水蚀风蚀交错区土壤—紫花苜蓿系统中水热气运移的试验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在陕北水蚀风蚀交错区,自20世纪90年代以来开展了退耕还林(草)等一系列植被恢复和建设措施,以遏制当地严重的水土流失。干旱半干旱地区植被重建恢复过程中,土壤水分是其主要限制性因子,且由此引起的土壤碳排放的环境效应成为当前需要研究的重要科学问题。本研究围绕典型植被根系生长和耗水规律,动态模拟土壤水分消耗过程,并在土壤水分研究的基础上,结合其它环境影响因素,对该区植被恢复过程中的土壤碳通量变化进行研究,为该区国家退耕还林(草)所引起的生态环境效应提供科学依据。为此,选取典型牧草紫花苜蓿为供试植物,利用连续两年的土柱栽培试验,研究了不同水分条件下耐旱植物的根系生长动态过程和耗水规律,测定了土壤水分剖面变化以验证了经验根系分布模式的适用性;结合野外田间试验,测定了不同土地利用方式下的土壤呼吸及其环境驱动因子,采用经验性模型估算了植物生长季节里土壤碳排放动态变化,并探讨了该区典型植被生长条件下的土壤水热气运动的动态模拟。结果表明:
     (1)紫花苜蓿细根平均根径为0.20 mm左右,比根长为274 mm/mg,细根根长、干重、表面积和体积之间呈极显著线性关系,其细根根长y (m)和细根干重x (g)关系为:。紫花苜蓿根系生长迅速,在适宜水分条件下,第一年生长期内根系平均下扎速率1.03 cm/d。建立了反映植物实际根长分布情况数据拟合方法:即通过建立紫花苜蓿归一化累计根长与土壤深度的函数拟合关系,对拟合的函数求导可得其根长密度与土壤深度的关系,从而得到连续的根长密度分布剖面。种植2年紫花苜蓿根系生长时间可分为三个阶段,在第二年的分枝现蕾期根系生长速率最快;株高生长最快在6月中旬开始到到7月下旬的开花期,成熟期株高达到稳定值;叶面积在第一年生长期内呈单峰曲线变化趋势,在开花成熟期达到最大值。水分对主根、细根生物量均有显著的影响,高水处理下的株高和叶面积大于低水处理。y =274.18x
     (2)水分胁迫对于紫花苜蓿细根干重的累积速率无影响,但对其地上产量和主根生物量的累积速率影响较为明显。每年生长期平均蒸腾速率不仅和水分条件有关,还和苜蓿的生长年限密切相关。高低两种水分处理下的生物产量蒸腾系数差异不显著(P >0.05),蒸腾水的转化率对于同一时期的同一种植物而言几乎是固定的,这主要是针对生物产量而言;对于经济产量来说,适宜供水情形下蒸腾系数则会显著低于亏缺供水情形。不考虑水分条件,紫花苜蓿生物量和耗水量之间存在极显著线性相关关系。水分胁迫对于地下部分的影响要弱于对地上部分产量的影响,根系的迅速生长可以吸收更多的土壤水分,但是田间也会造成土壤的迅速干燥化。在苜蓿开花-成熟生育阶段,所测定的苜蓿蒸腾量与采用气象数据计算的参考作物蒸散量均呈极显著线性相关。
     (3)两种经验根系分布模型(Prasad与Hoffman和van Genuchten)可近似反映紫花苜蓿根系实际分布状态,进一步通过土壤水分动态模拟验证得出这两种经验根系分布模式适用于根系分布的描述,且参数简单、获取方便,具有一定的实用性。拟合的根系分布、Prasad分布与Hoffman和van Genuchten分布与36 cm以下的的根长密度实测值较为吻合,Raats根系分布与实测值及其它分布模式则差别较大。在缺乏根系测定资料情况下,可通过经验根系模式确定其分布。
     (4)5种土地利用类型土壤呼吸速率季节性变化均呈现单峰型曲线,与气温变化趋势一致,其7、8月份土壤呼吸速率均显著高于其它月份(P<0.05);生长季节土壤CO_2平均释放速率顺序为:长芒草地>苜蓿地>柠条地>农地>沙柳地,草地在生长前期和旺盛期土壤呼吸强度均显著高于农地和灌木林地,退耕还林还草显著提高了土壤呼吸。除沙柳地和苜蓿地以外,在土壤呼吸与所有温度指标的关系中,与10 cm深度的土壤温度相关性最好,且除沙柳地外,其它4种土地利用类型均与之达到显著相关;农地土壤呼吸对温度的响应最敏感(Q10值为2.20),除沙柳地(Q10值为1.48)外,其它4种土地利用类型Q10值均在2.0左右,接近于全球Q10的平均水平;通过Van’t Hoff模型估算,2007年植物整个生长季节(5~10月份),5种土地利用类型的土壤呼吸量从高到低依次为:苜蓿地259 gC·m~(-2),长芒草地236 gC·m~(-2),柠条地226 gC·m~(-2),农地170 gC·m~(-2),沙柳地94 gC·m~(-2);水分对农地和沙柳地的土壤呼吸影响不大;长芒草地、柠条地和苜蓿地土壤呼吸的双变量模型关系显著(P<0.05),比相应的单变量模型更好地解释了土壤呼吸变异。
     5)采用HYDRUS-1D中集成的SOILCO2模型可以为该区土壤CO_2通量的预测提供可靠的模型方法。在植物生长季节,田间苜蓿地土壤水热气运动模拟显示:土壤水分剖面动态变化和土壤温度动态变化和实测数据相差不大;土壤CO_2通量实测值和模拟值在苜蓿整个生长期内有相同的变化趋势:即在苜蓿生长前期(5月初分枝期以前)较低,生长旺盛期(7月份开花期)达到最高,而后随着生育期延长(8月份成熟期以后),逐渐降低;土壤温度对土壤CO_2通量的影响要比土壤水分大;7月份,土壤温度和土壤水分均达到较为适宜条件,且植物处于旺盛生长状态,根系和微生物活动旺盛,土壤呼吸处于季节高峰期。建立了土壤呼吸与土壤温度和水分的经验模型,两种模型估算土壤CO_2通量的结果差别不大,分别为618 gC·m~(-2)和605 gC·m~(-2)。其土壤呼吸模拟值的季节变化趋势基本一致,但在生长前期和生长后期,经验函数模拟结果偏高,在生长旺盛期200 d左右,SOILCO2模拟结果日变化幅度则要比经验函数的模拟结果日变化幅度大。利用模型进行土壤呼吸的模拟计算可以为不同土地利用方式下碳循环过程的评估提供简便方法。
     综上所述,植被恢复过程中,通过对植被生长、耗水、土壤水分和土壤温度等因素动态变化的研究,可为该区植被生长条件下土壤水分、土壤温度、土壤气体等物理过程的动态模拟奠定基础。从提高模拟的准确度来看,还需进一步修改、校正与完善已有的根系吸水模型,深入研究根系伸展和发育规律,考虑土壤养分和孔隙度等因素对CO_2产生和运移的机理性影响。
In the water-wind erosion crisscross region of the Loess Plateau, the conversion of croplands to frorest and grasslands has been implemented to control soil erosion since 1990s. As vegetation is rehabilitating in arid and semiarid area, soil water is one of main restrictive factors, and the consequent CO_2 exchange between soil and atmosphere is one important concern of the resulting eco-environmental effects. As mentioned above, studies about soil water and soil CO_2 movement in this area should receive more attention. This research was trying to preliminanily verify the process of root growth and water consumption of local representative vegetation, to estimate soil CO_2 flux using emprical and mechanical models, so as to provide scientific bases for evaluation of eco-environmental effects caused by vegetation restoration. In this research, soil column experiment with growing alfalfa (Medicago Sativa L.) was conducted to obtain root distribution, soil water contents and transpiration rates for two growing years. Empirical root distribution functions were verified with measured data. Employing the derived function from measured root length data and the different empirical root distribution functions in the root water uptake model, which was incorporated in the Hydrus-1D model, we tested empirical root distribution functions and its effects on the soil water simulation. Soil respiration rates under five landuse patterns were measured by a closed-chamber IRGA method during the growing season in 2007. Differences in soil respiration under the five land use patterns and the relationships between soil respiration and soil temperature and soil water contents were analyzed. Soil respiration, soil water and soil temperature in alfalfa land were measured simutaneously during the growing season of 2008, and were compared with simulated results obtained by HYDRUS-1D.
     The main results are as follows:
     (1)The average diameter of alfalfa fine root is about 0.20 mm, specific root length is about 274 mm/mg. The relationships between the fine root length, dry weight, surface area, and volume were significantly related and with linear forms. The relation between fine root length y (m) and fine root dry weight x (g) can be expressed as: . A fitting procedure, which can be used to derive the distribution function of fine root, was implemented and the fitting results showed its effectiveness. Fine roots of alfalfa in 2 growth years could be divided into 3 growth stages, and its peak biomass accumulation rate is the branching stage in the second year. The increase of the plant height was fastest in the flowering period, which was between the middle of June and end of July. In the maturity the plant height was stable. The leaf area of the plant showed a single peak curve in the first growing season, and reached the largest value in the maturity. The soil water content had very siginicant effect on the biomass of the above-ground part and main roots. The plant height and leaf area at high water treatment was larger than that at the low one. y =274.18x
     (2)Soil water stress had little effect on fine root biomass, but resulted in significant decreases in both above-ground and main root biomasses. The average transpiration not only was related with soil water content, but also with growth years. Soil water treatment had no effect on transpiration coefficient of biomass (P>0.05). Conversion of transpiration to biomass was almost stable at the same period for the same plant, but as for economic yield, the transpiration coefficient under high soil water was smaller than that under deficit one significantly. Biomass had linear corrlation with water consumption significantly no matter how the water levels. Soil water stress had more effects on aboveground biomass than underground biomass. During flowering-mature period,measured transpiration significantly correlated the calculated data using meteorological data.
     (3)The root distribution models of Prasad (1988) and Hoffman & van Genuchten (1983) fitted measured data well especially below 36 cm of depth under a non-stressed condition, and Raats (1974) root distribution model was not as good as the other two models in terms of fitting the measured data. The distribution models resulted in nearly identical soil water content distributions, and its average root mean square error was below 3.5 %.
     (4)Seasonal changes of soil respiration showed single peak curves, and that of air temperature followed a similar trend, which had the highest values in July and August. The order of average soil respiration rates under the five land use types during the growing seasons was: bunge needlegrass land > alfalfa land > Korshinsk Peashrub land > cropland > sand willow land. The soil respiration rate of the grassland was significantly higher than those of the crop and shrub lands. Except for sand willow and alfalfa lands, soil respiration rates were better correlated with soil temperature at 10 cm depth than with other temperatures at other depths. According to Q10 values (temperature sensitive index), soil respiration under cropland was the most sensitive to temperature (Q10=2.20) and Q10 of the other land use patterns, except for sand willow land, were around 2.0, which is close to the global average Q10 value. Estimating the soil respiration flux using the Van′t Hoff model gave CO_2 efflux values for alfalfa land, bunge needlegrass land, Korshinsk Peashrub land, crop land, and sand willow land, during the growth period, of 259 gC·m~(-2), 236 gC·m~(-2), 226 gC·m~(-2), 170 gC·m~(-2), and 94 gC·m~(-2), respectively. Soil moisture did not significantly affect soil respiration under crop and sand willow lands. A two-variable (soil temperature and soil moisture) soil respiration model best explained the variance of soil respiration under alfalfa land, bunge needlegrass land, and Korshinsk Peashrub land.
     (5)Using the code of HYDRUS-1D, related simulations can be done. The simulating results on water, heat, and CO_2 movement in alfalfa fields during growing season showed that the predicted soil water and temperature were in good agreement with the observed values; the predicted CO_2 flux had the same trend to the observed data in the whole growing season. The soil CO_2 flux was low during the first stage, increased to the highest in the second stage and dropped gradually in the last stage. In addition, the results showed that soil temperature had greater effect on soil CO_2 flux than soil water. In July, both plant growth and microorganism activities were vigorous because of comfortable soil temperature and water conditions and thus the soil respiration reached the maximum. A empirical model was derived for simulate soil CO_2 flux. By model validations, both of the derived relationship and SOILCO2 model were not poor models for simulation of soil respiraton. The derived empirical model is probably site specific but is very simple and easy to implement. SOILCO2 were capable of satisfactorily describing the diurnal and seasonal variations in soil temperature and soil water content. Using these two models, there was about 600 g C m~(-2) emissions in the growth season, from Apr 1st. to Nov. 3rd of 2008. Our study showed that the process-based soil CO_2 flux model SOILCO2 could be applied to simulate CO_2 flux from alfalfa land in norther Loess Plateau of China together with soil temperature and soil water content even with mostly default parameters. This study suggests that more datails about the transport parameters of soil water, heat and carbon dioxide should be determined to estimate the CO_2 flux more accurately.
     As the results mentioned above, in the process of vegetation rehabilitation from cropland to forest and grassland, the experiment on root growth, plant water consumption, soil water and soil temperature change, could help to simulate soil water, heat, and CO_2 movement. In order to improve the accuracy of simulation, current root-water-uptake models need improvement and take the effects of soil nutrient and porosity on the production and movement of soil CO_2 into account.
引文
[1]唐克丽.黄土高原水蚀风蚀交错区治理的重要性与紧迫性[J].唐克丽论文选集, 2000, (2): 104-106
    [2]景可,王万忠,郑粉莉.中国土壤侵蚀与环境[M].北京:科学出版社, 2005: 96-109
    [3]朱显谟.迅速全面恢复植被是根除河害之本[J].中国水土保持, 1999, (10): 29-33
    [4]彭少麟,陆宏芳.恢复生态学焦点问题[J].生态学报, 2003, 23(7): 1249-1257
    [5]信忠保,许炯心.黄土高原地区植被覆盖时空演变对气候的响应[J].自然科学进展, 2007, 17(6): 770-778
    [6]李裕元,邵明安,郑纪勇,等.黄土高原北部草地的恢复与重建对土壤有机碳的影响[J].生态学报, 2007, 27(6): 2279-2287
    [7]巩杰,陈利项,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报, 2004, 15(12): 2292-2296
    [8]彭文英,张科利,陈瑶,等.黄土坡耕地退耕还林后土壤性质变化研究[J].自然资源学报, 2005, 20(2): 272-278
    [9]于贵瑞,孙晓敏,等著.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社, 2006: 316-334
    [10] C. Y. Zhao, Z. D. Feng, G. D. Chen. Soil water balance simulation of alfalfa (Medicago sativa) in the semiarid Chinese Loess Plateau[J]. Agricultural Water Management, 2004, 69(2): 101-114
    [11]樊军,水蚀风蚀交错带土壤水分运动和数值模拟研究[D].陕西:中国科学院水利部水土保持研究所, 2005.
    [12]杨培岭,郝仲勇.植物根系吸水模型的发展动态[J].中国农业大学学报, 1999, 4(2): 67-73
    [13]倪郁,作物根系提水作用的研究[D].2001.
    [14]郭庆荣,张秉刚,钟继洪.土壤植物系统中植物根系吸收土壤水分研究进展[J].生态科学, 1996, 15(2): 112-116
    [15]杨培岭,罗远培,石元春等.土壤-植物根系统的水分传输(综述)[J].北京农业大学学报, 1993, 19(2): 25-30
    [16]阳园燕,郭安红,安顺清等.土壤-植物-大气连续体系统中植物根系吸水模型研究进展[J].气象科技, 2004, 32(5): 316-321
    [17]邵明安,黄明斌.土-根系统水动力学[M].陕西科学技术出版社, 2000: 131-133
    [18]邵明安.试论植物根系中水分运动的动力学[J].水土保持研究, 1991, 01.
    [19] F. J. Molz. Models of water transport in the soil-plant system: a review[J]. Water Resources Research, 1981, 17(5): 1245-1260
    [20] B. E. Clothier, K. R. J. Smettem, P. Rahardjo. Sprinkler irrigation, roots and the uptake of water. In: Ross K, Fluhle H, Jury W A, et al. Field-Scale Water and Solute Flux in Soil[M]. Basel: Birkhauser Verlag, 1990: 101-108
    [21] R. Feddes, P. Kowalik, H. Zaradny. Simulation of field water use and crop yield[M]. Wageningem: Centre for Agricultural Publishing and Documentation, 1978: 189
    [22] F. J. Molz, I. Remson. Extraction term models of soil moisture use by transpiring plants[J]. Water Resources Research, 1970, 6(1346-1356
    [23] W. R. Gardener. Dynamic aspects of water availability to plants[J]. Soil Science, 1960, 89(2): 63-73
    [24] M. N. Nimah, R. J. Hanks. Model for estimating soil water, plant, and atmospheric interrelations I: Description and sensitivity[J]. Soil Science Society of America Proceedings, 1973, 37(4): 522-527
    [25] R. A. Feddes, P. J. Kowalik, H. Zaradny. Simulation of field water use and crop yield[J]. Simulation Monographs, 1978,
    [26]康绍忠,刘晓明,熊运章.冬小麦根系吸水模式研究[J].西北农业大学学报, 1992, 20(2): 5-12
    [27]姚建文.作物生长条件下土壤含水量预测的数学模型[J].水利学报, 1989, (9): 32-38
    [28]邵爱军,李会昌.野外条件下作物根系吸水模型的建立[J].水利学报, 1997, (2): 68-72
    [29]虎胆·吐马尔白.作物根系吸水率模型的试验研究[J].灌溉排水, 1999, 18(4): 15-19
    [30]罗毅,于强,欧阳竹等.利用精确的田间实验资料对几个常用根系吸水模型的评价与改进[J].水利学报, 2000, (4): 73-80
    [31]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社, 1988:
    [32] T. H. Van den Honert. Water transport in plants as catenary process[J]. Discussions of the Faraday Society, 1948, 3: 146-153
    [33] I. R. Cowan. Transport of water in the soil-plant-atmosphere system[J]. Journal of Applied Ecology, 1965, 2: 221-239
    [34] F. Z. Molz. Water transport in the soil-root system: transient analysis[J]. Water Resource Research, 1976, 12: 805-808
    [35] P. A. C. Raats. Distributions of salts in the root zone[J]. Journal of Hydrology, 1975, 27: 237-248
    [36] W. N. Herklrath, E. E. Miller, W. R. Gardner. Water uptake by plantsⅡ: The roots contact model[J]. Soil Science Society American of Journal, 1977, 41: 1039-1043
    [37] J. M. Haimsworth, L. A. Aylmore. Water extraction by single plant roots[J]. Soil Science Society American of Journal, 1986, 50: 841-848
    [38] D. Hillel. A macroscopic scale model of water up take by a non-uniform root system and salt movement in the soil profile[J]. Soil Science, 1976, 121: 242-255
    [39] C. Rowse, D. Stone, Z. Gerwit. Simulation of the water distribution in soilⅡ: the model for cropped soil and its comparison with experiment[J]. Plant Soil, 1978, 49: 534-550
    [40] W. R. Gardner. Relation of root distribution to water uptake and availability[J]. Agronomy Journal, 1964, 56: 41-45
    [41] F. D. Whisler, E. A. Klut, R. J. Millington. Analysis of steady state evapo-transpiration from a soil column[J]. Soil Science Society of American Journal, 1968, 32: 167-174
    [42] R. A. Feddes, P. J. Kowalik, K. K. Malinka, et al. Simulation of field water uptake by plants using a soil water dependent root extraction function[J]. Journal of Hydrology, 1976, 31: 13-26
    [43] J. C. Hoogland, R. A. Feddes, S. C. Belman. Root water uptake model depending on soil water pressure head and maximum extraction rate[J]. Acta Horticulturae, 1981, 119: 123-136
    [44] R. Prasad. A linear root water uptake model[J]. Journal of Hydrology, 1988, 99: 297-306
    [45] H. N. Hayhoe, R. De Jong. Comparison of two soil water models for soybeans[J]. Canadian Agricultural Engineering, 1988, 30(1): 5-11
    [46] M. T. Van Genuchten, S. K. Gupta. A reassessment of the crop to tolerance response function[J]. Indian Society of Soil Science Journal, 1993, 41(4): 730-737
    [47] M. Homaee, C. Dirksen, R. A. Feddes. Simulation of root water uptakeⅠ: Non-uniform transient salinity using different macroscopic reduction functions[J]. Agricultural Water Management, 2002, 57: 89-109
    [48] M. Homaee, R. A. Feddes, C. Dirksen. A macroscopic water extraction model for non-uniform transient salinity and water stress[J]. Soil Science Society of American Journal, 2002, 66(6): 1764-1772
    [49] C. T. Lai, G. Katul. The dynamic role of root-water uptake in coupling potential to actual transpiration[J]. Advance of Water Resources, 2000, 23: 427-439
    [50]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社, 2000: 214-249
    [51] S. P. O. Chandra, K. R. Amaresh. Nonlinear root-water uptake model[J]. Journal of Irrigation and Drainage Engineering, 1996, 122(4): 198-202
    [52]左强,孟雷,王东.应用实测含水率剖面估算冬小麦相对根长密度分布[J].农业工程学报, 2004, 20(4): 1-6
    [53] V. Novok. Estimation of soil water extraction patterns by roots[J]. Agriculture Water Management, 1987, 12(4): 271-278
    [54] C. Dirksen. Relationship between root uptake -weighted mean soil water salinity and total leaf water potentials of alfalfa[J]. Irrigation Science, 1985, 6(1): 39-50
    [55] P. D. Jamieson, F. Ewert. The role of roots in controlling soil water extraction during drought: an analysis by simulation[J]. Field Crop Researches, 1999, 60: 267-280
    [56] S. G. K. Adiku, C. W. Rose, R. D. Braddock, et al. On the simulation of root water extraction: examination of a minimum energy hypothesis[J]. Soil Science, 2000, 165(3): 226-236
    [57] K. Y. Li , R. De Jong, J. B. Boisvert An exponential root-water-uptake model with water stress compensation[J]. Journal of Hydrology, 2001, 252: 189-204
    [58] N. J. Jarvis. A simple empirical model of root water uptake[J]. Journal of Hydrology, 1989, 107: 57-72
    [59] R. J. Bailey, E. Spackman. A model for estimating soil moisture changes as an arid to irrigation scheduling and crop water-use studiesⅠ: Operational details and description[J]. Soil Use Management, 1996, 12: 122-128
    [60] U. Shani, L. M. Dudley. Field studies of crop response to water and salt stress[J]. Soil Sci. Soc. Am. J., 2001, (65): 1522-1528
    [61]左强,王数,陈研.反求根系吸水速率方法的探讨[J].农业工程学报, 2001, 17(4): 17-21
    [62]左强,王东,罗长寿.反求根系吸水速率方法的检验与应用[J].农业工程学报, 2003, 19(2): 28-33
    [63]刘昌明.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报, 1997, 52(4): 366-372
    [64]王会肖,刘昌明.农田蒸散、土壤蒸发与水分有效利用[J].地理学报, 1997, 52(5):447-454
    [65]张喜英.作物根系与土壤水利用[M].北京:气象出版社, 1999:
    [66]许迪.典型经验根系吸水函数的田间模拟检验及评价[J].农业工程学报, 1996, 13(3): 37-42
    [67]刘川顺,沈荣开.由土壤水势估算二维根系吸水的研究[J].西北水资源与水工程, 1993, 4(2): 36-41
    [68]赵成义,黄俊梅.植物根系吸水特性研究[J].干旱区地理, 1999, 22(2): 88-95
    [69]从心海,梁一民,李代琼.黄土高原半干旱区沙棘根系特性与土壤水分动态研究[J].水土保持通报, 1990, 10(6): 98-103
    [70]郝仲勇,杨培岭.苹果树根系分布特性的试验研究[J].中国农业大学学报, 1998, 3(6): 63-66
    [71]姚立民,康绍忠,龚道枝.苹果树根系吸水模型研究[J].灌溉排水学报, 2004, 23(6): 67-70
    [72]张劲松,孟平.石榴树吸水根根系空间分布特征[J].南京林业大学学报(自然科学版), 2004, 28(4): 89-91
    [73]朱永华,仵彦卿,吕海深.荒漠植物根系吸水的数学模型[J].干旱区资源与环境, 2001, 15(2): 75-79
    [74]朱永华,仵彦卿.干旱荒漠区植物骆驼刺的耗水规律[J].水土保持通报, 2003, 23(4): 43-46
    [75]罗长寿,左强,李保国等.盐分胁迫条件下苜蓿根系吸水特性的模拟与分析[J].土壤学报, 2001, 32(81-84
    [76]白文明,左强,黄元仿,等.乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究[J].植物生态学报, 2001, 25(01): 35-41
    [77]白文明,左强,李保国.乌兰布和沙区紫花苜蓿根系吸水模型[J].植物生态学报, 2001, 25(04): 431-437
    [78]黄瑞冬.植物根系研究方法的发展[J].沈阳农业大学学报, 1991, 22(2): 164-168
    [79] H. M. Taylor, B. Klepper. Water uptake by cotton root system: an examination of assumptions in the single root model[J]. Soil Sci. , 1975, 120(1): 57-60
    [80] D. Hillel, H. Talpaz. Simulation of root growth and its effect on the pattern of uptake by non-uniform root system[J]. Soil Science, 1976, 121: 307-312
    [81] S. Shibusawa. Modeling the branching growth fractal pattern of the maize root system[J]. Plantand Soil, 1994, 65: 339-347
    [82] L. Niemeyer, L. Pietronero, H. J. Wiesmann. Fractal dimension of dielectric breakdown[J]. Physical Review Letters, 1984, 52: 1033-1036
    [83] J. Chikushi, O. Hirota. Simulation of root development based on the dielectric breakdown model[J]. Hydrological Sciences Journal, 1998, 43(4): 549-560
    [84] A. J. Diggle. ROOTMAP-a model in three-dimensional coordinates of the growth and structure of fibrous root system[J]. Plant Soil, 1988, 105: 169-178
    [85] J. P. Lynch, K. L. Nielsen, R. D. Davis, et al. Modeling and visualization of root system[J]. Plant Soil, 1997, 188: 139-151
    [86] L. Pagè, M. O. Jourdan, D. Picard. A simulation model of the three-dimensional architecture of the maize root system[J]. Plant Soil, 1989, 119: 147-154
    [87] I. J. Bingham, J. M. Blackwood, E. A. Stevenson. Site, scale and time-course for adjustments in lateral root initiation in wheat following changes in C and N supply[J]. Annals of Botany, 1997, 80: 97-106
    [88] M. C. Drew, L. R. Saker, T. W. Ashley. Nutrient supply and the growth of the seminal root system in barley I: The effect of nitrate concentration on the growth of axes and laterals[J]. J. Exp. Bot, 1973, 24: 1189-1202
    [89] Drew M. C, Saker L. R. Nutrient supply and the growth of the seminal root system in barley II: Localized compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only one part of the root system[J]. J. Exp. Bot, 1975, 26: 79-90
    [90] A. H. Fitter, R. Nichols, M. L. Harvey. Root system architecture in relation to life history and nutrient supply[J]. Funct. Ecol., 1988, 2: 345-351
    [91] M. Gersani, T. Sachs. Development correlations between roots and heterogeneous environment[J]. Plant Cell Environ., 1992, 15: 463-469
    [92] D. Robinson. The responses of plants to non-uniform supplies of nutrients[J]. New Phytol., 1994, 127: 635-674
    [93] D. Robinson. Variation, co-ordination and compensation in root system in relation to soil variability[J]. Plant Soil, 1996, 187: 57-66
    [94] F. Somma, J. W. Hopmans, V. Clausnitzer. Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake[J]. Plant Soil, 1998, 202: 281-293
    [95] Dunbabin V. M, Diggle A. J, Rengel Z, et al. Modeling the interactions between water and nutrient uptake and root growth[J]. Plant and Soil, 2002, 239: 19-38
    [96]吉喜斌,康尔泗,陈仁升等.植物根系吸水模型研究进展[J].西北植物学报, 2006, 26(5): 1079-1086
    [97] F. Moyano, W. Kutsch, C. Rebmann. Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands[J]. Agricultural and Forest Meteorology, 2007,
    [98] W. Schlesinger, J. Andrews. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7-20
    [99] Y. Li, M. Xu, X. Zou. Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two wet tropical forests[J]. Plant and Soil, 2006, 281(1): 193-201
    [100] R. Conant, P. Dalla-Betta, C. Klopatek, et al. Controls on soil respiration in semiarid soils[J]. Soil Biology and Biochemistry, 2004, 36(6): 945-951
    [101] B. Jia, G. Zhou, Y. Wang, et al. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia[J]. Journal of Arid Environments, 2006, 67(1): 60-76
    [102] J. Raich, W. Schlesinger. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus B, 1992, 44(2): 81-99
    [103]唐克丽,侯庆春,王斌科.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J].中国科学院水利部西北水土保持研究所集刊, 1993, 18(2): 1-15
    [104]唐克丽,陈永宗,景可.黄土高原地区土壤侵蚀区域特征及其治理途径[M].北京:中国科学技术出版社, 1991
    [105]查轩,唐克丽.水蚀风蚀交错带小流域生态环境综合治理模式研究[J].自然资源学报, 2000, 15(001): 97-100
    [106]穆兴民.神木县农业气候资源及灾害天气分析[J].中国科学院水利部西北水土保持研究所集刊, 1993, 18: 24-35
    [107]贾恒义,雍绍萍,王富乾.神木试区的土壤资源[J].中国科学院水利部西北水土保持研究所集刊, 1993, 12: 18-36
    [108]李裕元,邵明安,上官周平,等.黄土高原北部紫花苜蓿草地退化过程与植被演替研究[J].草业学报, 2006, 02: 2279-2287
    [109]杨光,宋耀选.神木六道沟流域林业现状分析及林业发展战略[J]. 1993, 18
    [110]董建国,程积民,何增昌.神木试区草场资源现状及评价[J]. 1993, 18: 13
    [111] J. Simunek, M. Sejna, M. van Genuchten. The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0. IGWMC-TPS 70. Int[J]. Ground Water Modeling Center, Colorado School of Mines, Golden, CO, 1998,
    [112] W. S JiangY-L etal. Comparison of soil respiration in broad-leaved Korean pine forest and reclaimed cropland in Changbai mountains, China[J].植物生态学报, 2006, 30(6): 887-893
    [113]王旭,周广胜,蒋延玲,等.长白山红松针阔混交林与开垦农田土壤呼吸作用比较[J].植物生态学报, 2006, 30(6): 887-893
    [114]王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报, 2007, 27(5): 1960-1968
    [115] X. Wang, Z. Wang, Y. Han, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations[J]. Frontiers of Forestry in China, 2007, 2(1): 34-39
    [116]张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报, 2005, 29(002): 266-273
    [117] D. Eissenstat. Root structure and function in an ecological context[J]. New Phytologist, 2000, 148(3): 353-354
    [118] D. Eissenstat. On the relationship between specific root length and the rate of root proliferation: a field study using citrus rootstocks[J]. New Phytologist, 1991, 63-68
    [119] P. Schippers, H. Olff. Biomass partitioning, architecture and turnover of six herbaceous species from habitats with different nutrient supply[J]. Plant Ecology, 2000, 149(2): 219-231
    [120] L. Comas, D. Eissenstat. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species[J]. Functional Ecology, 2004, 18(3): 388-397
    [121] D. Eissenstat, M. Caldwell. Competitive ability is linked to rates of water extraction[J]. Oecologia, 1988, 75(1): 1-7
    [122]韦兰英,上官周平.黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系[J].生态学报, 2006, 26(11): 3740-3748
    [123]陈佐忠. 21世纪世界看小草[J].森林与人类, 2008, 5: 10-11
    [124] F. Cook, F. Kelliher. Determining vertical root and microbial biomass distributions from soil samples[J]. Soil Science Society of America Journal, 2006, 70(3): 728-735
    [125]李广敏,关军锋.作物抗旱生理与节水技术研究[M].北京:气象出版社, 2001:
    [126]杨小利.陇东春播紫花苜蓿生长及水分规律研究[J].干旱地区农业研究, 2004, 22(04): 127-130
    [127]霍润丰,徐建云,李端富,甘蔗栽培学[M],广西农学院内部讲义, 1991.
    [128]郑海雷,黄子琛.绿洲生态条件下春小麦蒸发蒸腾特征及其影响因子[J].植物生态学报, 1994, 18(004): 362-371
    [129]孙洪仁,韩建国,张英俊,等.蒸腾系数,耗水量和耗水系数的含义及其内在联系[J].草业科学, 2004, 21: 522—526
    [130]耿华珠.中国苜蓿[M].中国农业出版社, 1995
    [131]李桂荣,苜蓿需水量及水分利用效率的研究[D], 2003.
    [132]孙洪仁,张英俊,韩建国,等.紫花苜蓿的蒸腾系数和耗水系数[J].中国草地, 2005, 03
    [133] J. Wright. Daily and seasonal evapotranspiration and yield of irrigated alfalfa in southern Idaho[J]. Agronomy Journal, 1988, 80:662-669
    [134] D. Grimes, P. Wiley, W. Sheesley. Alfalfa yield and plant water relations with variable irrigation[J]. Crop Science, 1992, 32(6): 1381-1387
    [135]项斌,林舜华.紫花苜蓿对CO2倍增的反应:生态生理研究和模型拟合[J].植物学报:英文版, 1996, 38(001): 63-71
    [136] T. Sinclair, C. Tanner, J. Bennett. Water-use efficiency in crop production[J]. BioScience, 1984, 36-40
    [137] R. Fischer, N. Turner. Plant productivity in the arid and semiarid zones[J]. Annual Review of Plant Physiology, 1978, 29(1): 277-317
    [138]朱湘宁,郭继勋.华北平原地区灌溉对苜蓿产量及土壤水分的影响[J].中国草地, 2002, 24(06): 32-37
    [139] I. Saeed, A. El-Nadi. Irrigation effects on the growth, yield, and water use efficiency of alfalfa[J]. Irrigation Science, 1997, 17(2): 63-68
    [140] C. Frate, B. Roberts, V. Marble. Imposed drought stress has no long-term effect on established alfalfa[J]. California agriculture (USA), 1991, 45(3): 33-36
    [141] T. Kipnis, I. Vaisman, I. Granoth. Drought stress and alfalfa production in a mediterranean environment[J]. Irrigation Science, 1989, 10(2): 113-125
    [142]孙洪仁.紫花苜蓿花前蒸腾系数及紫花苜蓿和玉米经济产量耗水系数比较[J].草地学报, 2003, 11(04): 346-349
    [143] K. Estill, R. Delaney, W. Smith, et al. Water relations and productivity of alfalfa leaf chlorophyll variants[J]. Crop Science, 1991, 31(5): 1229-1233
    [144]孙洪仁,刘国荣,张英俊,等.紫花苜蓿的需水量,耗水量,需水强度,耗水强度和水分利用效率研究[J].草业科学, 2005, 22(12): 24-30
    [145]桑玉强,吴文良,张劲松,等.毛乌素沙地杨树防护林内紫花苜蓿蒸散耗水规律的研究[J].农业工程学报, 2006, 22(05): 44-49
    [146] M. Jensen, R. Burman, R. Allen, et al., Evapotranspiration and irrigation water requirements[R], 1990.
    [147] M. Homaee, R. A. Feddes. Quantificaton of root water extraction under salinity and drought[J]. Developments in plant and soil science, 2001, 92: 367-377
    [148] M. T. Van Genuchten, A numerical model for water and solute movement in and below the root zone[R], USDA-ARS, US Salinity Laboratory, Riverside. 1987.
    [149] P. Raats. Steady flows of water and salt in uniform soil profiles with plant roots[J]. Soil Science Society of America Journal, 1974, 38(5): 717-722
    [150] G. Hoffman, M. Van Genuchten. Soil properties and efficient water use: Water management for salinity control[J]. Limitations to efficient water use in crop production. ASA, CSSA, and SSSA, Madison, WI, 1983, 73–85
    [151] M. Homaee, R. Feddes, C. Dirksen. Simulation of root water uptakeⅡ: Non-uniform transient water stress using different reduction functions[J]. Agricultural Water Management, 2002, 57: 127-144
    [152] X. Hao, R. Zhang, A. Kravchenko. Effects of root density distribution models on root water uptake and water flow under irrigation[J]. Soil Science, 2005, 170(3): 167-174
    [153] P. Raats. Uptake of water from soils by plant roots[J]. Transport in porous media, 2007, 68(1): 5-28
    [154] K. Li, R. De Jong, M. Coe, et al. Root-water-uptake based upon a new water stress reduction and an asymptotic root distribution function[J]. Earth Interactions, 2006, 10: 1-22
    [155] Q. Zuo, F. Jie, R. Zhang, et al. A generalized function of wheat's root length density distributions[J]. Vadose Zone Journal, 2004, 3(1): 271-277
    [156]李凌浩,韩兴国,王其兵,等.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计[J].植物生态学报, 2002, 26(01): 29-32
    [157]崔骁勇,王艳芬,杜占池.内蒙古典型草原主要植物群落土壤呼吸的初步研究[J].草地学报, 1999, 7(3): 245-250
    [158] Y. Luo, S. Wan, D. Hui, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature a-z index, 2001, 413(68): 622-625
    [159]陈全胜,李凌浩,韩兴国,等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应[J].植物生态学报, 2003, 27(04): 441-447
    [160] J. Raich, A. Tufekciogul. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1): 71-90
    [161] L. Xu, D. Baldocchi. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California[J]. Agricultural and Forest Meteorology, 2004, 123(1-2): 79-96
    [162] E. Davidson, L. Verchot, J. Cattanio, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry, 2000, 48(1): 53-69
    [163]齐玉春,董云社,刘纪远,等.内蒙古半干旱草原CO2排放通量日变化特征及环境因子的贡献[J].中国科学: D辑, 2005, 35(06): 493-501
    [164]张丽华,陈亚宁,李卫红,等.干旱荒漠区不同土地利用/覆盖类型土壤呼吸速率的季节变化[J].中国科学: D辑, 2006, 36(A02): 68-76
    [165]于贵瑞,温学发,李庆康,等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J].中国科学: D辑, 2004, 34(A02): 84-94
    [166] C. Fang, J. Moncrieff. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry, 2001, 33(2): 155-165
    [167] C. Fang, J. Moncrieff. A model for soil CO2 production and transport 1: Model development[J]. Agricultural and Forest Meteorology, 1999, 95(4): 225-236
    [168] Y. Ouyang, C. Zheng. Surficial processes and CO2 flux in soil ecosystem[J]. Journal of Hydrology, 2000, 234(1-2): 54-70
    [169] A. Metherell, L. Harding, C. Cole, et al., CENTURY Soil organic matter model environment[R], 1993.
    [170] W. Chen, J. Chen, J. Liu, et al. Approaches for reducing uncertainties in regional forest carbon balance[J]. Global Biogeochem. Cycles, 2000, 14(3): 827–838
    [171] J. ?im?nek, D. Suarez. Modeling of carbon dioxide transport and production in soilⅠ. Model development[J]. Water Resources Research, 29(2): 487-497
    [172] D. Suarez, J. ?im?nek. Modeling of carbon dioxide transport and production in SoilⅡ. Parameter selection, sensitivity analysis, and comparison of model predictions to field data[J].Water Resources Research, 29(2): 499-513
    [173]戴万宏,农田土壤空气CO2动态和土壤一大气界面CO2释放研究[D], 2002.
    [174] Y. Qi, M. Xu. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada mountains[J]. Plant and Soil, 2001, 237(1): 15-23
    [175] H. Li, J. Yan, X. Yue, et al. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area[J]. Agricultural and Forest Meteorology, 2008, 148(3): 490-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700