基于过程的大麦生长发育模拟模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物生长模型的研究和应用对于农业生产的信息化和数学化具有重要的理论意义和应用价值。本研究借鉴国际上先进的建模理论和本实验室形成的作物模拟方法体系和基本框架,运用系统分析原理和动态建模技术,通过实施不同生态点、不同类型品种的播期和氮素处理试验,对大麦生长发育的基本规律及其与环境因子之间的关系予以定量解析和综合,构建了基于生理生态过程的大麦生长发育模拟模型(BarleyGrow),为数学化麦作系统的构建奠定了基础。
     以扬州地区5个大麦品种春播条件下的顶端发育和物候发育观测资料和历史资料为基础,构建了基于生理发育时间的顶端发育和物候期机理模型。模型量化了热效应、光周期、春化效应对大麦发育的影响,引入了播种到出苗所需的有效积温、灌浆期发育基点温度、生理春化时间、临界日长、光周期反应起始点、最短苗穗期、最短灌浆期7个品种生物学参数。模型将每日生理发育时间的增量除以水肥丰缺因子来表现水肥对大麦发育的影响,客观体现了大麦在水肥丰缺条件下的发育延迟或提早现象;用非线性函数来表达春化效应和相对热效应,确立了不同品种相对春化效应和相对热效应的曲线族;用正弦函数来表达不同品种光周期效应。经测算,各大麦品种到达单棱期、二棱期、雌雄蕊分化期、药隔形成期、雌蕊柱头二裂分叉期、雌蕊柱头毛状突起期等顶端发育阶段的生理发育时间分别为2.6、5.6、11.3、13.1、15.3、18.2、28.7 d,到达出苗期、拔节期、抽穗期、灌浆期和成熟期等主要物候期的生理发育时间为0、13.1、28.7、32.8、51.5 d,从而形成了不同大麦品种在不同气候和栽培条件下统一的衡量发育的定量尺度。
     BarleyGrow模型中利用遗传-模拟退火算法来确定各品种的生物学参数,提高了应用程序求算参数的精度。采用4个生态区(南京、扬州、武汉、昆明)、10个大麦品种在不同播期下的顶端发育和物候期资料,对BarleyGrow进行了检验和评价,并将其模拟效果与YDmodel和SUCROS模型进行了对比分析。结果表明,BarleyGrow对不同地区、不同播期、不同品种各顶端发育和物候期预测准确而稳定,其均方根差RMSE在1.06~7.94 d之间,而YDmodel为6.26~13.35 d, SUCROS为11.22~20.28 d。各参试品种对BarleyGrow模型中灌浆期基点温度、生理春化时间、临界日长、最短.苗穗期4个参数反应敏感。BarleyGrow模型对中国广大地区不同温光条件下的大麦顶端发育和物候发育均具有较好的预测效果,尤其对药隔期、二裂期、毛状期、抽穗期、灌浆期、成熟期的模拟精度高而稳定,表现出较强的机理性以及较好的预测性。
     准确模拟叶面积指数是作物生长模拟模型可靠预测作物生长和产量的关键。通过系统分析扬州和武汉地区不同大麦品种高产群体叶面积指数变化动态,建立了高产群体叶面积指数与生理发育时间、每日光合有效辐射累积量和孕穗期最适叶面积指数之间的关系模型,并通过水肥丰缺因子的修订得到实际条件下叶面积指数动态。模型较为全面地考虑了影响大麦品种叶面积变化的内外因素,内因主要体现为品种叶面积指数扩展的遗传特性,外因主要包括温度日较差、日照时数、辐射量和水肥丰缺因子。利用扬州、南京和昆明地区不同品种的播期试验及氮肥试验资料对模型进行了检验,结果表明模型能较好地模拟不同地区、不同气候、不同栽培管理条件下大麦叶面积指数的变化动态。
     在综合已有作物模拟模型优点的基础上,构建了基于生态生理过程的大麦光合生产与干物质积累模拟模型。模型将一天均分为96个时间点,分别计算各时间点的光合有效辐射,以复化辛普森积分计算每日冠层光合同化量,并采用高斯积分法与辛普森积分法对昆明和武汉试验区地上部干重进行了对比检验。结果表明辛普森积分法模型具有更优的预测效果,模拟值与观测值吻合度高。因此,辛普森积分法进行光合作用模拟可以作为大田环境中精确模拟作物生长的新方法。
     通过系统分析南京和扬州地区不同处理下大麦品种干物质分配的变化动态,建立了高产大麦群体物质分配指数与生理发育时间、每日光合有效辐射累积量及生物学参数(收获指数和绿叶分配指数的遗传差异)之间的关系模型,并通过水肥丰缺因子的修订得到实际条件下大麦物质分配指数动态。各器官重量为该器官物质分配指数与生物量的乘积。利用昆明和武汉地区不同品种不同播期的试验资料对本模型进行了检验与评价,并将其模拟效果与Ydmodel进行了对比分析,结果表明,本模型对大麦各器官间的物质分配及各器官干重的模拟效果较好,模拟值与观测值吻合度高,能较好地模拟不同地区、不同气候、不同栽培管理下大麦物质分配和器官生长动态。
     通过产量构成法构建了大麦产量预测模型。以南京、昆明、武汉3个地区各试验处理中不同大麦品种最适条件下的产量因素为基础,建立了最适条件下每株穗数相对值、每穗粒数相对值、千粒重相对值与累积光合有效辐射之间的的回归方程,构建了实际条件下不同大麦品种每株穗数、每穗粒数、千粒重与最适条件下三指标潜在值及水肥丰缺因子之间的函数关系。模型较为全面地考虑了大麦产量形成的内外因素,内因主要体现为品种遗传特性(潜在的每株穗数、潜在的每穗粒数、潜在的千粒重和灌浆期因子),外因包括光合有效辐射和水肥丰缺因子。运用武汉、昆明、扬州3个地区不同品种、不同播期的田间试验资料对模型进行了测试和检验。结果表明,模型对大麦产量构成因素及理论产量的模拟效果较好,模拟值与观测值吻合度高,显示模型具有较高的预测性和适用性。
The research and application of crop growth model would be important for facilitating development of informational and digital agriculture. In the present study, the relationships of growth and development to environment factors were analyzed and integrated by using the field experiments data with different genotypes, sowing dates and nitrogen application levels in different ecosites. By adopting advanced modeling technology abroad and the methodology of crop growth model developed by our lab, a physiological process-based barley simulation model (BarleyGrow) was developed through the system analysis and mathematical modeling. The present study should be useful for prediction of growth performance under different conditions and development of barley digital management system in barley crop.
     Based on the data from Yangzhou field experiment with five cultivars at spring sowing date, three processes of thermal effectiveness, photoperiod and vernalization in barley were quantified, and a physiological development time (PDT) based barley model for phasic and phenological development was developed. Seven cuitlvar parameters were used in the model, including the accumulated temperature from sowing to germination (GDDo), basic temperature in filling period (Tbmax), physiological vernalization time (PVT), critical day length (DLc), start time of photoperiod response (PPs), minimum time from emergence to heading (EHmin) and from heading to maturity (FDmin). The ratio of daily increment of PDT and the deficit of both water and nitrogen was used to estimate the effect of environment on phasic and phenological development. A nonlinear function was adopted to describe vernalization and thermal effectiveness, and the sinusoidal function was used to describe photoperiod curve cluster for different cultivars. Physiologically, our model estimated 2.6 days to reach the single ridge stage,5.6 days to the double ridge stage,11.3 days to the stamen and pistil initiation stage,13.1 days to the anther separation stage,15.3 days to the pollen mother cells stage and 18.2 days to the tetrad stage. Phenologically, estimations were 13.1 days to reach the jointing stage,28.7 days to the heading stage,32.8 days to the grain filling stage and 51.5 days to the maturity stage. PDT was consequently used as a unified scale for measuring developmental progress of different cultivars under different climate and cultural practices.
     In BarleyGrow, the optimum values of the model parameters were obtained through genetic-simulated annealing algorithms. Based on the field experiments with 14 barley cultivars on different sowing dates at 4 ecosites (Nanjing, Yangzhou, Wuhan and Kunming), the submodel for apical and phenological development was validated by comparing with YDmodel and SUCROS model. As a whole, the BarleyGrow model had an accurate and stable estimation on apical and phenological development. The root mean square error (RMSE) with the BarleyGrow model was ranged between 1.06 and 8.13 days for various cultivars, compared to 6.26 and 13.35 days with YDmodel, and 8.84 and 20.28 days with SUCROS. Compared with YDmodel and SUCROS model, the BarleyGrow model was quite sensitive to basic temperature in grain filling time, physiological vernalization time, critical daylength and minimum time from emergence to heading. The BarleyGrow model gave good predictions of apical and phenological development for a diverse range of temperature and photoperiod conditions across China. Especially, effects in anther separation, pollen mother cells, tetrad, heading, grain filling and maturity stages were better predicted.
     Accurate simulation of leaf area index (LAI) is critical for reliable prediction of crop growth and yield using a crop growth model. Based on the systematic analysis of barley experimental data from different cultivars and sowing dates at Wuhan and Yangzhou, the submodel for LAI estimation was developed. Along with the expansion coefficient of LAI for cultivar genetic properties, the relationships of leaf area index dynamic in barley under high yield to physiological development time (PDT), the accumulation of photosynthetic available radiation after sowing (∑PAR) and the optimum LAI at booting were simulated. The actual dynamic of LAI was modified with water and nitrogen factors based on the dynamic of LAI under high yield. The internal and external factors of leaf growth and development in barley were integrated into the model. The internal factor was genetic property of LAI expansion. Environmental conditions included daily temperature difference, sunlight,∑PAR, water and nitrogen factor. The submodel was tested with the different cultivars under different sowing dates and different nitrogen rates at Yangzhou, Nanjing and Kunming. The results showed that this submodel gave good predictions of LAI in barley under different ecosites, climates and cultivation practices.
     Based on the merits of existing crop simulation models, a submodel for photosynthesis and dry matter accumulation was developed. In the submodel, a day was separated into 96 time segments, and the corresponding photosynthetically active radiation during each time segment was calculated. The daily canopy assimilation was simulated using complex Simpson integration method, and the simulation result was evaluated by comparing the method of Gauss integration. Testing results showed that the Simpson integration method was better than Gauss integration method, and featured with higher predictability and broader applicability. Thus the Simpson integration method could be used as a new method to accurately simulate crop dry matter accumulation.
     Based on the systematic analysis of barley experimental data from various cultivars at different treatments in Nanjing and Yangzhou, a process-based submodel was developed for predicting dry matter partitioning and organ growth in barley. Along with harvest index and partitioning coefficient of leaf for cultivar genetic properties, the relationships of dry matter partitioning dynamic under high yield to physiological development time (PDT), the accumulation of photosynthetic available radiation after sowing (∑PAR), and cultivar genetic properties. The actual dry matter partitioning indices of organs in barley were modified by water and nitrogen limitation factors based on dry matter partitioning dynamic under high yield. Organ weights were the products of corresponding organ partitioning index and biomass. The submodel for organ partitioning indices and organ weights was tested with dataset from different cultivars at different sowing dates in Wuhan and Kunming, and showed good predictions of partitioning indices and organ weights under various conditions.
     Submodel for yield prediction was established through the method of yield components. Based on the experiment dataset from different cultivars under the optimal condition at Wuhan, Yangzhou and Kunming, the regression equations were built between the relative values of ear per plant, kernel per ear, and thousand-grain weight, and accumulated photosynthetic effective radiation (∑PAR). Ears per plant, kernels per ear, and thousand-grain weight under the actual condition were the equations of their potential values under the optimal condition, and water and nitrogen factor at the actual condition. The internal and external factors of yield components formation on barley were integrated into the model. The internal factors were genetic properties of cultivar, including potential ears per plant, potential kernels per ear, potential thousand grain weight and grain filling duration. Environmental conditions included∑PAR, water and nitrogen factor. The submodel was calibrated and validated with field experimental data from different cultivars at different sowing dates in Wuhan, Kunming and Yangzhou. The results showed that the model could well simulate the yield components and theoretic yield with high applicable levels.
引文
[1]何勇,杨青,洪添胜.2003.精细农业.浙江大学出版社.
    [2]de Reamur R A F. Article in Paris memoirs. Academiedes Sciences,1735. In:Abbe C. A First Report on the Relations Between Climates and Crops.1905. Weather Bureau Bull.No.342, U. S. Department of Agriculture,168
    [3]Clements F E.1907. Plant physiology and ecology. New York:Holt.
    [4]Blackman V H.1919. The compound interest law and plant growth. Annals of Botany,33,353-360.
    [5]Penman H L.1948. Natural evapotranspiration from open water, bare soil and grass. Proc. R. Soc. London Ser. A.193:120-245.
    [6]Rabinowitch E L.1951. Photosynthesis and Related Processes, Vol. Ⅱ, Part 1. Interscience Publishers, New York, pp.858-885.
    [7]Monsi M, Saeki T.1953. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion. Japanese Journal of Botany 14:22-52.
    [8]de Wit C T.1965. Photosynthesis of leaf canopies. Verslag Landbouwkundig Onderzoek (Agr. Research Rep.), nr.663. Wageningen, Pudoc.
    [9]de Wit C T, Brouwer R & Penning de Vries F W T.1970. The simulation of photosynthetic systems. In Prediction and management of photosynthetic productivity, Proceedings of the International Biological Program/Plant Production Technical Meeting, Trebon, ed. I. Setlik. PUDOC, Wageningen, The Netherlands. pp.47-70.
    [10]Duncan W G, Loomis R S, Williams W A, et al.1967. A model for simulating photosynthesis in plant communities. Hilgardia,38:181-205.
    [11]Philip J R.1966. Plant water relations:Some physical aspects. Annual Review of Plant Physiology. 17:245-268.
    [12]Lemon E R, Stewart D W, Shawcrof t R W, et al.1973. Experiments in predicting evapotranspiration by simulation with a soil-plant-atmosphere model (SPAM). In:R. R. Bruce, K. W. Flach, and H. M. Taylor (ed.). Field Soil Water Regime (ed. by R.R.Bruce, K. W.Flach & H.M.Taylor),57-74 Soil Sci. Soc. Am., Madison, Wisconsin.
    [13]Thornley J H M.1970. Respiration, growth and maintenance in plants. Nature 227:304-305.
    [14]Thornley J H M.1971. Energy, Respiration, and Growth in Plants. Glasshouse Crops Research Institute Littlehampton, Sussex. Received:2 April.
    [15]Thornley J H M.1977. Growth, maintenance and respiration:a re-interpretation. Annals of Botany, 41,1191-1203.
    [16]Chanter DO.1976. Mathematical models in mushroom research and production. PhD Thesis, University of Sussex, UK.
    [17]Charles-Edwards D A.1976. Shoot and root activities during steady-state plant growth. Annals of Botany.40:767-772.
    [18]Radcliffe D, Hayden T, Watson K, et al.1980. Simulation of soil water within the root zone of a corn crop. American Society of Agronomy.72:19-24.
    [19]Jones J W, Hesketh J D, Kamprath E J, et al.1974. Development of a nitrogen balance for cotton growth models:a first approximation. Crop Sci.14:541-546.
    [20]Greenwood.1976. Nitrogen stress in plant. Adv. Agron.28:1-35
    [21]Penning de Vries F W T. (王馥棠等译).1988. 植物生长与作物生产的模拟.北京:科学出版社. 10-45.
    [22]Van Keulen J, Young B A.1977. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci.44:282.
    [23]Penning de Vries F W T.1975. The cost of maintenance processes in plant cells[J]. Ann Bot,39: 77-92
    [24]de Wit C T, Goudriaan J, van Laar HH, et al.1978. Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs. Wageningen (Netherlands):Pudoc.141 p.
    [25]van Keulen H.1981. Simulation of water use and herbage growth in arid regions—a reevaluation and further development of the model "ARID CROP". Agric Syst,6:159-193.
    [26]Spitter C J T, van Keulen H, van Kraalingen D W G.1989. A simple and universal crop growth simulator:SUCROS87 In:Simulation and systems management in crop proctection. Eds Rabbinge, SW Ward and H H van Laar. Simulation Monograghs32. Prodoc, Wageningen,147-181
    [27]Penning de Vries F W T and H H van Laar.1982. Simulation of growth processes and the model BACROS. In:F.W.T. Penning de Vries and H.H. van Laar, Editors, Simulation of plant growth and crop productionSimulation Monographs, PUDOC, Wageningen, The Netherlands pp.114-136.
    [28]Jones C A, Kiniry J R, Farmer DB, et al.1986. CERES-Maize:a simulation model of maize growth and development. Texas AandM University Press.
    [29]Ritchie J T, Otter S.1985. Description and performance of CERES-Wheat:A user-oriented wheat yield model, In ARS Wheat Yield Project. USDA-ARS ARS,38:159-175.
    [30]IBSNAT,1989. International Benchmark Sites Network for Agrotechnology Transfer, Decision Support System for Agricultural Transfer (DSSAT) v.2.1. Dept. Agronomy and Soil Science, University of Hawaii, Honolulu, HI, USA.
    [31]IBSNAT,1994. International Benchmark Sites Network for Agrotechnology Transfer, Decision Support System for Agricultural Transfer (DSSAT) v.3.0. Dept. Agronomy and Soil Science, University of Hawaii, Honolulu, HI, USA.
    [32]Pinnschmidt H, Teng P S, Yuen J E, et al.1990. Coupling pest effects to the IBSNAT CERES crop model for rice. In:Paper presented at the APS meeting in Grand Rapids. Michigan, August, Phytopathology.80 (10), p.997 Abstr. no. A311.
    [33]Mantineo D M, Medeiros S L P, Chartier M, et al.1996. First estimation of CERES model's genetic coefficients for three sorghum genotypes. In:European Seminar on Sorghum for Energy and Industry, Toulouse. Seminar... Toulouse:INRA,485 p. p 280-287.
    [34]Medeiros S L P.1997. Modifications et devellopement d'un nouveau module de contrainte hydrique dans le modele CERES-Sorghum sucrier. Paris:INA-PG,154 p. These (Doctorat de l'Institut National Agronomique Paris-Grignon). Institut National de Recherche Agronomique, 1997.
    [35]Baker D M, Lammer J R, Mckinion J M.1983. GOSSYM:a simulation of cotton crop growth and yield [J]. South Carolina Agri. Experiment Station Technical Bulletin,21-38.
    [36]Alison B E, Fechter J, Leucht A, et al.1993. The use of the CERES-MILLET model for production strategy analysis in south west Niger. In:Proceedings of 15th Congress on Irrigation and Drainage and Second Workshop on Crop Water Models, The Hague, The Netherlands, p.17.
    [37]Baker D N, Lambert J R, McKinion J M.1983. GOSSYM:A simulator of cotton crop growth and yield. Tech.Bull.1089. South Carolina Agric Exp Stn,Clemson Univ,Clemson.
    [38]Otter Nacke S J, Ritchie J T, Godwin D, et al.1991. A User's Guide to CERES Barley V2.10. International Fertilizer Development Centre, Muscle Shoals, Alabama, USA,
    [39]McKinion JM, Baker DN, Hesketh JD and Jones JW,1975. SIMCOT Ⅱ:A simulation of cotton growth and yield. In:Computer Simulation of a Cotton Production system—User's Manual. ARS-S-52, pp.27-82.
    [40]Baker DN, Hesketh JD and Duncan WG.1972. The simulation of growth and yield in cotton:Ⅰ. Gross photosynthesis, respiration and growth. Crop Sci.,12:431-435.
    [41]Penning d Vries F W T,Van laar H H.1982. Simulation of plant growth and crop production [J].Simulation Monographs.256-308.
    [42]Williams JR, Jones CA, Kiniry JR and Spanel DA.1989. The EPIC crop growth model. Trans. ASAE.32:497-511.
    [43]ARKIN G F, Maas S J, Richardson C W.1980. "Forecasting Grain Sorghum Yields Using Simulated Weather Data and Updating Techniques"-Transactions of the ASAE.23(3):676-680.
    [44]Arkin G F, Wiegand C L, Ritchie J T.1976. "A Dynamic Grain Sorghum Growth Model"-Transactions of the ASAE.19(4):622-630.
    [45]Fedes R A, Kowalik P J, Zaradnym H.1978. Simulation Monograph, PUDOC, Wageningen
    [46]CORNF:A Dynamic Growth and Development Model for Maize (Zea Mays L.) M Stapper, GF Arkin.1980.Texas Agricultural Experiment Station, Blackland Research Center
    [47]Teng P S, Blackie M J, Close R C.1980. Simulation of the barley leaf rust epidemic:structure and validation of BARSIM-1. Agric. Syst.5:55-73.
    [48]Seligman N G, Keulen H van.1981. PAPRAN:a simulation model of annual pasture production limited by rainfall and nitrogen. Simulation of nitrogen behaviour of soil-plant systems. Pudoc. Wageningen, NL. p.192-221.
    [49]Bruhn J A, Fry W E.1982. A mathematical model of the spatial and temporal dynamics of chlorothalonil residues on potato foliage. Phytopathology.72(10):1306-1312.
    [50]Shaffer M J, Swan J B, Johnson M R.1984. Coordinated farm and research management (COFARM) data system for soils and crops. Journal of Soil and Water Conservation.
    [51]Reddy V R, Whisler E D, Baker D N, et al.1985. The Soybean Crop Simulator GLYCIM:Model Documentation, Washington:USDA.
    [52]Jones J W, Brown L G, Hesketh J D.1980. COTCROP:a computer model for cotton growth and yield. CRC Press.
    [53]Van Diepen C A, Wolf J, Van Keulen H, et al.1989. WOFOST:a simulation model of crop production. Soil Use and Management,5:16-24.
    [54]Van den Broek B J, Kabat P.1996.'SWACROP:Dynamic Simulation Model of Soil Water and Crop Yield Applied to Potatoes', in P. Kabat, B. marshall, B. J. Van den Broek, J. Vos and H. Van Keulen (eds.), Modelling and Parametrization of the Soil-Plant-Atmosphere System, Wageningen, Wageningen Pers, pp.299-333.
    [55]Williams J R.1995. The EPIC model. In:V.P. Singh, Editor, Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, Colorado.
    [56]Monteith J L.1975.Vegetation and the Atmosphere, New York.:Academic Press.
    [57]Thornley J H M.1976. Mathematical models in plant physiology. Academic Press, New York, New York, USA.
    [58]Goudriaan J.1977. Crop micrometeorology:a simulation study. Wageningen university.
    [59]Penning de Vries F W T, van Laar H H.1982. Simulation of plant growth and crop production. Wageningen.308
    [60]France J,Thornley J H M.1984. Mathematical Models in Agriculture. Butterworth. London, GB. 335 p.
    [61]Charles-Edwards D A, Doley D, Rimmington G M.1986. Modeling plant growth and development. Academic Press. Sydney, AU.235 p.
    [62]Evans J R.1996. Developmental constraints on photosynthesis:effects of light and nutrition. In: Baker N R ed. Photosynthesis and the Environment. Netherlands:Kluwer Academic Publisher, 281-304.
    [63]Farquhar G D, Sharkey T D.1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol.33:317-345.
    [64]von Caemmerer S, Farquhar G D.1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta,153:376-387.
    [65]Weiss A, Lukens D L, Norman J M, et al.1989. Leaf wetness in dry beans under semi-arid conditions[J].Agricultural and Forest Meteorology,48(1-2):149-162.
    [66]Jansson P E.1998. Simulating Model for soil water and Heat Conditions[M].Swden:Swedish University of Agricultural Science.Press.
    [67]Echersten H, Jansson P E, Johnsson H.1998. SOILN Model[M].Sweden:Swedish University of Agricltural Science.Press.
    [68]Baker D N, Lambert J R, McKinion J M.1983. GOSSYM:A simulator for cotton crop growth and yield. S. C. Expt. Bull. Technical bulletin no.1089, S. C. Agricultural Experiment Station, December.
    [69]Hearn A B.1994. OZCOT:a simulation model for the. cotton crop management, Agricultural Systems.44:257-299.
    [70]Baker D N, Lambert J R, McKinion J M.1983. GOSSYM:A simulator of cotton growth and yield[J]. SC Agri. Exp. Stn. Tech. Bull.,1089.
    [71]Daly C, Johnson G L.1999. PRISM spatial climate layers:their development and use[A]. Short course on topics in applied climatology, Annual Meeting of the American Meteorological Sociality[C]. Dallas, TX:American Meteorological Society.
    [72]高亮之,金之庆,黄耀等.1994.作物模拟与栽培优化原理的结合—RCSODS.作物杂志.3:4-7.
    [73]高亮之,郑国清.2000.小麦栽培模拟优化决策系统(WCSODS).江苏农业学报.16(2):65-72.
    [74]赵春江,诸德辉,李鸿祥等.1997.小麦栽培管理计算机专家系统的研究与应用.中国农业科学.30(5):42-49.
    [75]曹卫星,潘洁,朱艳.2007,基于生长模型与Web应用的小麦管理决策支持系统.农业工程学报.23(1):133-138.
    [76]李卫国.2005.水稻生长模拟与决策支持系统的研究[D].南京农业大学.
    [77]张怀志,曹卫星.2003.基于知识模型的棉花管理决策支持系统的研究[D].南京农业大学,
    [78]汤亮,曹卫星,朱艳.2006.基于生长模型的油菜管理决策支持系统.农业工程学报.22(11):160-164.
    [79]中国作物学会大麦专业委员会主编.1986.中国大麦文集. 中国农业科技出版社
    [80]卢良恕.1996.中国大麦学.中国农业出版社.19(1):71-74.
    [81]Cheng J, Yang J P, Wang Z Q.1999. Simulation of growth and development of barley. System Sciences and Comprehensive Studies in Agriculture.15(4):262-265.
    [82]Yan W, Hunt L A.1999. An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany.84:607-614.
    [83]Yin X, Struik P C, Tang J, et al.2005. Model analysis of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany.56(413):959-965.
    [84]Yin X Y, Tang J J, Lui T J, et al.2003. A preliminary study on the QTL mapping of physiological parameters in a crop phenology model for predicting the development duration in barley. Acta Agricuturae Universitatis Jiangxiensis.25(6):839—843.
    [85]吴杨,龙婉婉,胡文海.2004.大麦发育模型的生理参数研究——不同光照长度对大麦生长发育的影响.井冈山师范学院学报.25(5):5—7.
    [86]刘桃菊,李晖,唐建军等.2003.大麦发育模型的生理参数研究——Ⅰ.光照对大麦发育的影响.江西农业大学学报,25(1):1—4.
    [87]唐建军,刘桃菊,李晖等.2004.大麦发育模型的生理参数研究——Ⅱ.大麦花前光周期敏感与钝感阶段的生理参数研究.江西农业大学学报.26(6):863—866.
    [88]Cao W, D N Moss.1997. Modeling phasic development in wheat:an integration of physiological components. Journal of Agricultural Science.129:163-172.
    [89]孟亚利,曹卫星,周治国等.2003.基于生长过程的水稻阶段发育与物候期模拟模型.中国农业科学.36(11):1362-1367
    [90]马富裕,曹卫星,张立祯等.2005.棉花生育时期及蕾铃发生发育模拟模型研究.应用生态学报.16(4):626—630.
    [91]刘铁梅,胡立勇,赵祖红等.2004.油菜发育过程及生育期机理模型的研究Ⅰ.模型的描述.中国油料作物学报.26(1):27—31.
    [92]徐寿军,顾小莉,庄恒扬等.2006.大麦顶端发育和物候期的模拟.麦类作物学报.26(3):123—127.
    [93]Hunt H W, Morgan J A, Read J J.1998. Simulating growth and root:Shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress. Annals of Botany.81:489-501
    [94]Marcelis L F M.1993. Simulation of biomass allocation in greenhouse:A review. Acta Horticulturae.328:49-65
    [95]Heuvelink E.1997. Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae. 69:51-59
    [96]Travasso M. I., Magrin G. O.1998. Utility of CERES-Barley under Argentine conditions. Field Crops Research.57:329-333.
    [97]Adiku S. G. K., Reichstein M., Lohila A., et al. PIXGRO:A model for simulating the ecosystem CO2 exchange and growth of spring barley. Ecological Modelling.2006,190:260-276.
    [98]纪江明.不同地下水位对大麦生长发育及产量影响的计算机模拟研究.杭州:浙江大学硕士学位论文,2001.
    [99]乔玉辉,宇振荣.2002.冬小麦干物质在各器官中的累积和分配规律.应用生态学报.13(5):543-546.
    [100]刘铁梅,曹卫星,罗卫红.2001.小麦器官间干物质分配动态定量模拟。麦类作物学报.21(3):26-31.
    [101]刘铁梅,张琼,邱枫,刘铁芳.2005.油菜器官间干物质分配动态的定量模拟。中国油料作物学报.27(1):55-59.
    [102]Meinke H, Hammer G L, H van Keulen, Rabbinge R.1997. Improving wheat simulation capabilities in Australia from a cropping systems perspective Ⅲ. The integrated wheat model(I_WHEAT). European Journal of Agronomy.8:101-116
    [103]Petersen C T, Jorgensen U, Svendsen H.1995. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. European Journal of Agronomy.4:77-89
    [104]Gabrielle B, Denoroy P, Gosse G.1998. Development and evaluation of a CERES type model for winter oilseed rape. Field Crops Research.57:95-111
    [105]王爱华,张文芳,黄冲平.2005.马铃薯干物质分配与器官建成的动态模拟模型.生物数学学报.20(3):356-362.
    [106]Vandendriessche H. J.2000. A model of growth and sugar accumulation of sugar beet for potential production conditions:SUBEMOpo I. Theory and model structure. Agricultural Systems. 64:1-19.
    [107]Tabourel-Tayot F., Gastal F.1998. MecaNiCAL, a supply-demand model of carbon and nitrogen partitioning applied to defoliated grass 1. Model description and analysis. European Journal of Agronomy.9:223-241.
    [108]Yang Z. J.,Midmore D. J.2005. Modelling plant resource allocation and growth partitioning in response to environmental heterogeneity. Ecological Modelling.181:59-77.
    [109]于强,傅抱璞,姚克敏.1995.水稻叶面积指数的普适增长模型.中国农业气象.16(2):6-8
    [110]陈华,张立中,方娟.1995.小麦发育动态模拟模型的初步研究.中国农业气象.16(1):8-15
    [111]Thaler P., Pages L.1998. Modelling the influence of assimilate availability on root growth and architecture. Plant and Soil.201:307-320.
    [112]Versteeg M N, H van Keulen.1986. Potential crop production prediction by some simple calculation methods, as compared with computer simulations. Agricultural Systems.19:249-272
    [113]Amir J. and Sinclair I R.1991. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crop Res.28:47-58.
    [114]Stapper M.1984. Simtag:A simulation model of wheat genotypes. Model Documentation. International Center for Agricultural Research in the Dry Areas Publication. Aleppo, Syria
    [115]Sinclair T. R. and Amir J.1992, A model to assess nitrogen limitations on the growth and yield of spring wheat. Field Crops Res.30:63-78
    [116]Sinclair T. R. and N.G. Seligman.1996. Crop modeling:from infancy to maturity. Agron. J.88: 698-704
    [117]Van Keulen H. and Seligman NG.1987. Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs, Pudoc, Wageningen, The Netherlands.310
    [118]Eckersten H., Torssell B., Kornher A., et al.2007. Modelling biomass, water and nitrogen in grass ley:Estimation of N uptake parameters. Europ. J. Agronomy.27:89-101.
    [119]Veroustraete F, Patyn J, Myneni R B.1996. Estimating Net Ecosystem Exchange of Carbon Using the Normalized Difference Vegetation Index and an Ecosystem Model[J]. Remote Seas. Environ. 58:115-130
    [120]Ritchie JT, Schulthess Urs.1994.GCTE Crops Network Metadata for CERES-Wheat V3.0 Crop Growth Model,
    [121]Porter JR, Jamieson PD, Wilson DR.1993. Comparison of the wheat simulation models AFRCWHEAT2, CERES-Wheat and SWHEAT for non-limiting conditions of crop growth. Field Crop Research.33:131-157.
    [122]APSRU.2001. The APSIM-Wheat Modeule-(Wheat), APSIM document, apsuite V2.1.
    [123]Gent MPN.1994. Photosynthate reserves during grain filling in winter wheat. Agronomy Journal. 86:159-167.
    [124]郑秀琴,冯利平,刘荣花.冬小麦产量及产量构成模拟模型.作物学报.2006.32(2):260-266.(in Chinese)
    [125]Moot DJ, Jamieson PD, Ford MA, et al.1996. Rate of change in harvest index during grain filling of wheat. Agriculture Science.126:387-395.
    [126]Kemanian A. R., Stockle C. O., Huggins D. R., et al.2007. A simple method to estimate harvest index in grain crops. Field Crops Research.103:208-216.
    [127]Meinke H.1996. Improving wheat simulation capabilities in Australia from a cropping systems perspective, PhD Dissertation of University of Wageningen.
    [128]Porter JR.1993. AFRCWHEAT2:a model of the growth and development of wheat incorporating responses to water and nitrogen. European Journal of Agronomy.2:69-82.
    [129]Bell MA, Fischer RA.1994. Using yield prediction models to assess yield gains:a case study for wheat. Field Crop Research.36:161-166.
    [130]Saxton KE, Porter MA, NcMahon TA.1992. Climatic impacts on dryland winter wheat yields by daily soil water and crop stress simulations. Agriculture and Forest Meteorology.58:177-192.
    [131]Travasso MI, Magrin GO.1998. Utility of CERES-Barley under Argentine conditions. Field Crop Research.57:329-333.
    [132]Wahbi A, Sinclair TR.2005. Simulation analysis of relative yield advantage of barley and wheat in an eastern Mediterranean climate. Field Crop Research.91:287-296.
    [133]Goyne PJ, Meinke H, Milroy SP, et al.1996. Development and use of a barley crop simulation model to evaluate production management strategies in north-eastern Australia. Australia Journal of Agricultural Research. 47:97-105.
    [134]Milroy SP, Goyne PJ.1995. Leaf area development in barley-model construction and response to soil moisture status. Australia Journal of Agricultural Research.46:845-860.
    [135]Goyne PJ, Milroy SP, Lilley JM, et al.1993. Radiation interception, radiatiaon use efficiency and growth of barley cultivars. Australia Journal ofAgricultural Research,44:1351-1366.
    [136]Wendroth O, Reuter HI, Kersebaum KC.2003. Predicting yield of barley across a landscape:a state-space modeling approach. Journal of Hydrology.272:250-263.
    [137]Wilfried Mirschel,Karl-Otto Wenkel.2005. Dynamic phenological model for winter rye and barley. European Journal of Agronomy.23:123-135.
    [138]曹宏鑫,任德昌,王旭清.2001.作物生长发育过程的计算机模拟决策研究概述.山东农业科学.3:51-54.
    [139]孙宁.2002.作物模拟技术在气候变化对农业生产影响研究中的应用.地学前缘.9(1):1
    [140]王向东,张建平,马海莲.2003.作物模拟模型的研究概况及展望.河北农业大学学报.26:20-23.
    [141]丰庆河,张建平,王向东.2002.作物模拟研究的进展.河北农业大学学报.25:17-20.
    [142]王亚莉,贺立源.2005.作物生长模拟模型研究和应用综述.华中农业大学学报.24(5):529-535.
    [1]中国大麦科学委员会.中国大麦科学.北京:中国农业科技出版社,1986.34—43.
    [2]卢良恕.中国大麦科学.北京:中国农业科技出版社,1996.1—30.
    [3]陈杰,杨京平.大麦生长发育的模拟研究.农业系统科学与综台研究,1999,15(4):262—265.
    [4]殷新佑,唐建军,刘桃菊等.作物发育模型生理参数的QTL定位与应用研究初报——以大麦品系的生育期预测为例.江西农业大学学报,2003,25(6):839—843.
    [7]吴杨,龙婉婉,胡文海.大麦发育模型的生理参数研究——不同光照长度对大麦生长发育的影响.井冈山师范学院学报,2004,25(5):5—7.
    [8]刘桃菊,李晖,唐建军等.大麦发育模型的生理参数研究——Ⅰ.光照对大麦发育的影响.江西农业大学学报,2003,25(1):1—4.
    [9]唐建军,刘桃菊,李晖等.大麦发育模型的生理参数研究——Ⅱ.大麦花前光周期敏感与钝感阶段的生理参数研究.江西农业大学学报,2004,26(6):863—866.
    [11]孟亚利,曹卫星,周治国等.基于生长过程的水稻阶段发育与物候期模拟模型.中国农业科学,2003,36(11):1362-1367
    [12]马富裕,曹卫星,张立祯等.棉花生育时期及蕾铃发生发育模拟模型研究.应用生态学报,2005,16(4):626—630.
    [13]刘铁梅,胡立勇,赵祖红等.油菜发育过程及生育期机理模型的研究Ⅰ.模型的描述.中国油料作物学报,2004,26(1):27—31.
    [14]徐寿军,顾小莉,庄恒扬等.大麦顶端发育和物候期的模拟.麦类作物学报,2006,26(3):123—127.
    [15]孙晓辉.作物栽培学(各论).贵州科技出版社,1992.179.
    [16]赵永新,方光华,冯幕衍等.大麦.上海:上海科技出版社,1986.148—154.
    [17]翁训珠.大麦生物学特性与栽培.上海:上海科技出版社,1987.82—167.
    [18]何立人,李正玮,要来胜.中国大麦科学.西安:陕西科技出版社,1986.148—154.
    [19]刁操铨.作物栽培学各论.中国农业出版社,1994.127—143.
    [22]胡继超,曹卫星,姜东等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响.作物学报,2004,30(4):345—320.
    [23]胡继超,曹卫星,罗卫红等.小麦水分胁迫影响因子的定量研究Ⅱ.模型的建立与测试.作 物学报,2004,30(5):460—464.
    [24]胡继超,曹卫星,罗卫红.渍水麦田土壤水分动态模型研究.应用气象学报,2004,15(1):41—50.
    [25]庄恒扬,曹卫星,蒋思霞等.作物氮素吸收与分配的动态模拟.农业系统科学与综合研究,2004,20(1):5—9.
    [26]Yan W, Hunt A. An equation for modeling the temperature response of plants using only the cardinal temperature. Annals of Botany,1999,84:607—614.
    [27]Yin X, Kropff M J, McLaren G, et al. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology,1995,77:1—16.
    [28]Stapper M. SIMTAG:A Simulation Model of Wheat Genotypes. University of New England, ICARDA.1984.
    [29]Wang E, Engel T. Simulation of phenological development of wheat crops. Agricultural Systems, 1998.58(1):1—24.
    [1]陈杰,杨京平.大麦生长发育的模拟研究.农业系统科学与综台研究,1999,15(4):262—265.
    [2]严美春,曹卫星,罗卫红等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述.应用生态学报,2000,11(3):355—359.
    [3]刘铁梅,曹卫星,罗卫红等.小麦抽穗后生理发育时间的计算与生育期的预测.麦类作物学报,2000,20(3):29—34.
    [4]马富裕,曹卫星,张立祯等.棉花生育时期及蕾铃发生发育模拟模型研究.应用生态学报,2005,16(4):626—630.
    [5]倪纪恒,罗卫红,李永秀等.温室番茄发育模拟模型研究.中国农业科学,2005,38(6):1219—1225.
    [6]徐寿军,顾小莉,庄恒扬等.大麦顶端发育和物候期的模拟.麦类作物学报,2006,26(3):123—127.
    [7]吴杨,龙婉婉,胡文海.大麦发育模型的生理参数研究——不同光照长度对大麦生长发育的影响.井冈山师范学院学报,2004,25(5):5—7.
    [8]刘桃菊,李晖,唐建军等.大麦发育模型的生理参数研究——Ⅰ.光照对大麦发育的影响.江西农业大学学报,2003,25(1):1—4.
    [9]唐建军,刘桃菊,李晖等.大麦发育模型的生理参数研究——Ⅱ.大麦花前光周期敏感与钝感阶段的生理参数研究.江西农业大学学报,2004,26(6):863—866.
    [1]于强,傅抱璞,姚克敏.水稻叶面积指数的普适生长模型.中国农业气象,1995,16(2):6-8
    [2]陈华,张立中,方娟.小麦动态模拟模型的初步研究.中国农业气象,1995,16(1):8-15
    [3]Penning de Vires FWT, HH van Laar. Simulation of plant growth and crop production. Simulation Monoqgraphs. Wageningen:Pudoc,1982
    [4]Versteeg MN, H van Keulen. Potential crop production prediction by some simple calculation methods, as compared with computer simulations. Agricultural Systems,1986,19:249-272
    [5]Amir J, Sinclair IR. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Research,1991,28:47-58
    [6]Stapper M.1984. Simtag:A simulation model of wheat genotypes. Model Documentation. International Center for Agricultural Research in the Dry Areas Publication. Aleppo, Syria
    [7]Sinclair TR. and Amir J. A model to assess nitrogen limitations on the growth and yield of spring wheat. Field Crops Research,1992,30:63-78
    [8]Sinclair TR, Seligman NG. Crop modeling:from infancy to maturity. Agronomy Journal,1996,88: 698-704
    [9]Adiku SGK, Reichstein M, Lohila A, et al. PIXGRO:A model for simulating the ecosystem CO2 exchange and growth of spring barley. Ecological Modelling,2006,190:260-276
    [10]Van Keulen H, Seligman NG.1987. Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs, Pudoc, Wageningen, The Netherlands.310
    [11]Eckersten H, Torssell B, Kornher A, et al. Modelling biomass, water and nitrogen in grass ley: Estimation of N uptake parameters. European Journal of Agronomy,2007,27:89-101
    [12]Tabourel-Tayot F, Gastal F. MecaNiCAL, a supply-demand model of carbon and nitrogen partitioning applied to defoliated grass 1. Model description and analysis. European Journal of Agronomy,1998,9:223-241
    [13]Veroustraete F, Patyn J, Myneni R B. Estimating Net Ecosystem Exchange of Carbon Using the Normalized Difference Vegetation Index and an Ecosystem Model. Remote Sensing of Environment,1996,58:115-130
    [14]Amaducci S, Colauzzi M, Bellocchi G, et al. Modelling post-emergent hemp phenology (Cannabis sativa L.):Theory and evaluation. European Journal of Agronomy,2008,28:90-102
    [15]Edwards D, Hamson M. Guide to Mathematical Modelin. BocaRaton, Florida, US:CRC Press, Inc.,1990
    [16]Back T, Schwefel H P. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation,1993,(1):1—23
    [17]邹薇,刘铁梅,潘永龙等.基于生理生态过程的大麦顶端发育与物候期模拟模型Ⅰ.模型的描述.生态学报,2009,29(3):1-9
    [18]Goudriaan J. and van Laar H.H. Modeling potential crop growth processes. Textbook and Exercises. Kluwer Academic Publishers,1994:197-199
    [19]凌启鸿.作物群体质量.上海:上海科学技术出版社.60-62
    [20]张怀志,曹卫星,周治国等.棉花适宜叶面积指数的动态知识模型.棉花学报,2003,15(3):151-154
    [21]胡继超,曹卫星,罗卫红.渍水麦田土壤水分动态模型研究.应用气象学报,2004,15(1):41-50
    [22]庄恒扬,曹卫星,蒋思霞等.作物氮素吸收与分配的动态模拟.农业系统科学与综合研究,2004,20(1):5—9
    [23]胡继超,曹卫星,姜东等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响.作物学报,2004,30(4):345-320
    [24]Gary C. Simulation of individual organ growth and development on a tomato plant. Ann. Bot. 1990,66:695-701
    [25]Jamieson P D, Brooding I R. Prediction of leaf appearance in wheat:a question of temperature. Field Crop Res.1995,41:35-44
    [26]刘铁梅,邹薇,刘铁芳等.不同油菜品种比叶面积的多因子分析.作物学报.2006,32(7):1083-1089
    [27]李永秀,罗卫红,倪纪恒等.用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量.农业工程学报,2005,21(12):131-136
    [28]王冀川,马富裕,冯胜利等.加工番茄叶面积指数动态的知识模型研究,石河子大学学报.2008,26(1):63-69
    [1]Penning de Vries F W T, van Laar H H. Modelling potential crop growth processes. Kluwer Academic Publishers, the Netherlands.1994,95-118.
    [2]Kropff M J, van Laar H H, Mathews, et al. ORYZAI:An Eco-physiological Model for Irrigated Rice Production. International Rice Rcwcarch Institute, Los Banos, Pudoc Wageningen et al.1994, 35-40.
    [3]Bouman B A M, Kropff M J, Tuong T P, et al. ORYZA2000:Modeling Lowland Rice. International Rice Research Institute, Los Banos, Pudoc Wangeningen et al.2000,90-50
    [4]Jones C A, Kiniry J R.CERES-Maize:A simulation model of maize growth and development. College Station, US:Texas A&M Univ. Press,1986
    [5]Ritchie J T, Otter S. Description and performance of CERES-Wheat:a user-oriented wheat yield model. Willis W O. ARS wheat yield project.US:USDA-ARS,ARS-38,1985.159~175
    [6]潘学标,韩湘玲,董占山.棉花生长发育模拟模型COTGROW的建立Ⅰ光合作用和干物质生产与分配.棉花学报,1997,9(3):132—141
    [7]李秉柏,马新明,徐立华.棉花干物质积累的模拟模型与检验[J].中国农业气象,1998,19(2):20-24
    [8]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review. Scientia Horticulturea,1998,74:83-111
    [9]王世耆,程延年.作物产量与天气气候,科学出版社,1991.16-18.
    [10]刘铁梅,曹卫星,罗卫红.小麦物质生产与积累的模拟模型.麦类作物学报,2001,21(3):26-31
    [11]Goudriaan J, Van Laar H H. Modelling Potential Crop Growth Processes. Kluwer Academic Publishers,1994.149-167
    [12]张立桢,曹卫星,张思平等.棉花光合生产与干物质积累过程的模拟.棉花学报,2003,15(3):138-145
    [13]孟亚利,曹卫星,柳新伟等.水稻光合生产与干物质累积的动态模拟.生物数学学报,2004,19(2):205-212
    [14]Vong N Q, Murata Y. Studies on the physiological characteristics of C3 and C4 crop species. I The effects of air temperature on the apparent photosynthesis, dark respiration, and nutrient absorption of some crops. Jpn. J. Crop Sci.1977,46:45-52.
    [15]Takeda G. Ecological analysis of photosynthesis of barley and wheat. Jpn. Agric. Res.1979,13: 180-185.
    [16]胡继超,曹卫星,姜东等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响.作物学报,2004,30(4):345—320.
    [17]胡继超,曹卫星,罗卫红等.小麦水分胁迫影响因子的定量研究Ⅱ.模型的建立与测试.作物 学报,2004,30(5):460—464.
    [18]胡继超,曹卫星,罗卫红.渍水麦田土壤水分动态模型研究.应用气象学报,2004,15(1):41—50.
    [19]庄恒扬,曹卫星,蒋思霞等.作物氮素吸收与分配的动态模拟.农业系统科学与综合研究,2004,20(1):5—9.
    [1]徐寿军.大麦生长发育及品质形成模拟模型.扬州大学农学院博士学位论文.2007.
    [2]Hunt H W, Morgan J A, Read J J. Simulating growth and root:Shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress. Annals of Botany,1998,81:489-501.
    [3]Marcelis L F M. Simulation of biomass allocation in greenhouse:A review. Acta Horticulturae, 1993,328:49-65.
    [4]Heuvelink E. Effect of fruit load on dry matter partitioning in tomato. Scientia Horticulturae,1997, 69:51-59.
    [5]Travasso M. I., Magrin G. O. Utility of CERES-Barley under Argentine conditions. Field Crops Research,1998,57:329-333.
    [6]Adiku S. G. K., Reichstein M., Lohila A., et al. PIXGRO:A model for simulating the ecosystem CO2 exchange and growth of spring barley. Ecological Modelling,2006,190:260-276.
    [7]陈杰,杨京平.大麦生长发育的模拟研究.农业系统科学与综合研究,1999,15(4):262-265.
    [8]纪江明.不同地下水位对大麦生长发育及产量影响的计算机模拟研究.杭州:浙江大学硕士学位论文.2001.
    [9]乔玉辉.冬小麦干物质在各器官中的累积和分配规律研究.应用生态学报,2002,13(5):543-546.
    [10]刘铁梅,曹卫星,罗卫红等.小麦器官间干物质分配动态的定量模拟.麦类作物学报,2001,21(3):26-31.
    [11]刘铁梅,张琼,邱枫等.油菜器官间干物质分配动态的定量模拟.中国油料作物学报,2005,27(1):55-59.
    [12]Petersen C T, Jorgensen U, Svendsen H. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. European Journal of Agronomy,1995,4:77-89.
    [13]Meinke H, Hammer G L, H van Keulen, Rabbinge R. Improving wheat simulation capabilities in Australia from a cropping systems perspective Ⅲ. The integrated wheat model(I_WHEAT). European Journal of Agronomy,1997,8:101-116.
    [14]Gabrielle B, Denoroy P, Gosse G.1998. Development and evaluation of a CERES type model for winter oilseed rape. Field Crops Research,57:95-111.
    [15]王爱华,张文芳,黄冲平.马铃薯干物质分配与器官建成的动态模拟研究.生物数学学报,2005,20(3):356-362.
    [16]邹薇,刘铁梅,潘永龙等.基于生理生态过程的大麦顶端发育和物候期的模拟模型Ⅰ模型的描述.生态学报,2009,29(3):1-9.
    [17]Goudriaan J, Van Laar H H.1994. Modelling Potential Crop Growth Processes. Kluwer Academic Publishers,149-167.
    [18]胡继超,曹卫星,罗卫红.渍水麦田土壤水分动态模型研究.应用气象学报,2004,15(1):41-50.
    [19]庄恒扬,曹卫星,蒋思霞等.作物氮素吸收与分配的动态模拟.农业系统科学与综合研究,2004,20(1):5-9.
    [20]胡继超,曹卫星,姜东等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响.作物学报,2004,30(4):345-320.
    [21]Amaducci S, Colauzzi M, Bellocchi G, et al. Modelling post-emergent hemp phenology (Cannabis sativa L.):Theory and evaluation. European Journal of Agronomy,2008,28:90-102.
    [22]Edwards D, Hamson M. Guide to Mathematical Modelin. BocaRaton, Florida, US:CRC Press, Inc., 1990.
    [23]Back T, Schwefel H P. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation,1993, (1):1-23.
    [24]严美春,曹卫星,罗卫红等.小麦发育过程及生育期机理模型的研究Ⅰ.建模的基本设想与模型的描述.应用生态学报,2000,11(3):355-359.
    [25]刘铁梅,曹卫星,罗卫红等.小麦抽穗后生理发育时间的计算与生育期的预测.麦类作物学报,2000,20(3):29-34.
    [26]马富裕,曹卫星,张立祯等.棉花生育时期及蕾铃发生发育模拟模型研究.应用生态学报,2005,16(4):626-630.
    [27]孟亚利,曹卫星,柳新伟等.水稻地上部干物质分配动态模拟的初步研究.作物学报,2004,30(4):376-381.
    [1]Ritchie JT, Schulthess U. GCTE Crops Network Metadata for CERES-Wheat V3.0 Crop Growth Model,1994
    [2]APSRU. The APSIM-Wheat Modeule-(Wheat), APSIM Document, Apsuite V2.1,2001
    [3]王琳,郑有飞,于强等.APSIM模型对华北平原小麦-玉米连作系统的适用性.应用生态学报,2007,18(11):2480-2486
    [4]沈禹颖,南志标,Bellotti B等.APSIM模型的发展与应用.应用生态学报,2002,13(8):1027-1032
    [5]Porter JR, Jamieson PD, Wilson DR. Comparison of the wheat simulation models AFRCWHEAT2, CERES-Wheat and SWHEAT for non-limiting conditions of crop growth. Field Crop Research, 1993,33:131-157
    [6]郑秀琴,冯利平,刘荣花.冬小麦产量形成模拟模型研究.作物学报,2006,32(2):260-266
    [7]Moot DJ, Jamieson PD, Ford MA, et al. Rate of change in harvest index during grain filling of wheat. Agriculture Science,1996,126:387-395
    [8]Meinke H. Improving wheat simulation capabilities in Australia from a cropping systems perspective. PhD Dissertation. Wageningen:University of Wageningen,1996
    [9]Gent MPN. Photosynthate reserves during grain filling in winter wheat. Agronomy Journal,1994, 86:159-167
    [10]Porter JR. AFRCWHEAT2:A model of the growth and development of wheat incorporating responses to water and nitrogen. European Journal of Agronomy,1993,2:69-82
    [11]高亮之,金之庆,郑国清等.小麦栽培模拟优化决策系统(WCSODS).江苏农业学报,2000,16(2):65-72
    [12]Bell MA, Fischer RA. Using yield prediction models to assess yield gains:A case study for wheat. Field Crop Research,1994,36:161-166
    [13]Saxton KE, Porter MA, NcMahon TA. Climatic impacts on dryland winter wheat yields by daily soil water and crop stress simulations. Agriculture and Forest Meteorology,1992,58:177-192
    [14]张建平,赵艳霞,王春乙等.气候变化对我国华北地区冬小麦发育和产量的影响.应用生态学报,2006,17(7):1179-1184
    [15]Duchemin B, Maisongrande P, Boulet G, et al. A simple algorithm for yield estimates evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environmental Modelling & Software,2008,23:876-892
    [16]Moriondo M, Maselli F, Bindi M. A simple model of regional wheat yield based on NDVI data. European Journal of Agronomy,2007,26:266-274
    [17]Wahbi A, Sinclair TR. Simulation analysis of relative yield advantage of barley and wheat in an eastern Mediterranean climate. Field Crop Research,2005,91:287-296
    [18]Travasso MI, Magrin GO. Utility of CERES-Barley under Argentine conditions. Field Crop Research,1998,57:329-333
    [19]Bastiaanssen WGM, Ali S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment,2003,94: 321-340
    [20]Wendroth O, Reuter HI, Kersebaum KC. Predicting yield of barley across a landscape:A state-space modeling approach. Journal of Hydrology,2003,272:250-263
    [21]Goudriaan J, HH Van Laar. Modelling Potential Crop Growth Processes. Kluwer Academic Publishers,1994
    [22]刘铁梅,曹卫星,罗卫红等.小麦茎蘖动态模拟模型的研究.华中农业大学学报,2001,20(5):416-421
    [23]Abbate PE, Andrade FH, Culot JP. The effects of radiation and nitrogen on number of grains in wheat. Journal of Agricultural Science,1995,124:351-360
    [24]Demotes-Mainard S, Jeuffroy MH. Incorporating radiation and nitrogen nutrition into a model of kernel number in wheat. Crop Science,2001,41:415-423
    [25]Fischer RA. Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science,1985,105:447-461
    [26]Weir AH, Bragg PL, Porter JR, et al. A winter wheat crop simulation model without water or nutrient limitations. Journal of Agricultural Science,1984,102:371-382
    [27]Jamieson PD, Semenov MA, Brooking IR, et al. Sirius:A mechanistic model of wheat response to environmental conditions. European Journal of Agronomy,1998,8:161-179
    [28]Vos J. Effects of temperature and nitrogen supply on post-floral growth of wheat:Measurements and simulations. Agricultural Research Repors,1981,911:164
    [1]Goudriaan J, H H Van Laar. Modelling Potential Crop Growth Processes. Kluwer Academic Publishers,1994.197-206
    [2]徐寿军,顾小莉,庄恒扬等.大麦顶端发育和物候期的模拟.麦类作物学报,2006,26(3):123-127.
    [3]Yin X Y, Struik P C, Tang J J, et al. Model analysis of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany,2005,56(413):959-965.
    [4]吴杨,龙婉婉,胡文海.大麦发育模型的生理参数研究——不同光照长度对大麦生长发育的影响.井冈山师范学院学报,2004,25(5):5-7.
    [5]刘桃菊,李晖,唐建军等.大麦发育模型的生理参数研究——Ⅰ.光照对大麦发育的影响.江西农业大学学报,2003,25(1):1—4.
    [6]Limin A, Corey A, Hayes P. Low-temperature acclimation of barley cultivars used as parents in mapping populations:response to photoperiod, vernalization and phenological development. Plant, 2007,226:139-146.
    [7]Veroustraete F, Patyn J, Myneni R B. Estimating Net Ecosystem Exchange of Carbon Using the Normalized Difference Vegetation Index and an Ecosystem Model. Remote Sensing of Environment,1996,58:115-130
    [8]Versteeg MN, H van Keulen. Potential crop production prediction by some simple calculation methods, as compared with computer simulations. Agricultural Systems,1986,19:249-272
    [9]Amir J, Sinclair IR. A model of the temperature and solar-radiation effects on spring wheat growth and yield. Field Crops Research,1991,28:47-58
    [10]Gary C. Simulation of individual organ growth and development on a tomato plant. Ann. Bot. 1990,66:695-701
    [11]Jamieson P D, Brooding I R. Prediction of leaf appearance in wheat:a question of temperature. Field Crop Res.1995,41:35-44
    [12]刘铁梅,邹薇,刘铁芳等.不同油菜品种比叶面积的多因子分析.作物学报.2006,32(7):1083-1089
    [13]李永秀,罗卫红,倪纪恒,陈永山,等.用辐热积法模拟温室黄瓜叶面积、光合速率与干物质产量.农业工程学报,2005,21(12):131-136
    [14]王冀川,马富裕,冯胜利等.加工番茄叶面积指数动态的知识模型研究.石河子大学学报.2008,26(1):63-69
    [15]刘铁梅,曹卫星,罗卫红等.2001.小麦器官间干物质分配动态定量模拟。麦类作物学报.21(3):26-31.
    [16]刘铁梅,张琼,邱枫等.2005.油菜器官间干物质分配动态的定量模拟。中国油料作物学报.27(1):55-59.
    [17]马富裕,曹卫星,张立祯等.棉花生育时期及蕾铃发生发育模拟模型研究.应用生态学报,2005,16(4):626—630.
    [18]孟亚利,曹卫星,柳新伟等.水稻地上部干物质分配动态模拟的初步研究.作物学报.2004,30(4):376-381
    [19]Penning de Vries F W T, van Laar H H. Modelling potential crop growth processes. Kluwer Academic Publishers, the Netherlands.1994,95-118.
    [20]Kropff M J, van Laar H H, Mathews, et al. ORYZAI:An Eco-physiological Model for Irrigated Rice Production. International Rice Rcwcarch Institute, Los Banos, Pudoc Wageningen et al.1994, 35-40.
    [21]Bouman B A M, Kropff M J, Tuong T P, et al. ORYZA2000:Modeling Lowland Rice. International Rice Research Institute, Los Banos, Pudoc Wangeningen et al.2000,90-50
    [22]Jones C A, Kiniry J R.CERES-Maize:A simulation model of maize growth and development. College Station, US:Texas A&M Univ. Press,1986
    [23]Ritchie J T, Otter S. Description and performance of CERES-Wheat:a user-oriented wheat yield model. Willis W O. ARS wheat yield project.US:USDA-ARS,ARS-38,1985.159~175
    [24]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops:a review. Scientia Horticulturea,1998,74:83-111
    [25]王世耆,程延年.作物产量与天气气候,科学出版社,1991.16-18.
    [26]潘学标,韩湘玲,董占山.棉花生长发育模拟模型COTGROW的建立Ⅰ光合作用和干物质生产与分配.棉花学报,1997,9(3):132—141
    [27]李秉柏,马新明,徐立华.棉花干物质积累的模拟模型与检验[J].中国农业气象,1998,19(2):20-24
    [28]刘铁梅,曹卫星,罗卫红等.小麦物质生产与积累的模拟模型.麦类作物学报,2001,21(3):26-31
    [29]张立桢,曹卫星,张思平等.棉花光合生产与干物质积累过程的模拟.棉花学报,2003,15(3):138-145
    [30]孟亚利,曹卫星,柳新伟等.水稻光合生产与干物质累积的动态模拟.生物数学学报,2004,19(2):205-212
    [31]刘铁梅,曹卫星,罗卫红等.小麦茎蘖动态模拟模型的研究.华中农业大学学报,2001,20(5):416-421
    [32]Abbate PE, Andrade FH, Culot JP. The effects of radiation and nitrogen on number of grains in wheat. Journal of Agricultural Science,1995,124:351-360
    [33]Demotes-Mainard S, Jeuffroy MH. Incorporating radiation and nitrogen nutrition into a model of kernel number in wheat. Crop Science,2001,41:415-423
    [34]Fischer RA. Number of kernels in wheat crops and the influence of solar radiation andtemperature. Journal of Agricultural Science,1985,105:447-461
    [35]Weir AH, Bragg PL, Porter JR, et al. A winter wheat crop simulation model without water or nutrient limitations. Journal of Agricultural Science,1984,102:371-382
    [36]Porter JR. AFRCWHEAT2:A model of the growth and development of wheat incorporating responses to water and nitrogen. European Journal of Agronomy,1993,2:69-82
    [37]Jamieson PD, Semenov MA, Brooking IR, et al. Sirius:A mechanistic model of wheat response to environmental conditions. European Journal of Agronomy,1998,8:161-179
    [38]Vos J. Effects of temperature and nitrogen supply on post-floral growth of wheat:Measurements and simulations. Agricultural Research Repors,1981,911:164
    [39]Ritchie JT, Schulthess U. GCTE Crops Network Metadata for CERES-Wheat V3.0 Crop Growth Model,1994
    [40]APSRU. The APSIM-Wheat Modeule-(Wheat), APSIM Document, Apsuite V2.1,2001
    [41]Cao W, D N Moss. Modeling phasic development in wheat:an integration of physiological components. Journal of Agricultural Science.1997,129:163-172.
    [42]孟亚利,曹卫星,周治国等.基于生长过程的水稻阶段发育与物候期模拟模型.中国农业科学,2003,36(11):1362-1367
    [43]刘铁梅,胡立勇,赵祖红等.油菜发育过程及生育期机理模型的研究Ⅰ.模型的描述.中国油 料作物学报,2004,26(1):27—31.
    [44]Yan W, Hunt A. An equation for modeling the temperature response of plants using only the cardinal temperature. Annals of Botany,1999,84:607—614.
    [45]Yin X, Kropff M J, McLaren G, et al. A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology,1995,77:1—16.
    [46]Stapper M. SIMTAG:A Simulation Model of Wheat Genotypes. University of New England, ICARDA.1984.
    [47]Wang E, Engel T. Simulation of phenological development of wheat crops. Agricultural Systems, 1998.58(1):1—24.
    [48]Mirschel W, Wenkel K O, Schultz A, et al. Dynamic phenological model for winter rye and winter barley. Europ. J. Agronomy,2005,23:123-135.
    [49]殷新佑,唐建军,刘桃菊等.作物发育模型生理参数的QTL定位与应用研究初报——以大麦品系的生育期预测为例.江西农业大学学报,2003,25(6):839—843.
    [50]赵永新,方光华,冯幕衍等.大麦.上海:上海科技出版社,1986.148-154.
    [51]何立人,李正玮,要来胜.中国大麦科学.西安:陕西科技出版社,1986.148-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700