源正交划分方案下(即正交频率划分),对Femtocell网络的最优功率分配、子信道可复用概率以及目标Femtocell用户所复用子信道容量进行了研究,并通过数学方法推导出相应的闭式解。所做研究主要包括3部分内容:1)参考干扰温度模型与3GPP LTE-A标准中相应的网络架构,同时考虑平均干扰限与瞬时干扰限,建立了优化Femtocell用户复用子信道容量的问题模型;2)利用凸优化等数学理论推导出最优子信道功率分配;3)基于研究内容1)与2),在瑞利(Rayleigh)信道下,进一步推导出子信道可复用概率与中断概率的闭式解,以及目标Femtocell用户所复用子信道容量的闭式解。通过数值分析验证了所建立问题模型以及数学推导的正确性。本研究为Femtocell层网络频谱资源的规划以及Femtocell网络的部署提供了理论参考。
     对Femtocell辅助蜂窝系统中的混合频率复用方案进行了研究,提出了一种联合频谱动态分配、分簇与功率控制的算法(JFCPA)。所做研究主要包括3部分内容:1)通过对干扰场景进行定量分析为混合频率复用方案的制定提供了理论依据,并且证明了Femtocell辅助蜂窝系统的下行与上行同频干扰场景之间的对偶关系;2)在研究内容1)的基础上,将宏小区覆盖范围划分为两个区域:Femtocell干扰敏感区域(ISA)与Femtocell干扰非敏感区域(NISA),在区域划分的基础上,将系统频率资源分为3个子频段:全局复用子频段、Femtocell专用子频段与宏小区专用子频段;3)基于聚类分析与图论等理论,提出一种联合Femtocell分簇、频率分配与功率控制的算法,用以实现研究内容2)中的区域与子频段的动态划分,以及Femtocell子信道复用簇的确定与功率的分配。最后,通过仿真验证了本章所提算法在提高频谱效率、抑制跨层与同层干扰以及降低Femtocell功耗等方面的有效性,并且为Femtocell辅助蜂窝系统的实际部署提供了详细的参考数据。另外,本研究为Femtocell辅助蜂窝系统中的干扰管理与资源管理提供了新的研究思路。
     切换是无线资源管理中不可或缺的一部分,因此,针对Femtocell辅助蜂窝系统中的切换时延等问题,设计了一种用户预测切换触发策略。所做研究主要包括4部分内容:1)对Femtocell辅助蜂窝系统中切换场景与传统蜂窝小区中切换场景的不同点进行了分析与总结;2)参考3GPP LTE-A标准,设计了一种基于物理小区标识(PCI)预规划的用户终端切换场景识别策略,使用户终端能够识别可能发生的切换所属的切换场景类型,进而估计切换时延;3)基于研究内容1)的分析,参考3 GPP LTE-A标准框架,设计了一种用户预测切换触发策略,以降低不同切换场景下切换时延对用户感知度带来的影响;4)为了综合评估所提策略的鲁棒性与有效性,基于随机移动模型(Random walk model)与引力模型(Gravity model),设计了事件触发用户移动模型,最后,通过动态系统仿真验证了本章所提策略的有效性。
     论文最后对全文进行了总结,并探讨了后续研究方向。
Mobile communications technology has never hesitated about improving the communication data rate, for example, the throughput of the International Telecommunication Union (ITU) International Mobile Telecommunications Advanced (IMT-Advanced) standard is up to 100 Mbps. With the support of reliably high data rate in radio access networks, a variety of wireless multimedia services has been widely used, which makes the wireless data traffic skyrocket. However, due to the limitation of available frequency spectrum resources, users'effective communication rate decreases when the required capacity exceeds the system capacity constraint. Studies on wireless usage show that more than 70% of mobile data traffic originates indoors, and this proportion is continuing to grow. Therefore, Femtocell, as an effective radio access technology to provide superior indoor coverage with low power, is seen as an effective way to relax the tremendous system capacity pressure faced by mobile cellular networks, and thus attracts significant interests.
     Femtocells deployed in the traditional cellular system generate a type of two-tier network. In order to express the relationship between these two tiers, the kind of two-tier network is named as Femtocell-aided cellular network in this dissertation. This dissertation investigates on some key techniques of Femtocell-aided cellular system. Firstly, in 3 different types of system frequency spectrum allocation for the future deployments of Femtocell networks, i.e., the universal frequency reuse, the frequency partitioning and the hybrid frequency reuse, Interference Management (IM), Resource Management (RM) and other technologies associated with them are studied. Then, Mobiltiy Management (MM) of Femtocell-aided cellular network is studied. The main contributions of this thesis include following aspects:
     In the case of universal frequency reuse strategy, this thesis proposes the Pseudo-Handover (PHO) based subchannel and power adaptation scheme for interference mitigation in Orthogonal Frequency Division Multiplexing Access (OFDMA) Femtocell-aided cellular networks. There are three main parts included in the proposed scheme:1) the problem model is constructed, which aims to minimizing the radiated interference, is formulated on the premise of satisfying the Quality of Service (QoS) of Femtocell users in terms of the data rate; 2) based on the 3GPP LTE-A standard, a PHO based co- and cross-tier scheduling information exchange method is proposed; 3) based on the obtained scheduling information by the way of 2), the problem model in 1) is converted to a joint optimization problem of subchannel and power allocation, and then a modified proportional fairness and water-filling iterative algorithm is proposed to solve the converted problem. Through simulations and comparisons with other schemes, the proposed scheme shows better performance in mitigating the co- and cross-tier interference, reducing Femtocell base station's transmit power, and improving the spectrum efficiency.
     In the case of frequency orthogonal partitioning, the optimal power allocation, the reusable probability of the subchannel and the capacity of the target Femtocell user are studied, and the closed-form solutions of them are mathematically derived. There are three parts in this contribution:1) based on the interference temperature concept in Cognitive Radio (CR), an optimization problem of the reused channel capacity is formulated, jointly considering the average interference constraint and the instantaneous interference constraint; 2) utilizing the theory of the convex optimization, the optimal power allocation is derived; 3) based on results of 2), the closed-form solutions of subchannel reusable probability and the reused channel capacity is derived under Rayleigh channel. Numerical simulations are conducted to confirm our analytical results, which could provide theoretical reference for frequency resources assignment between two tiers and deployment of two-tier Femtocell networks.
     In the case of hybrid frequency reuse, a Joint Frequency bandwidth dynamic division, Clustering and Power control Algorithm (JFCPA) is proposed for OFDMA based Femtocell-aided cellular networks. There are three parts in this contribution:1) through quantitative analysis on the established interference scenario, the dual relationship between the downlink interference scenario and the uplink interference scenario is proved; 2) based on analysis results of 1), the macro cell coverage area is divided into two regions:Femtocell Interference Sensitive Area (ISA) and Not Femtocell Interference Sensitive Area (NISA), and on the basis of the regional division, the system resources are further divided into three sub-bands:the universal reuse sub-band, Femtocell dedicated sub-band and the macrocell dedicated sub-band; 3) utilizing cluster analysis and graph theory, JFCPA is proposed to dynamically determine the division in part 2), Femtocell clusters and power allocation. At last, the system simulation is conducted to demonstrate the effectiveness of the proposed algorithm. Furthermore, statistical results provide reference for actual Femtocell planning.
     MM is an integral part of the radio resource management. Therefore, as for the problem of handover latency in Femtocell-aided cellular networks, a user prediction handover trigger scheme is proposed. There are four parts in this contribution:1) the features of the handover scenario is analyzed and concluded, comparing with the handover scenario of cellular networks; 2) based on pre-planning Physical Cell Identity (PCI), a strategy is designed to make the user terminal autonomously learn the handover scene and its corresponding handover latency; 3) based on 3GPP LTE-A standard, a user prediction handover trigger strategy is designed to reduce the handover latency under different handover scenarios and to improve users' perception; 4) in order to comprehensively assess the robustness and effectiveness of the proposed scheme, an event-driven user mobility model is designed on the basis of the random mobility model and the gravity model. Finally, dynamic system simulation is conducted to demonstrate the effectiveness of the proposed scheme.
     A summary is given at the end, and the future research directions related to this doctoral thesis are also pointed out.
引文
[1]Goldsmith A., "Wireless Communications", Cambridge:Cambridge University Press,2005.
    [2]张宏科,苏伟,“移动互联网技术”,北京:人民邮电出版社,2010.
    [3]董晓霞,吕廷杰,“云计算研究综述及未来发展”,北京邮电大学学报(社会科学版),Vol.12,No.5,2010,pp.76-81.
    [4]Gordon L., Stuber J.R., Steve W. et al., "Broadband MIMO-OFDM Wireless Communications", In Proceedings of the IEEE, Vol.92, Iss.2, Ferb.2004, pp. 271-294.
    [5]Telatar E., "Capacity of multi-antenna Gaussian channels", Internal Tech. Memo, AT&T-Bell Labs, June,1995, pp.287-290.
    [6]Foschini G.J., "Layered space-time architecture for wireless communication in a fading environment when using multiple antennas", Bell Labs Technical Journal, Jan.1996. pp 41-59.
    [7]Wolniansky P.W., Foschini G.J., Golden G.D. and et al., "V-BLAST:A new architecture for realizing very high data rates over rich-scattering wireless channels", In proc. URSI International Symposium on Signals, Systems and Electronics (ISSSE 98),1998, pp.295-300.
    [8]Local and Metropolitan Area Networks—Part 16, Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard IEEE 802.16a.
    [9]Chang R.W., "Synthesis of band-limited orthogonal signals for multichannel data transmission", Bell System Technical Journal, vol.45, Dec.1966, pp. 1775-1796.
    [10]Ait-Idir T. and Saoudi S., "Turbo packet combining strategies for the MIMO-ISI ARQ channel", IEEE Trans. on Comm., Vol.57, Iss.12,2009, pp.3782-3793.
    [11]Valenti M.C. and Woerner B.D., "Iterative channel estimation and decoding of pilot symbol assisted turbo codes over flat-fading channels", IEEE Journal on Selected Areas in Communications, Vol.19, Iss.9,2001, pp.1697-1705.
    [12]Zhong H. and Zhang T., "Block-LDPC:a practical LDPC coding system design approach", IEEE Trans. on Circuits and Systems I:Regular Papers, Vol.52, Iss. 4,2005, pp.766-775.
    [13]Abu-Surra S., Divsalar D. and Ryan W.E., "Enumerators for Photograph-Based Ensembles of LDPC and Generalized LDPC Codes", IEEE Trans. on Information Theory, Vol.57, Iss.2,2011, pp.858-886.
    [14]3GPP TR 36.814, "Further advancements for E-UTRA physical layer aspects" v9.0.0.
    [15]Young W.R., "Advanced Mobile Phone Service:Introduction, Background and Objectives", Bell System Technical Journal, Vol.58, No.1, Jan.1979, pp.15-41.
    [16]Chandrasekhar V, Andrews J. and Gatherer A., "Femtocell Networks:A Survey" IEEE Commun. Mag., Vol.46, Iss.9, Sep.2008, pp.59-67.
    [17]Alouini M.S. and Goldsmith A., "Area Spectral Efficiency of Cellular Mobile Radio Systems", IEEE Trans. Veh. Tech., vol.48, no.4, July 1999, pp. 1047-1066.
    [18]Informa Media and Telecom, "Mobile Broadband Access at Home:The Business Case for Femtocells, UMA and IMS/VCC Dual Mode Solutions", Sept.2008.
    [19]Lee W.C.Y. and Lee D.J.Y., "Microcell prediction in dense urban area", IEEE Trans, on Veh. Tech., Vol.47, Iss.1,1998, pp.246-253.
    [20]Zhang J. and Andrews J., "Distributed antenna systems with randomness". IEEE Trans. on Wireless Comm.,7(9), September 2008, pp.3636-3646.
    [21]Wan C. and Andrews J., "Downlink performance and capacity of distributed antenna systems in a multicell environment". IEEE Trans. on Wireless Comm., 6(1), January 2007, pp.69-73.
    [22]Wu H.Y., Qiao C.M., De S. and et al., "Integrated Cellular and Ad Hoc Relaying Systems:iCAR", IEEE Journal on Selected Areas in Communications,19(10), Oct.2001, pp.2105-2115.
    [23]Pabst R., Walke B.H., Schultz D.C. and et al., "Relay-Based Deployment Concepts for Wireless and Mobile Broadband Radio", IEEE Communications Magazine,42(9), Sep.2004, pp.80-89.
    [24]Zadeh A. N., Jabbari B., Pickholtz R. and et al., "Self-organizing Packet Radio Ad Hoc Networks with Overlay (SOPRANO)," IEEE Communications Magazine,40(6),2002, pp.149-157.
    [25]Boyer J., "Multihop Wireless Communications Channels", [Master Dissertation] in Carleton University, Canada, Aug.2001.
    [26]Wei H.Y., and Richard D.G., "WWAN/WLAN Two-Hop-Relay Architecture for Capacity Enhancement", In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2004), Atlanta, USA, Mar.2004, pp.225-230.
    [27]Zhang J. and Roche G., "Femtocell Technologies and Deployment", West Sussex, UK:John Wiley & Sons,2010.
    [28]3GPP TR 25.820, "3G Home NodeB Study Item Technical Report", v8.2.0.
    [29]3GPP TR 21.905, "Vocabulary for 3GPP Specifications", v9.0.0.
    [30]3GPP TS 22.220. "Service requirements for Home Node B (HNB) and Home eNode B (HeNB)", v9.5.0.
    [31]Kim R.Y., Kwak J.S., Etemad K., "WiMAX Femtocell:Requirements, Challenges, and Solutions", IEEE Communications Magazine, Vol.47, Iss.9, Sept.2009, pp.84-91.
    [32]3GPP TR 36.922. "LTE TDD Home eNodeB RF Requirements", v9.0.0.
    [33]Picochip, "The Case for Home Base Stations", White Paper, Apr.2007.
    [34]Bae H.D., Park N.H., "Impact of Reading System Information in Inbound Handover to LTE Femtocell", In Proceedings of 16th Asia-Pacific Conference on Communications (APCC 2010),2010, pp.476-480.
    [35]Kourtis S. and Tafazolli R., "Evaluation of handover related statistics and the applicability of mobility modeling in their prediction", IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIRMC 2000),2000, pp.665-670.
    [36]ITU-T Recommendation G.114, "One-way transmission time",2003.
    [37]Rappaport T.S., "Wireless Communications--Principles and Practice (2nd edition)", NJ:Prentice Hall,2008.
    [38]3GPP R1-050829, "Coordinated Symbol Repetition to Mitigate Downlink Inter Cell Interference", Panasonic.
    [39]Larsson E.G., "Model-Averaged Interference Rejection Combining", IEEE Trans. on Communications, Vol.55, Iss.2,2007, pp.271-274.
    [40]3GPP R1-050783, "Text Proposal on IDMA for "Inter-cell interference mitigation"in TR 25.81, RITT, ZTE, Huawei.
    [41]3GPP R1-050783, "Text Proposal on IDMA for "Inter-cell interference mitigation" in TR 25.81, RITT, ZTE, Huawei.
    [42]3GPP R1-060415, "Requirements of downlink Inter-cell interference detection/subtraction and TP", RITT, Huawei, CATT.
    [43]3GPP R1-050764, "Inter-cell Interference Handling for E-UTRA", Ericsson, 2005.
    [44]3GPP R1-050405, "Inter-cell interference estimation for OFDMA and MC-CDMA on the DL", France Telecom & Orange.
    [45]Huang Q., Chan S., Ko K.T. and et al., "A QoS Architecture for IDMA-Based Multi-Service Wireless Networks", In proceedings of IEEE International Conference on Communications (ICC 2007),2007, pp.5070-5075.
    [46]Rouijel A., NsiriA B., Faqihi A. and et al., "A new approach for wireless communication systems based on IDMA technique", In proceedings of 5th International Symposium on Ⅰ/Ⅴ Communications and Mobile Network (ISVC 2010),2010, pp.1-4.
    [47]Ding C.S., Yang Y. and Tang X.H., "Optimal Sets of Frequency Hopping Sequences From Linear Cyclic Codes", IEEE Trans. on Information Theory, Vol.56, Iss.7,2010, pp.3605-3612.
    [48]Li Tongtong, Ling Qi and Ren Jian, "A Spectrally Efficient Frequency Hopping System", In proceedings of Global Telecommunications Conference (GLOBECOM 2007),2007, pp.2997-3001.
    [49]3GPP R1-050841. "Further Analysis of Soft Frequency Reuse Scheme", Huawei Technologies Co. Ltd.
    [50]3GPP R1-050738, "Interference mitigation-Considerations and Results on Frequency Reuse", Siemens.
    [51]Chang R.Y., Tao Zhifeng, Zhang Jinyun and et al., "A Graph Approach to Dynamic Fractional Frequency Reuse (FFR) in Multi-Cell OFDMA Networks" In proceedings of IEEE International Conference on Communications, (ICC 2009), pp.1-6.
    [52]Assaad M., "Optimal Fractional Frequency Reuse (FFR) in Multicellular OFDMA System", In proceedings of IEEE 68th Vehicular Technology Conference, (VTC 2008-Fall). pp.1-5.
    [53]3GPP R1-050833, "Interference mitigation in evolved UTRA/UTRAN", LG Electronics
    [54]3GPP R1-051059, "Inter-Cell Interference Mitigation for EUTRA", Texas Instruments.
    [55]3GPP R1-050407, "Interference Coordination in new OFDM DL air interface", Alcatel.
    [56]3GPP R1-060179, "Inter-cell Interference Mitigation on E-UTRA Downlink", Qualcomm.
    [57]3GPP R1-050896. "Description and simulations of interference management technique for OFDMA based E-UTRA downlink evaluation". Qualcomm Incorporated.
    [58]Chiang M., "Power control in wireless cellular networks", MA:Now Publishers, 2008.
    [59]http://ieeexplore.ieee.org/Xplore.
    [60]Park Sungsoo, Seo Woohyun, Kim Youngju and et al., "Beam Subset Selection Strategy for Interference Reduction in Two-Tier Femtocell Networks", IEEE Trans. on Wireless Communications, Vol.9, Iss.11,2010, pp.3440-3449.
    [61]Claussen H. and Pivit E, "Femtocell Coverage Optimization using Switched Multi-element antennas", In proceedings of IEEE International Conference on Communications (ICC 2009),2009, pp.1-6.
    [62]Chandrasekhar V. and Andrews J., "Uplink capacity and interference avoidance for two-tier cellular networks", in proceedings of of IEEE Global Telecommunications Conference (Globlecom 2007),2007, pp.3322-3326, Nov. 26-30.
    [63]Chandrasekhar V. and Andrews G., "Uplink Capacity and Interference Avoidance for Two-Tier Femtocell Networks", IEEE Trans. Wireless Commun., Vol.8, Iss.7, July 2009, pp.3498-3509.
    [64]Bharucha Z. and Haas H., "Application of the TDD Underlay Concept to Home NodeB Scenario", In proceedings of IEEE Vehicular Technology Conference, (VTC-Spring 2008),2008, pp.56-60.
    [65]Chu X.L., Wu Y.H., Benmesbah L and et al. "Resource Allocation in Hybrid Macro/Femto Networks", In Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW 2010):Apr.2010, Sydney, Australia, pp.1-5.
    [66]Jo H. S., Mun C., Moon J. and et al., "Interference mitigation using uplink power control for two-tier Femtocell networks", IEEE Trans. on Wireless Communications,8(10), Oct.2009, pp.4906-4910.
    [67]Chandrasekhar V., Andrews J. G., "Power Control in Two-Tier Femtocell Networks", IEEE Trans. on Wireless Comm., Vol.8, No.8, Aug.2009. pp. 4316-4328.
    [68]Douros V.G. and Polyzos G.C., "Utility-based power control for interference mitigation in a mixed femtocell-macrocell environment", In Proceedings of 26th Wireless World Research Forum (WWRF26), Doha, Qatar, Apr.2011, to be published.
    [69]Choi B.G., Cho E.S., Chung M.Y. and et al., "A femtocell power control scheme to mitigate interference using listening TDD frame", In Proceedings of International Conference on Information Networking (ICOIN 2011),26-28 Jan. 2011, pp.241-244.
    [70]Guruacharya S., Niyato D., Hossain E. and et al., "Hierarchical Competition in Femtocell-Based Cellular Networks", In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM 2010),2010, pp.1-5.
    [71]Lopez-Perez D., Roche G. and et al. "Interference Avoidance and Dynamic Frequency Planning for WiMax Femtocells Networks", In proceedings of 11th IEEE International Conference on Communication Systems (ICCS 2008), Singapore, June 2008, pp.1579-1584.
    [72]Han K., Choi Y., Kim D. and et al., "Optimization of Femtocell Network Configuration under Interference Constraints", In proceedings of 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WIOPT 2009),2009, pp.1-5.
    [73]Ramaswamy V., Das D., "Multi-Carrier Macrocell Femtocell Deployment—A Reverse Link Capacity Analysis", In proceedings of IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall),2009, pp.1-6.
    [74]Zhang Y., "Resource Sharing of Completely Closed Access in Femtocell Networks", In proceedings of IEEE Wireless Communications and Networking Conference (WCNC 2010),2010, pp.1-5.
    [75]WiMAX Forum MTG, "WiMAX ForumTM Mobile WiMAX-Part I:A Technical Overview and Performance Evaluation", WiMAX Forum,21st Feb.2006
    [76]Lee H.C., Oh D.C., Lee Y.H., "Mitigation of Inter-Femtocell Interference with Adaptive Fractional Frequency Reuse". In proceedings of IEEE International Conference on Communications (ICC 2010),2010. pp.1-5.
    [77]Lee J.Y., Bae S.J., Kwon Y. M. and et al., "Interference Analysis for Femtocell Deployment in OFDMA Systems Based on Fractional Frequency Reuse" IEEE Communications Letters, Vol.15, Iss.4, Apr.2011, pp.425-427.
    [78]Ashraf I., Claussen H., Ho L.T.W., "Distributed Radio Coverage Optimization in Enterprise Femtocell Networks", In proceedings of IEEE International Conference on Communications (ICC 2010), pp.1-6.
    [79]Kim J.Y., Cho D.H., "A joint power and subchannel allocation scheme maximizing system capacity in dense femtocell downlink systems", In proceedings of IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, (PIRMC 2009),2009, pp.1381-1385.
    [80]Lee K. S., Jo O., Cho D. H., "Cooperative Resource Allocation for Guaranteeing Intercell Fairness in Femtocell Networks", IEEE Commun. Letters, Vol.15, No. 2, Feb.2011, pp.214-216.
    [81]Chandrasekhar V. and Andrews J.G., "Spectrum allocation in two-tier networks" In proceedings of 42nd Asilomar Conference on Signals, Systems and Computers, Oct.2008, pp.1583-1587.
    [82]Guvenc I., Jeong M.R., Watanabe F., "A Hybrid Frequency Assignment for Femtocells and Coverage Area Analysis for Co-Channel Operation", IEEE Commun. Letters, Vol.12, Iss.12, Dec.2008, pp.880-882.
    [83]Chowdhury M.Z., Ryu W., Rhee E. and et al., "Handover between macrocell and femtocell for UMTS based networks", In proceedings of 11th International Conference on Advanced Communication Technology, (ICACT 2009),2009, Vol.1, pp.237-241.
    [84]Zhang H.J., Wen X.M., Wang B. and et al., "Novel Handover Mechanism Between Femtocell and Macrocell for LTE Based Networks", In proceedings of Second International Conference on Communication Software and Networks (ICCSN 2010),2010, pp.228-231.
    [85]Fan Z., Sun Y., "Access and Handover Management for Femtocell Systems", In proceedings of IEEE 71st Vehicular Technology Conference (VTC 2010-Spring),2010, pp.1-5.
    [86]Kim J.S. and Lee T.J., "Handover in UMTS networks with hybrid access femtocells", In Proc.12th International Conference on Advanced Communication Technology (ICACT 2010), Feb.2010, pp.904-908.
    [87]Wu Shaohong, Zhang Xin and et al., "Handover Study Concerning Mobility in the Two-hierarchy Network", In proceedings of IEEE 71st Vehicular Technology Conference (VTC-Spring 2009),2009, pp.1-5.
    [88]Claussen H., Ho L. T. W. and Samuel L.G., "Self-optimization of coverage for Femtocell deployments", Wireless Telecomunications Symposium, WTS 2008, Apr.2008, pp.278-285.
    [89]Moon J.M. and Cho D.H., "Efficient Handoff Algorithm for Inbound Mobility in Hierarchical Macro/Femto Cell Networks", IEEE Comm. Lett., Vol.13, No.10, Jan.2009, pp.755-757.
    [90]Yeung K. L. and Nanda S., "Channel management in microcell/macrocell cellular radio systems". IEEE Trans. on Veh. Tech.,45(4), Nov.1996, pp.601-612.
    [91]Lee H. Y. and Lin Y. B., "A Cache Scheme for Femtocell Reselection", IEEE Commun. Letters, Vol.14, No.1, Jan.2010, pp.27-29.
    [92]Wang L., Zhang Y. and Wei Z., "Mobility Management Schemes at Radio Network Layer for LTE Femtocells," In Proc. of IEEE 69th Vehicular Technology Conference (VTC-Spring 2009), Apr.2009, pp.1-5.
    [93]Golaup A., Mustapha M., Patanapongpibul L.B., "Femtocell access control strategy in UMTS and LTE", IEEE Communications Magazine, Vol.47, Iss.9, 2009, pp.117-123.
    [94]Bae H.D., Park N.H., "Impact of Reading System Information in Inbound Handover to LTE Femtocell", In Proc. of 16th Asia-Pacific Conference on Communications (APCC 2010),2010, pp.476-480.
    [95]徐霞艳,"3GPP 3G家庭基站标准化进展”,电信科学,2009(4),pp.1-5.
    [96]Knisely N.D., Yoshizawa T., Fevichia F., "Standardization of Femtocells in 3GPP", IEEE Communications Magazine,2009(9), pp.68-75.
    [97]Airvana, ABI Research, Picochip.2nd International Conference on Home Access Points and Femtocells, December 2007. [Online] Available at http://www.avrenevents.com/dallasfemto2007.
    [98]3GPP TS 25.434, "UTRAN Iub Interface Data Transport and Transport Signalling for Common Transport Channel Data Streams", V9.0.0.
    [99]3GPP TS 43.318, "Generic Access Network (GAN) Stage 2", v9.0.0.
    [100]TR-069 CPE WAN Management Protocol vl.1. Dec.2007.
    [101]3GPP TS 36.412, "S1 signaling transport", v9.1.0.
    [102]3GPP TS 36.420 "X2 general aspects and principles", v9.0.0.
    [103]3GPP TR 36.921, "LTE FDD Home eNodeB RF Requirements", v9.0.0.
    [104]李宏佳,张平,许晓东等,"3GPP LTE中Femtocell数据信道干扰管理策略’邮电设计技术,Vol.7 2010,pp.1-5.
    [105]3GPP R2-110938, "Definition of ABS, Almost Blank Subframe", Ericsson, ST-Ericsson,2011.
    [106]3GPP RP-110420, "New WI proposal:Further Enhanced Non CA-based ICIC for LTE", Qualcomm Incorporated & others.
    [107]3GPP RP-110438, "HetNet mobility improvements for LTE", Nokia Siemens Networks, Nokia Corporation, Alcatel-Lucent.
    [108]3GPP RP-110456, "Further Enhancements for HNB and HeNB", Alcatel-Lucent.
    [109]3GPP RP-110437, "Carrier based HetNet ICIC for LTE", Nokia Siemens Networks, Nokia Corporation
    [110]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "Pseudo-Handover Based Power and Subchannel Adaptation Scheme for OFDMA Two-tier Femtocell Networks", In proc. of IEEE Wireless Communications and Networking Conference (WCNC 2011),2011, pp.1797-1802.
    [111]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "Pseudo-Handover Based Interference Mitigation in OFDMA Femtocell-Aided Cellular Networks", Journal of China Universities of Posts and Communications, to be published in Vol.20(3),2011,11 pages.
    [112]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "A Novel Analysis of Capacity, Optimal Power and Sub-channel Adaptation for Femtocell Networks", In proc. of IEEE 3rd IEEE International Conference on Broadband Network & Multimedia Technology(IC-BNMT 2010),2010, pp.258-262.
    [113]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "A Novel Capacity Analysis of Two-tier Femtocell Networks with Optimal Power Adaptation and Sub-channel Allocation", Chinese Journal of Electronics, under review.
    [114]Boyd S. and Vandenberghe L., "Convex Optimization", UK:Cambridge University Press,2004.
    [115]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "Clustering Strategy based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System. Journal of Communications and Networks", to be published.
    [116]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "Graph Method based Clustering Strategy for Femtocell Interference Management and Spectrum Efficiency Improvement", In proc. of IEEE 6th International Conference on Wireless Communications Networking and Mobile Computing,2010, pp.1-5.
    [117]张平,李宏佳等,一种毫微微蜂窝的下行干扰抑制与资源分配方法,中国专利,公开号:CN102006599A.
    [118]Hu Dan, Li Hongjia, Zhang Ping, et al., "3D In-building Interference Analysis and Interference Coordination in Two-tier Femtocell Networks", Submitted to VTC 2012-fall.
    [119]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "Handover Prediction Trigger Scheme for Two-tier Femtocell Networks", Journal of China Universities of Posts and Communications, under review.
    [1]Li Hongjia, Xu Xiaodong, Zhang Ping, et al., "Pseudo-Handover Based Power and Subchannel Adaptation Scheme for OFDMA Two-tier Femtocell Networks", IEEE WCNC 2011.
    [2]3GPP TS 22.220, "Service requirements for Home Node B (HNB) and Home eNode B (HeNB)", v 10.3.0.
    [3]Simeone C., Erkip E., Shamai S.S., "Robust Transmission and Interference Management For Femtocells with Unreliable Network Access", IEEE Journal on Selected Areas in Communications,2010,28(9), pp.1469-1478.
    [4]Gora J., Pedersen K. I., Szufarska A. and et al., "Cell-Specific Uplink Power Control for Heterogeneous Networks in LTE", In proc. of IEEE 71st Vehicular Technology Conference (VTC 2010-fall), Sept.2010, pp.1-5.
    [5]Kim J. and Cho D.H., "A Joint Power and Subchannel Allocation Scheme Maximizing System Capacity in Indoor Dense Mobile Communication Systems" IEEE Trans. on Vehicular Technology,2010,59(9), pp.4340-4353.
    [6]3GPP TR 36.922, "LTE TDD Home eNodeB RF Requirements", v1.3.0.
    [7]3GPP TR 36.921, "Home eNodeB (HeNB) Radio Frequency (RF) requirements analysis", v2.0.0.
    [8]3GPP TS 36.420 "X2 general aspects and principles", v9.0.0.
    [9]3GPP TS 25.913, "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)", v9.0.0.
    [10]3GPP TS 36.412, "S1 signaling transport", v9.1.0.
    [11]Available at http://www.radisys.com/.
    [12]3GPP TS 36.201. "Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer-General Description", v8.2.0.
    [13]Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE Std.802.16e-2005, Feb.2006.
    [14]Garey M., Johnson D., "Computers and Intractability:A Guide to the Theory of NP-Completeness". San Francisco, CA:Freeman,1979.
    [15]焦李成,“多目标优化免疫算法、理论和应用”,北京:科学出版社,2010.
    [16]Golaup A., Mustapha M., et al, "Femtocell access control strategy in UMTS and LTE", IEEE Communication Magazine,2009,47(9), pp.117-123.
    [17]Boyd S. and Vandenberghe L., "Convex Optimization", Cambridge, UK: Cambridge University Press,2004.
    [18]3GPP TR 36.814, "Further advancements for E-UTRA physical layer aspects", v9.0.0.
    [19]R4-092042, "Simulation assumption and parameters for FDD HeNB RF requirements", Alcatel-Lucent, picoChip Designs and Vodafone,2009.
    [20]Baum D.S., Hansen J., et al., "An interim channel model for beyond-3G system: Extending the 3GPP spatial channel model (SCM)", In proc. of IEEE Vehicular Technology Conference, (VTC 2005), pp.3132-3136.
    [21]Chu X.L., Wu Y.H., Benmesbah L., et al., "Resource Allocation in Hybrid Macro/Femto Networks", IEEE Wireless Communications and Networks Conference (WCNC 2010), International Workshop on Planning and Optimization of Wireless Communication Networks, Sydney, Australia, Apr. 2010, pp.1-5.
    [22]Chu X.L., Wu Y.H., Wang H., "Outage probability analysis for collocated spectrum-sharing macrocell and femtocells," In proc. IEEE ICC'11, Kyoto, Japan, Jun 2011, pp.5-9.
    [1]沈嘉,索世强,全海洋等,“3GPP长期演进(LTE)技术原理与系统设计”,北京:人民邮电出版社,2008.
    [2]3GPP TR 36.921, "LTE FDD Home eNodeB RF Requirements", v9.0.0.
    [3]Lee H.C., Oh D.C., Lee Y.H., "Mitigation of Inter-Femtocell Interference with Adaptive Fractional Frequency Reuse". In proc. of IEEE International Conference on Communications (ICC 2010),2010. pp.1-5.
    [4]WiMAX Forum MTG, "WiMAX ForumTM Mobile WiMAX-Part I:A Technical Overview and Performance Evaluation", WiMAX Forum,21 Feb.2006
    [5]Ashraf I., Claussen H., Ho L.T.W., "Distributed Radio Coverage Optimization in Enterprise Femtocell Networks", In proc. of IEEE International Conference on Communications (ICC 2010),2010, pp.1-6.
    [6]Lee K. S., Jo O., Cho D. H., "Cooperative Resource Allocation for Guaranteeing Intercell Fairness in Femtocell Networks", IEEE Commun. Letters, Vol.15, No. 2, Feb.2011, pp.214-216.
    [7]Lee J.Y., Bae S.J., Kwon Y.M., et al., "Interference Analysis for Femtocell Deployment in OFDMA Systems Based on Fractional Frequency Reuse", IEEE Communications Letters, Vol.15, Iss.4, Apr.2011, pp.425-427.
    [8]Haykin S. "Cognitive radio:brain-empowered wireless communications", IEEE Journal on Selected Aera of Communications,2005.3,23(2):201-220.
    [9]Mishra S.M., Sahai A., Brodersen R.W., "Cooperative sensing among cognitive radios communications", IEEE International Conference,2006, Istanbul, Turkey, 1658-1663.
    [10]张平,冯志勇,“认知无线网络”,科学出版社,北京:科学出版社,2010.
    [11]FCC, ET Docket 03-237-2003, "Notice of inquiry and notice of proposed rule making",2003.
    [12]Huang S., Liu X., Ding Z., "Opportunistic Spectrum Access in Cognitive Radio Networks", In proc. of 30th IEEE International Conference on Computer Communications (IEEE INFOCOM 2011).2008, pp.2101-2109.
    [13]IEEE 802.22 Working Group, "http://grouper.ieee.org/groups/802/22/".
    [14]Mitola J., "Cognitive Radio:An Integrated Agent Architecture for Software Defined Radio", Ph.D thesis, Royal Institute of Technology (KTH),2000.
    [15]Mitola J., "Cognitive radio for flexible mobile multimedia communications," IEEE Mobile Multimedia Conference, pp.3-10,1999.
    [16]Haykin S., "Cognitive Radio:Brain-Empowered Wireless Communications", IEEE Journal on Selected Areas in Communications,2005,23 (2), pp.201-220.
    [17]Zhang R., Cui S.G., Liang Y.C., "On Ergodic Sum Capacity of Fading Cognitive Multiple-Access and Broadcast Channels", IEEE TRANS Info. Theory,55(11), Nov.2009, pp.5161-5178.
    [18]Kang X., Liang Y.C., Nallanathan A., "Optimal Power Allocation for Fading Channels in Cognitive Radio Networks:Delay-Limited Capacity and Outage Capacity", In Proc. of IEEE Vehicular Technology Conference (VTC-Spring 2008),2008. pp.1544-1548.
    [19]Musavian L., Aissa S., "Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information", IEEE TRANS. Comm.,57(11), Nov.2009, pp.3472-3480.
    [20]Musavian L., Aissa S., "Effective Capacity for Interference and Delay Constrained Cognitive Radio Relay Channels", IEEE Trans. on Wireless Commun., Vol.9, No.5, May 2010, pp.1698-1707.
    [21]Musavian L., Aissa S., "Capacity and Power Allocation for Spectrum-Sharing Communications in Fading Channels", IEEE Trans. on Wireless Commun., Vol. 8, No.1, Jan.2009. pp.148-156.
    [22]Jafar S.A., Srinivasa S., "Capacity limits of cognitive radio with distributed and dynamic spectral activity", IEEE Journal on Selected Areas in Communications, Vol.25, Iss.3,2007, pp.529-537.
    [23]Hanif M.F., Smith P.J., "On the statistics of cognitive radio capacity in shadowing and fast fading environments", IEEE Trans. on Wireless Communications, Vol.9, Iss.2,2010, pp.844-852.
    [24]Wang H., Lee J., Kim S., et al., "Capacity Enhancement of Secondary Links through Spatial Diversity in Spectrum Sharing", IEEE Trans. on Wireless Commun., Vol.9, No.2, Feb.2010, pp.494-499.
    [25]李红岩,贺志强,牛凯等,“感知无线电网络中最优的分布式功率分配”,北京邮电大学学报,Oct.2008,pp.112-116.
    [26]3GPP RP-110456, "Further enhancements for HNB and HeNB", Alcatel-Lucent.
    [27]Boyd S. and Vandenberghe L., "Convex Optimization", Cambridge, UK: Cambridge University Press,2004.
    [28]Goldsmith A., Varaiya P.P., "Capacity of fading channels with channel side information", IEEE TRANS. Info. Theory, vol.43, no.6, pp.1986-1992, Nov. 1997.
    [29]Goldsmith A.著,杨鸿文,李卫东,郭文彬等译,“无线通信”,北京:人民邮电出版社,2007.
    [30]Dautray R., "Mathematical Analysis and Numerical Methods for Science and Technology", New York, US:Springer press,1984.
    [31]袁东锦,“计算方法:数值分析”,南京:南京师范大学出版社,2007.
    [1]高新波,“模糊聚类分析及其应用”,西安:西安电子科技大学出版社,2004.
    [2]Hoppner F. and et al., "Fuzzy cluster analysis:methods for classification, data analysis, and image recognition", New York:John Wiley,1999.
    [3]Backer E., "Computer-assisted reasoning in cluster analysis", New York:Prentice Hall,1995.
    [4]3GPP TR 36.814, "Further Advancements for E-UTRA Physical Layer Aspects", v9.0.0.
    [5]3GPP TS 22.220, "Service requirements for Home Node B (HNB) and Home eNode B (HeNB)", v 10.3.0.
    [6]DSL Forum TR-069, "CPE WAN Management Protocol"
    [7]Kim S., Yoo M., Shin Y., "A weighted combining wireless location algorithm for mobile-WiMax femto-cell environment", IEICE Trans. Commun., Vol. E93-B, No.3, Mar.2010, pp.749-752.
    [8]Kaneko M., Yomo H. and et al., "Adaptive Provision of CSI Feedback in OFDMA Systems", In proc. of IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, (PIRMC 2006),2006, pp.1-5.
    [9]Chandrasekhar V., Andrews J.G., "Uplink Capacity and Interference Avoidance for Two-Tier Femtocell Networks", IEEE Trans. Wireless Commun., Vol.8, Issue 7, July 2009, pp.3498-3509.
    [10]Rappaport T.S., "Wireless Communications-Principles and Practice, (2nd edition)", NJ:Prentice Hall,2008.
    [11]Chandrasekhar V., Andrews J., Gatherer A., "Femtocell Networks:A Survey", IEEE Commun. Mag., Vol.46, Iss.9, Sep.2008, pp.59-67.
    [12]Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems, IEEE Std.802.16e-2005, Feb.2006.
    [13]Sahni S., Gonzalez T., "P-Complete Approximation Problems", Journal of the ACM, Vol.23, Issue 3,1976, pp.555-565.
    [14]Fernandez W., Karpinski M., Kenyon C., "Approximation Schemes for Clustering Problems", In proc. of the thirty-fifth annual ACM symposium on Theory of computing, Jun.2003, pp.50-58.
    [15]Chang R.Y., Tao Z.F., Zhang J.Y., et al., "Multicell OFDMA Downlink Resource Allocation Using a Graphic Framework", IEEE Trans. on Veh. Technol., Vol. 58, Iss.7, Sept.2009, pp.3494-3507.
    [16]Gibbons A., "Algorithmic Graph Theory", Melbourne Sydney:Cambridge University Press,1994.
    [17]Bambos N., Pottie G. J., "Power control based admission policies in cellular radio networks", in proc. of IEEE Global Telecommunications Conference (Globecom 1992), Dec.1992, pp.863-867.
    [18]Chen S. C., Bambos N., Pottie G. J., "Admission control schemes for wireless communication networks with adjustable transmitter powers", in proc. of 13th IEEE Networking for Global Communications (INFOCOM 1994), pp.21-28.
    [19]Bambos N., Chen S.C., Pottie G.J., "Radio link admission algorithms for wireless networks with power control and active link quality protection", in proc. of IEEE Networking for Global Communications, (INFOCOM 1995),1995, pp.97-104.
    [20]Bambos N., "Toward power-sensitive network architectures in wireless communications:concepts issues, and design aspects", IEEE Personal Commun., Vol.5, Iss.3, June 1998, pp.50-59.
    [21]Zander J., "Performance of Optimum Transmitter Power Control in Cellular Radio Systems", IEEE Trans. Veh. Technol., Vol.41, Iss.1, Feb.1992, pp. 57-62.
    [22]Proakis G.J., "Digital Communications", US:Mc-Graw-Hill Companies, Inc, 2004.
    [23]Gantmacher F.R., "The Theory of Matrices". New York:Chelsea,1974, vol.2, ch. ⅩⅢ.
    [24]Varga R.S., "Matrix Iterative Analysis", Englewood Cliffs, NJ:Prentice-Hall, 1962.
    [25]3GPP TR 25.967, "Home Node B Radio Frequency (RF) Requirements (FDD)", v9.0.0.
    [26]孙慧泉,“图论及其应用”,北京:科学出版社,2006.
    [27]R2-110938, "Definition of ABS, Almost Blank Subframe", Ericsson, ST-Ericsson, 2011.
    [28]Li Hongjia, Xu Xiaodong, Hu Dan, Tao Xiaofeng, Zhang Ping, "Clustering Strategy based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System", Journal of Communications and Networks, to be published.
    [29]Li Hongjia, Xu Xiaodong, Hu Dan, Tao Xiaofeng, Zhang Ping, "Graph Method based Clustering Strategy for Femtocell Interference Management and Spectrum Efficiency Improvement", IEEE 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM 2010), pp.1-5.
    [30]张平,李宏佳,“宏小区与毫微微小区的混合组网中的干扰抑制方法”,中国专利, CN102006599A.
    [1]Rappaport T.S., "Wireless Communications---Principles and Practice, (2nd edition)", NJ:Prentice Hall,2008.
    [2]王莹,张平,“无线资源管理”,北京:北京邮电大学出版社,2005.
    [3]Holma H., Toskala A., et al., "WCDMA for UMTS (3rd edition)", John Wiley & Sons.
    [4]3GPP TS 36.331, "E-UTRA RRC Protocol Specification", v9.3.0,2010.
    [5]Golaup A., Mustapha M., Patanapongpibul L.B., "Femtocell access control strategy in UMTS and LTE", IEEE Communications Magazine, Vol.47, Iss.9, 2009, pp.117-123.
    [6]Kim R.Y., Jung I. and et al., "Advanced handover schemes in IMT-advanced systems", IEEE Communications Magazine, Vol.48, Iss.8,2010, pp.78-85.
    [7]Kourtis S., Tafazolli R., "Evaluation of handover related statistics and the applicability of mobility modeling in their prediction", In proc. of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, (PIRMC 2000),2000, pp 665-670.
    [8]Narayanan U., Xie J., "Signaling Cost Analysis of Handoffs in a Mixed Ipv4/Ipv6 Mobile Environment", IEEE Global Telecommunications Conference (GLOBECOM'07),2007, pp.1792-1796.
    [9]Yoo S.J., Cypher D., Golmie N., "Predictive handover mechanism based on required time estimation in heterogeneous wireless networks", In proc. of IEEE Military Communications Conference (MILCOM 2008),2008, pp.1-7.
    [10]ITU-T Recommendation G.114, "One-way transmission time",2003.
    [11]3GPP TR 36.913, "Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA)", V10.0.0, Mar.2011.
    [12]Chandrasekhar V., Andrews J., Gatherer A., "Femtocell Networks:A Survey", IEEE Commun. Mag., Vol.46, Issue 9, Sep.2008, pp.59-67.
    [13]Hsieh R., Zhou Z.G., Seneviratne A., "S-MIP:A Seamless Handoff Architecture for Mobile IP",22nd IEEE Societies Annual Joint Conference of the IEEE Computer and Communications (INFOCOM 2003), Vol.3, pp.1774-1784.
    [14]Dommety G. et al., "Fast Handovers for Mobile IPv6", Internet Draft, IETF, March 2002.
    [15]Soliman H., Castelluccia C., Malki K., et al., "Hierarchical MIPv6 Mobility Management," Internet Draft, IETF, July 2002.
    [16]Akyildiz I. F., Wang W. "The predictive user mobility profile framework for wireless multimedia networks", IEEE/ACM Trans. on Networking,12(6), pp. 1021-1035.
    [17]Zonoozi M.M., Dassanayake P., "User Mobility Modeling and Characterization of Mobility Patterns", IEEE Jour. Sel. Areas in Comm., Vol.15, No.7, Sept.1997, pp.1239-1252.
    [18]Michaelis S., Wietfeld C., et al., "Comparison of User Mobility Pattern Prediction Algorithms to increase Handover Trigger Accuracy", In proc. of IEEE 63rd Vehicular Technology Conference (VTC 2006-Spring),2006. Vol.2, Melbourne, pp.952-956.
    [19]张贤达,“现代信号处理(第二版)”,北京:清华大学出版社,2004.
    [20]Box P., Jenkins M., Reinsel C.G.著,顾兰译,“时间序列分析预测与控制”,北京:中国统计出版社,1997.
    [21]邓自立,“卡尔曼滤波与维纳滤波——现代时间序列分析方法”,哈尔滨:哈尔滨工业大学出版社,2001.
    [22]Hu N., Steenkiste P., "Evaluation and characterization of available bandwidth probing techniques", IEEE Journal of Selected Area in Communications,21(6), pp.879-894.
    [23]Available at http://www.radisys.com/.
    [24]Lee Poongup, Jeong Jangkeun, Saxena Navrati, et al., "Dynamic Reservation Scheme of Physical Cell Identity for 3GPP LTE Femtocell Systems", Journal of Information Processing Systems, Vol.5, No.4, Dec.2009, pp.207-220.
    [25]Itoh K.I., Watanabe S., et al., "Performance of Handoff Algorithm Based on Distance and RSSI Measurements", IEEE Trans. Veh. Tech., Vol.51, No.6, Nov. 2002, pp.1460-1468.
    [26]Halgamuge M., Vu H. L., Rarnamohanarao K., et al., "Signal-based evaluation of handoff algorithms", IEEE Comm. Lett., vol.9, no.9, Sept.2005, pp.790-792.
    [27]3GPP TR 36.814. "Further advancements for E-UTRA physical layer aspects" v9.0.0.
    [28]Park J., Lim Y, "A Handover Prediction Model and its Application to Link Layer Triggers for Fast Handover", Vol.52, No.3, Nov.2008, pp.501-516.
    [29]Kwak H., Lee P., Kim Y., "Mobility Management Survey for Home-eNB Based 3GPP LTE Systems, Journal of Information Processing Systems", Vol.4, No.4, Dec.2008. pp.145-152.
    [30]Racz A., Temesvary A., Reider N., "Handover Performance in 3GPP Long Term Evolution (LTE) Systems", In proc. of 16th 1ST Mobile and Wireless Communications Summit,2007, pp.1-5.
    [31]Markoulidakis J.G. and Lyberopoulos L.G., Tsirkas F.D., et al., "Mobility modeling in third-generation mobile telecommunication systems", IEEE personal Commum., Vol.4, Iss.4,1997, pp.41-56.
    [32]Anas M., Calabrese F.D., Ostling P.E., et al., "Performance Analysis of Handover Measurements and Layer 3 Filtering For UTRAN LTE", In proc. of IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2007),2007, pp.1-5.
    [33]3GPP R4-092042, "Simulation assumption and parameters for FDD HeNB RF requirements", Alcatel-Lucent, picoChip Designs and Vodafone,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700