基于混沌振子的微弱光电信号检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在红外物理领域,发射率是材料重要的红外辐射特性参数,它的有效测量在工农业和国防领域有着重要的意义。然而物理上的普朗克定律因数学欠定问题无法从辐射信号中分离出目标的发射率和真温。近年来发展起来的多光谱法是一种有效的解决方法,但是需要对辐射光电信号按波长进行分光,波长数越多多光谱处理结果精度越高,但每个工作波段内的辐射能量就变得非常微弱,这些信号淹没在强噪声背景下,传统的光电信号检测方法已不能满足此项技术的需要,因此必须研究强噪声背景下微弱光电信号检测技术。此外,我国目前正在研制高光谱卫星,波长需分辨到纳米级,也需要研究更高精度的微弱光电信号检测技术。
     在这些高精度的微弱光电信号检测系统中,为了减小零点漂移对恒定微弱光电信号的影响,首先通过调制盘将光电信号调制成周期信号,从而在传感器上接收到含噪声的微弱周期信号,以进一步实现检测。
     研究表明,混沌理论对任何零均值噪声均具有极强的“免疫力”,而对微弱的周期信号却很敏感,因此可以很好地解决目前微弱光电信号检测存在的问题。
     首先分析了典型混沌系统的数学模型及动态特性,深入研究了微弱光电信号幅值和频率对典型混沌系统动态特性的影响,利用典型混沌系统对信号幅值和频率的敏感性及系统相变情况,确立了微弱光电信号检测系统中的最优混沌模型。
     在最优混沌模型的基础上,进一步对最优混沌模型动态特性进行分析,提出将李亚普诺夫指数法引入到最优混沌模型中,从定量的角度计算混沌系统的阈值,并应用周期系数微分方程理论和小数据量法进行微弱光电信号幅值的检测,从而确立了微弱光电信号检测系统中最优混沌模型可检测的最低信噪比。
     为了检测微弱光电信号的未知频率,提出了基于比例微分控制策略的R(o|¨)ssler混沌系统检测微弱光电信号频率的方法,通过比例微分控制策略实现对R(o|¨)ssler混沌系统的周期控制,然后利用谱分析的方法,实现任意位置的信号频率检测。在此基础上,针对R(o|¨)ssler混沌系统阶数较高,控制过程复杂的问题,提出了基于混沌模型的自适应频率检测方法,通过对待检信号频率与Duffing系统周期策动力频率间的频差控制,实现频率检测中的混沌模型自适应选择,从而实现检测强噪声背景下微弱光电信号频率的目的。
     最后,在基于最优混沌模型的微弱光电信号幅值和频率检测方法的基础上,建立了基于混沌振子的微弱光电信号检测实验系统,并对微弱光电信号的幅值和频率检测进行了实验研究。实验结果验证了基于混沌振子的微弱光电信号检测方法的正确性和有效性。同时,将该检测系统应用于双向反射分布函数测量系统中,实现了双向反射分布函数测量中微弱光电信号的检测。
At the infrared physics field, emissivity is an important property parameter of the materials. There is a significant meaning to measure it. However because there is a mathematic problem not to be solved very well in physics field, the emissivity and true temperature of the target can’t be separated from radiation signal. In recent years multi-spectrum method is developed to solve the problem. But it is needed to split the radiation photo-electric signal according to wave length. When there are a lot of the splitted wavelength numbers, the precision is higher in processing results. However the radiation energy is very weak in every working waveband. These signals are submerged in strong noise. The traditional detection method can’t meet the requirements. So the weak signal detection technology in strong noise background must be researched. Moreover high spectral satellite is being researched in our country. It also needs to study on weak photo-electric signal detection.
     In the high precision detection system of weak photo-electric signal, chopper weel is used in order to decrease zero drift influence to constant weak photo-electric signal. At first, the weak photo-electric signal is modulated periodic signal. Then the signal is received in sensor. Of course the signal is submerged in strong noise.
     The results show that chaos system has a very strong immunity to noise but it is sensitive to the periodic signal. So chaos theory can solve the difficult problem very well in weak photo-electric signal detection system.
     The mathematic model and dynamic property of typical chaos system is analyzed firstly and the influence of the amplitude and frequency of weak photo-electric signal to chaos dynamic property is researched. It is known that the typical chaos system is sensitive to the amplitude and the frequency of weak photo-electric signal. So the optimal chaos model is established in the detection system of weak photo-electric signal.
     On the basis of optimal chaos model, the dynamic property of optimal chaos model is analyzed deeply. And the method is proposed that lyapunov exponent method is introduced to optimal chaos model to calculate the chaos threshold quantitatively. So the amplitude of weak photo-electric signal is detected precisely. Then the lowest signal-noise ratio in weak photo-electric signal detection system can be determined.
     To detect the unknown frequency of weak photo-electric signal, the frequency detection method based on proportional differential control of R(o|¨)ssler chaos system is proposed. It can detect unknown frequency through controlling the chaos state to big periodic state of R(o|¨)ssler system firstly and using spectrum analysis. On the basis of the method, adaptive frequency detection method based on chaos model is proposed. It can solve the problem of the order number high of R(o|¨)ssler system and complex control. The frequency diviation between the frequency of Duffing system and the detected frequency is controlled to choose the chaos model adaptively. Thus the frequency of weak photo-eletric signal can be detected accurately.
     Finally, on the basis of the amplitude and the frequency detection methods of weak photo-electric signal based on optimal chaos model the experiment system of weak photo-electric signal is developed. And the the amplitude and the frequency of weak photo-electric signal is detected in the experiment. The experiment results verified that it is right and effective to the detection method of weak photo-electric signal based on chaos oscillator. Meanwhile the detection system based on chaos oscillator is used in bidirectional reflectance distribution function measurement system and the weak photo-electric signal in the bidirectional reflectance distribution function system is detected precisely.
引文
1 N. Q. Lu, D. Middleton. Weak Signal Detection in Correlation Non-Gaussian Noise. IEEE Transactions on Aerospace and Electronic System. 1984,13(5): 830~834
    2 D. Hakan. Distributed Weak Signal Detection and Asymptotic Relative Efficiency in Dependent Noise. Signal Processing. 1999,77: 335~342
    3李一兵,岳欣,杨梓莘元.多重自相关函数在微弱正弦信号检测中的应用.哈尔滨工程大学学报. 2006, 25(4):525~528
    4丛大成,戴景民,孙晓刚,褚载祥.分光式便携比色高温计的设计.热能动力工程. 1999, 14(81):185~187
    5 G. Obein, T. Leroux, F. Vienot. Bi-directional Reflectance Distribution Factor and Gloss Scales. SPIE. Human Vision and Electronic Imaging VI, San Jose, CA, United states. 2001,4299:279~290
    6 D. W. Blodgett, S. C. Webb. Optical BRDF and BSDF Measurements of Human Incisors from Visible to Mid-infrared Wavelengths. SPIE. Human Vision and Electronic Imaging VI, San Jose, CA, United states. 2007,4257: 448~454
    7 Y. D. Muklin, S. P. Pod’yachev. Radiation Pyrometers for Renote Temperature Monitoring and Control. Instrument and Experiment Technique. 1997,40(5): 736~739
    8 F. Nerry, J. Labed, M. P. Stoll. Remote Sensing Infrared Thermometer with Radiation Balancing. Applied Optics. 2006,39(15):2461~2466
    9周浩,李岩松,刘君,赵吴鹏.光学电流互感器中微弱信号检测的仿真与分析.电力系统保护与控制. 2009,37(22):1~3
    10 C. L. Huang, Y. Y. Zhou. Cyclic Correlation Detection Method Applied to Weak LFM Signals in Multiplicative Noise. Institute of Electrical and Electronics Engineers Inc., Piscataway. 2005, 1:5~8
    11李月,杨宝俊,石要武.色噪声背景下微弱正弦信号的混沌检测.物理学报. 2003, 3 (3),526~530
    12 K. H. Kuwata. Chaos Simulator as a Developing Tool and a Research Environment for Applications of Chaos Engineering. Journal of Network and Computer Applications.1996, 19(1): 45~66
    13崔旭晶,王正方.智能化低温红外辐射测温仪的研究.沈阳工业学院学报. 1994, 13(2): 67~73
    14 W. Small. Two-color infrared thermometer for low-temperature measurement using a hollow glass optical fiber. Fiber Opitics for Biomedical and Industrial Application, San Jose, CA, United states. 1997, 29(7): 115~120
    15刘建科,张海宁,马毅.红外测温中检测强噪声下微弱信号的新途径.物理学报. 2000, 49(1): 106~109
    16丛大成.红外多光谱测温关键技术的研究.哈尔滨工业大学博士论文. 2001: 1~83
    17 J. M. Dai, C. Qi, X. G. Sun. Comparison and Research for Several Bi-directional Reflectance Distribution Function (BRDF) Measuring. SPIE. Human Vision and Electronic Imaging VI,Fujian, China. 2003,5280:655~660
    18李月,杨宝俊,石要武,张忠彬,于功梅.混沌振子用于强噪声下微弱正弦信号的检测.吉林大学自然科学学报. 2001, 1(1):75~77
    19 G. Y. Wang, S.He, A Quantitative Study on Detection and Estimation of Weak Signals by Using Chaotic Duffing Oscillators. IEEE Transactions on Circuits and Systems-Fundamental Theory and Applications.2003, 50(7): 945~953
    20 W.S. Yi, Y. W. Shi, C. Y. Nie.The Chaotic Oscillator Estimate Method for Sin Wave Parameter in Non-gaussian Color Noise Environment. The Sixth International Conference on Electronic Measurement and Instrument. Taiyuan, China. 2003, 4 (1):151~155
    21 D. I. Birx. Chaotic Oscillators and CMFFNS for Signal Detection in Noise Environments. IEEE Internation Joint Conference on Neural Networks. Anchorage, AK, USA.1992, 22: 881~888
    22 G. Y. Wang, S. He, A Quantitative Study on Detection and Estimation of Weak Signal by Using Chaotic Duffing Oscillators.2003 IEEE Transactions on Circuits and Systems:Fundamental Theory and Applications.2003,50(7): 945~953
    23 G. Y. Wang, W. Zheng, S. He. Estimation of Amplitude and Phase of Weak Signal by Using the Property of Sensitive Dependence on Initial Condition of a Nonlinear Oscillator. Signal Processing. 2002,82: 103~115
    24衣文索.微弱信号的混沌检测理论与方法研究.吉林大学博士学位论文. 2006.1~80
    25 R.R.Nigmatullin. Detection of weak signals based on a new class of transformations of random series. PHYSICA A. 2007, 289: 18~36
    26 Ashot Chilingarian. Detection of Weak signals against background (noise) using neural network classifiers. Pattern Recognition Letters. 1995,16: 333~338
    27 D. Middleton. Weak signal detection in correlation non-Gaussian noise. 1990IEEE International Symposium on Information Theory, San Diego, CA, USA ,Piscataway. 2006: 135~140
    28聂春燕,石要武.基于互相关检测和混沌理论的弱信号检测方法研究.仪器仪表学报. 2001,22(1):32~35
    29李方方.微弱信号检测与采集技术的研究.哈尔滨工业大学硕士论文. 2006, 6~10
    30 W. Rodden. A Method for Deriving Structural Influence Coefficients from Ground Vibration Tests. AIAA Journal. 1967,5(5): 34~60
    31 S. Mshslingam. The Response of a System with Repeated National Frequencies to Force and Displacement Excitation. Sound and Vibretion.1974, 36(2): 285~295
    32 T. Y. Li, J. York. A Period 3 Implies Chaos. Amer Math Monthly. 1975, 23(3): 34~46
    33 C. U. Choe, K. Hohne, H. Benner. Chaos Suppression in the Parametrically Driven Lorenz System. Physical Review.2006, 72(5):362~366
    34 S. Smale, Diffeomorphisms with Many Periodic Points, Differential and Combinatorial Topology, S. S. Cairns, Princeton University Press. 2007, 63~80
    35 M. Cencini, M. Falcioni, E. Olbrich, H.kantz, A. Vulpian. Chaos or Noise: Difficulties of a Distinction. Phys. Rev.E. 2005,62:427~437
    36 K. M. Short. Unmasking a Modulated Chaotic Communications Scheme. International Journal of Bifurcation and Chaos.1997, 7:1579~1590
    37 H. K. Simon, B. L. Xiao. Detection of Signal in Chaos. Proceeding of the IEEE. United States. 1999, 85(1): 95~122
    38 S. Y. Kim, Bifurcation Structure of the Double-well Duffing Oscillation. International Journal of Modern Physics B. 2006, 14(17):1801~1812
    39 F. P. Wang, J. B. Guo, Z. J. Wang. Parameter Estimation in Chaotic Interference. IEEE Proceeding of ICSP2000.USA.2000, 258~264
    40 H. Leung, T. Lo.Chaotic Radar Signal Processing Over the Sea.IEEE J.Oceanic Engineering.1993,18(3):287~295
    41 H. Leung. System Identification Using Chaos with Application to Equalization of a Chaotic Modulation System. IEEE Trans. Circuits System.1998, 1(45): 314~320
    42 M. Chance, Glenn, H. Scott. Weak Signal Detection by Small-perturbation Control of Chaotic orbits.IEEE MTT-S Digest.1996:1883~1886
    43裴留庆,匡锦瑜,邵媛.混沌同步系统的频率特性和微弱信号检测.中国科学(E辑).1997,27(3):237~242
    44何建华,杨宗凯,王殊.基于混沌和神经网络的弱信号检测.电子学报.1998,26(10): 33~37
    45 G. Y. Wang, D. J. Chen, J. Y. Lin, X. Chen. The Application of Chaotic Oscillators Weak Signal Detection. IEEE. Trans. on Industrial Electronics. 1999, 46(20): 440~443
    46 G. Y. Wang. The Application of Chaotic Oscillators to Weak Signal Detection. IEEE Transaction on Industrial Electronics.2001, 46 (2):440~444
    47汪芙平,王赞基,郭静波.混沌背景下信号的盲分离.物理学报. 2002, 3(51): 474~481
    48兀旦辉,柯熙政.基于Chua电路混沌同步自保持特性的研究.量子电子学报. 2004,3(21):355~359
    49张鑫,陈伟斌,姚明海. Duffing振子检测微弱正弦信号的普遍性研究.计算机与数字工程. 2005,12(33):71~73
    50聂春燕,石要武,王有维.基于混沌系统的非高斯噪声的高斯化方法.电测与仪表. 2006, 43(4):5~7
    51姜可宇,蔡志明等.基于RBF神经网络模型的混沌背景下谐波信号提取.武汉理工大学学报. 2007,31(5): 850~855
    52 N. Q. Hu, X. S. Wen. The application of Duffing oscillator in characteristic signal detection of early fault. Journal of Sound and Vibration. 2003, 268(5): 917~931
    53 Q. F. Shang, C. Q. Yi, S. L. Lin. Study on Detection of Weak Simusoidal Signal by Using Duffing Oscillator. Zhongguo Dianji Gongcheng Xuebao. 2005, 25: 66~70
    54聂春燕.混沌系统在弱信号检测中的应用.传感器技术. 2003, 22(1):55~57
    55 F. E. Udwadia, H. F. Von Bremen. An Efficient and Stable Approach for Computation of Lyapunov Characteristic Exponents of Continuous Dynamical Systems,Applied Mathematics and Computation.2005,121:219~259
    56 D. Lai, G. Chen. Statistical analysis of Lyapunov Exponents from Time Series: a Jacobian Approach, Math1. Comput. Modeling. 1998, 27(7):1~9
    57聂春燕,石要武,王有维.基于混沌系统的非高斯噪声的高斯化方法.电测与仪表. 2006, 43(4):5~7
    58武斌.基于高阶统计量的红外弱小目标检测.西安电子科技大学硕士学位论文. 2006.10~14
    59 P, Woafo, F. C. Chedjou, H. B. Fotisn. Dynamics of a System Consisting of a VanderPol Oscillator, Coupled to Duffing Oscillator, Phys, Dev, E. 2006, 54(6): 5929~5934
    60 G. Y. Wang, S. He. A Quantitative Study on Detection and Weak Signals byUsing Chaotic Duffing Oscillators, IEEE Trans. Circuits Syst. 2003, 50(7): 945~953
    61 I. Pastor-Diaz, A. Loperz-Fraguas. Dynamics of Two Coupled Vanderpol Oscillators. Phys, Rev,E.1995,52(2):1480~1489
    62 G. P. Chen, B. Hao. Hybrid Control of Hyperchaotic Lorenz System by Constant Impulse and Adaptation Impulse. Chinese Physics B. 2009, 58(5): 2914~2920
    63 J. H. Lv, G. R. Chen, D. Z. Cheng. A New Chaotic System and Beyond:the Generalized Lorenz-like System.Int J Bifurcation and Chaos. 2005, 14(5): 1507~1537
    64 S. J. Cang, Z. Q. Chen, W. J. Wu.Circuit Implementation and Multiform Intermittency in a Hyper-chaotic Model Extended from Lorenz System. Chinese Physics B. 2009,18(5):1792~1800
    65 Y. L. Dong, Z. H. Huang. Noise-induced Striped Trajectories of R?ssler Systems.Chinese Physics B. 2007,16(8):2291~2295
    66 Y. G. Yua, H. X. Li.The Synchronization of Fractional-order R?ssler Hyperchaotic Systems. Physica A. 2008,387:1393~1403
    67 O.E.R?ssler. An Equation for Continuous Chaos. Physics Letters A. 1976,57(5): 397~398
    68陈士华,谢进,陆君安. R?ssler混沌系统的追踪控制与同步.物理学报. 2002, 51(4): 749~752
    69 M. Rafikov, J. M. Balthazar.On an Optimal Control Design for R?ssler System.Physics Letters A.2007,333:241~245
    70 F. Grond, H. H. Diebner, S. Sahle.A Robust. Locally Interpretable Algorithm for Lyapunov Exponents .Chaos, solitons & Fractals. 2006,16(5):841~852
    71张宾,李月,马海涛.微弱信号混沌检测临界阈值Lyapunov指数算法.地球物理学报. 2003,4(18):748~751
    72吕金虎,张锁春. Lyapunov指数的数值计算方法.非线性动力学学报. 2003,8(1): 84~92
    73 H. L. Wei , S. A. Billings.Identification and Reconstruction of Chaotic Systems Using Multire Solution Wavelet Decomposition.International Journal of Systems Science .2004,35(9): 511~517
    74庄艳丽.基于混沌振子的微弱信号检测方法研究.电子科技大学硕士学位论文. 2006. 64~70
    75 Y. S. Wang, J. G. Yan.Capability of Weak Signal Detection Through Chaos Systems Sensitive Dependence on Initial Condition Chines Journal of Electron Devices.2007,30(5):1650~1655
    76 B. Sinakumar. Chaos Theory in Geophysics: Past, Present and Future. Chaos, Aolitions&Fractals. 2007, 19(2): 441~462
    77 L. Nana, T. C. Kofane. Chastic Behavior in Deformable Models: the Asymmetric Doubly Periodic Oscillators. Chaos, Solitons & Fractals. 2005,13(4):731~740
    78 C. G. Li and G. Chen. Chaos and Hyperchaos in the Fractional Order R?ssler Equations. Physical A.2004,341:55~61
    79 E. Ott, C. Grebogi, J. A. York. Experiment Control of Chaos. Phys. Rev. Lett. 1990, 4(65): 3211~3214
    80 C. H. Wang, J. F. Leu, S. Y. Tsay. A Note on Time-domain Simulation of Feedback Fraction-order Systems. IEEE Transactions on Automatic Control. 2002, 47: 625~631
    81 K. Diethelm, N. J. Ford, A. D. Freed. A Predictor-corrector Approach for the Numerical Solution of Fractional Differential Equations. Nonlinear Dynamics. 2007,29(4):3~22
    82 M. S. Tavazoei, M. H. Haeri. Chaotic Attractors in Incommensurate Frational Order Systems.Physical D.2008,3(21):124~132
    83 M. T. Rosenstein, J. J. Collins. A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Physica D: Nonlinear Phennomena. 1993, 65:117~134
    84 C. Q. Yin, S. L. Li, Q. F. Shang.A Method to Identification and Period Calculation of Intermittent Chaos. Proceedings of the Sixth International Conference on Electronic Measurement&Instruments. Taiyuan, China. 2006, 8, 597~601
    85张伟伟.基于最大Lyapunov指数的分数阶R?ssler系统的混沌现象研究.重庆大学硕士学位论文. 2008,18~37
    86 P. Matjaz, M. Marko.Detecting and Controlling Unstable Periodic Orbits That Are Not Part of a Chaotic Attractor,Physical Review E. 2004, 70(12): 016204-1~016204-10
    87 K. S. Helle, L. O. Chua. Signal Amplification via Chaos.Experimental Evidence.International Journal of Bifurcation and Chaos.2006, 2(4):1008~1012
    88刘立,孙军.基于混沌振子的微弱信号检测方法研究.沈阳农业大学学报. 2005, 36(6): 667~670
    89尚秋峰,尹成群,李士林.基于Duffing振子的微弱正弦信号检测方法研究.中国电机工程学报. 2005,25(2):66~70
    90 Y. S. Wang, J. G. Yan. Capability of Weak Signals Detection Through Chaos System’s Sensitive Dependence on Initial Condition. Chinese Journal ofElectron Devices.2007,30(5):1650~1655
    91 Y. Li, B. J. Yang, Physical Mechanism of the Chaotic Detection of the Unknown Frequency of Weak Harmonic Signal and Effects of Damping Ratio on the Detection Results. Chinese Physics.2006, 13(9):1386~1390
    92 H. K. Simon, X. B. Li. Detection of Signals in Chaos. Proceeding of the IEEE. NJ, United States. 1999, 85(1):95~122
    93 C. Y. Nie, Y. W. Shi, Z. W. Wang, B. Guo. A Detection Method of Signal Frequency Based on Optimization Theory. Proceedings of SPIE-The International Society for Optical Engineering, Beijing, China. 2006. (10): 345 ~ 348
    94王冠宇,陶国良,陈行.混沌振子在强噪声背景信号检测中的应用.仪器仪表学报. 1997, 18(2):209~212
    95 Z. M. Ge, M. Y. Hu.Chaos in a Generalized VanderPol System and in Its Fractional Order System. Chaos,Solitons and Fractals.2007,33:1711~1745
    96 W. H. Deng, C. P. Li, J. H. Lu. Stability Analysis of Linear Fractional Differential System with Multiple Time Delays.Nonlinear Dyn. 2007, 48: 409~416
    97 X. H. Gao, X. W. Liu, S. Q. Shao.Projective Synchronization in Coupled Fractional Order Chaotic R?ssler System and Its Control. Chinese Physics B. 2007,16(9): 2612~2615
    98 Y. Li, B. J, Yang, L. Z. Du, Y. Yuan.The Bifurcation Threshold Value of the Chaos Detection System for a Weak Signal, Chinese Physics. 2003, 12(7): 714~720
    99 C. Y. Song,Ya-Hui Lei,Shi-Qi Ding.Application of Chaos to Weak Signal Detection.Journal of Harbin Engineering University. 2006, 25:21~23
    100 E. Ott. Strange Attractors and Chaotic Motions of Dynamical Systems. Rev. Modern Phys. 1981, 53 (4):655~671
    101王伟,张秋富. R?ssler系统的比例微分控制.重庆工学院学报(自然科学版). 2008, 4(22):136~138
    102 J. B. Parlitz.Nonlinear Noise Reduction. Proceedings of IEEE. Institute of Electrical and Electronics Engineers Inc. 2002, 90(5): 898~905
    103史忠彦,张坤,宋凯.红外多元探测器的噪声仿真研究.红外技术, 2003, 25(6): 59~63
    104岳冬青,李燕兰.红外探测器的1/ f噪声谱测试.红外与激光工程. 2001, 30(2):155~156
    105陈永刚,刘立国. AD603及其在AGC电路中的应用.电子世界. 2002(4): 39~40
    106李驹光. ARM开发详解.清华大学出版社, 2004: 1~402
    107赵星寒,刘涛.从51到ARM.北京航空航天大学出版社, 2005: 45~250
    108尹勇,王洪成.单片机开发环境uVision2使用指南及USB固件编程与调试.北京航空航天大学出版社, 2004, 10(6): 201~314
    109宋铁锁.基于ARM的微弱信号采集卡的设计.哈尔滨工业大学硕士学位论文. 2007, 43~53
    110肖坦.基于虚拟仪器的自动测试系统研究.北京交通大学. 2006: 67~93
    111张爱平. LabView入门与虚拟仪器.北京:电子工业出版社, 2004,5: 58~64
    112 J. Travis, J. Kring. LabView for Everyone: Graphical Programming Made Easy and Fun. Prentice Hall PTR. 2006:56~110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700