渭北旱塬苹果园根系分布格局及其土壤水分生态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根系是苹果树吸收水分和养分的重要器官,土壤条件影响苹果根系的空间分布,同时苹果根系的空间分布状况也是其利用土壤水分养分资源能力大小的反映。黄土塬和黄土梁作为渭北旱塬区果园建设的主要土地类型,其土壤水分循环过程有别,果园根系分布格局和蒸散耗水特征不同。果园中所实施的不同的耕作方式既改变了果园的土壤养分条件,也影响了果园的水分平衡状况,需要结合区域环境特点选择合适的耕作方式。
     本研究以渭北旱塬塬地和梁坡地不同生命周期苹果园为对象,就不同立地条件下苹果根系分布格局、果园土壤水分特征和蒸散耗水规律开展研究,并对果园耕作方式的保墒效应进行了初步评估。取得了如下主要研究结论:
     (1)幼龄期、初果期和盛果期梁坡果园根系取样发生率大于同期塬面果园,而衰老期塬面和梁坡果园差异不大。塬面果园细根发生率大小顺序为幼龄期<初果期<盛果期<衰老期,梁坡果园为幼龄期<初果期<衰老期<盛果期。
     幼龄果园细根生物量随深度递减;大龄果园细根生物量垂直分布呈单峰型,梁坡果园峰值点位置较对应塬面果园下移。比根长随深度和树龄增加而减小,塬面和梁坡幼龄果园的比根长差异不大,大龄果园的比根长梁坡大于塬面。大龄果园根长密度垂直分布呈单峰型,梁坡果园峰值点位置较对应塬面果园下移,梁坡果园根长密度大于对应塬面果园。
     (2)幼龄期塬面果园深层土壤水分显著高于同期梁坡果园;初果期塬面果园有干层发育,而同期梁坡果园干层发育不明显;盛果期梁坡果园土壤干层的发育程度强于同期塬面果园;衰老期塬面果园干层发育强度小于梁坡果园。土壤含水量与根系生物量和根长密度呈负相关。
     就塬面果园而言,幼龄果园的土壤水分条件较好;各龄果园间水分变动有土层差异,深层土壤水分随树龄增大而降低,衰老期果园1~3 m土壤水分有恢复趋势。就梁坡果园而言,随树龄增大果园土壤水分逐渐降低,幼龄和初果期果园土壤水分显著高于盛果期和衰老期果园。
     (3)果园生草加剧了果园土壤水分的消耗;生草和覆草方式有阶段性保墒作用;耕作方式对土壤水分的影响随深度递减。
     (4)果园日均蒸散耗水的周年变化具有年际相似性;塬面果园间种三叶草其日均蒸散周年变化整体呈单峰型,5~6月份为高峰期。梁坡果园日均蒸散前期上升,后期为多峰下降。塬面和梁坡果园蒸散耗水超过降水补给,土壤水分处于负平衡。
Fine root of apple is an important organ for absorbing water and nutrition from soil, thus the distribution pattern of fine root reflects the ability of apple trees extracting resources from soil. Tableland and upper slope are main land types for apple orchard in the Weibei rainfed tableland of the Loess Plateau. They are of different characteristics of soil water cycle. Apple orchards in different land types have different distribution patterns of fine root and evapotranspiration characteristics. Meanwhile, different tillage methods not only change the nutrition environment of apple orchard, but also influence their water recycle. Thus, it should be applied according to the region environment.
     The distribution pattern of apple fine root, soil water dynamics and characteristics of evapotranspiration were studied based on different aged apple trees on tableland and upper slope of the Weibei reinfed tableland of the Loess Plateau. The moisture conservation of different tillage methods was also evaluated. The detailed results are as following:
     (1) Sampling incidences of apple fine root during young stage, initial fruiting stage and full fruiting period on upper slope orchard were greater than those on tableland. But there were few differences of those for senescence phase between upper slope and tableland orchards. Sampling incidences of apple fine root on tableland orchard ranked in the descending order of young stage, initial fruiting stage, full fruiting period and senescence phase, those on upper slope ranked in descending order of young stage, initial fruiting stage, senescence phase and full fruiting period.
     Fine root biomass decreased along with the soil depth increasing. The vertical distribution of fine root biomass under elder apple trees could be described by a single peak type. And its peak point position of upper slope orchard deeper than that of tableland orchard. Specific root length (SRL) reduced along with the soil depth and tree age increasing. There were few differences for SRL of young orchard between tableland and upper slope. SRL of young orchard on upper slope was greater than that on tableland. The vertical distribution of root length density (RLD) under elder apple trees could also be described by a single peak type. And its peak point position of upper slope orchard deeper than that of tableland orchard. RLD of young orchard on upper slope was greater than that on tableland.
     (2) Soil moisture in deep soil layer under tableland young orchard was greater than that under upper slope orchard significantly. The dried layer was developed under initial fruiting stage of tableland orchard, but it could not find under initial fruiting stage of upper slope orchard. The level of dried layer’s development under upper orchard during the full fruiting period was greater than that under tableland orchard in the same period, as well as orchard during the senescence phase. There was a negative correlation between fine root biomass and RLD.
     For tableland orchard, the soil moisture under the young orchard was well. Soil moisture under different aged trees is different in each soil layer. And it in deep soil layer decreased along with the tree’s age increasing. Soil moisture during 1-3 m soil layer has a tendency of recovery. For upper orchard, soil moisture reduced as the trees age rising. Soil moisture under young and initial fruiting orchard was significantly greater than that under full fruiting period and senescence phase orchard.
     (3) Orchard green covering aggravated the consumption of soil moisture. But Orchard green covering and Mulching Straw on Orchard could conserve soil moisture in certain period. The influence of tillage methods for soil moisture increased along with the soil depth rising.
     (4) There was a similar inter-annual tendency for daily evapotranspiration. The annual variation of daily evapotranspiration of tableland orchard interplant trifolium changed as a single peak curve. It was peaked in March and June. The daily evapotranspiration of upper slope increased in the previous period of each year, but decreased as a multi-peak curve in the later period. The water consumption by evapotranspiration was more than the supply of precipitation, thus the soil moisture was of negative balance.
引文
[1]黄明斌,杨新民,李玉山.黄土区渭北旱塬苹果基地对区域水循环的影响[J].地理学报,2001,56(1):7-13.
    [2]刘贤赵,黄明斌.渭北旱塬苹果园土壤水分环境效应[J].果树学报,2002,19(2):75-78.
    [3]王进鑫,刘秉正.抓住西部开发机遇创建绿色果品基地——渭北塬区苹果产业持续发展[J].水土保持研究,2000,7(1):63-68.
    [4]杨文杰,吴发启,崔彬,等.苹果产业在陕西省经济发展中的战略地位及渭北地区苹果产业化发展模式研究[J].中国农学通报,2004,20(5):284-286.
    [5]遆卫国.苹果园高经济效益的栽培技术[M].北京:气象出版社,2001.
    [6]束怀瑞,王丽琴.我国苹果根系研究的成就与应用[A].徐匡迪主编.中国科学技术前沿(第6卷)[C].北京:高等教育出版社, 2003.501-523.
    [7]黄明斌,杨新民,李玉山.黄土高原生物利用型土壤干层的水文生态效应研究[J].中国生态农业学报,2003,11(3):113-116.
    [8]张信宝.黄土高原植被建设的科学检讨和建议[J].中国水土保持,2003,(1):17-18.
    [9]王力,邵明安,王全九,等.黄土区土壤干化研究进展[J].农业工程学报,2004,20(5):27-31.
    [10]赵景波,杜娟,周旗,等.陕西咸阳人工林地土壤干层研究[J].地理科学,2005,25(3):322-328.
    [11]张永清.谷类作物根系生长与调控研究[M].北京:中国农业科学技术出版社,2006.
    [12] Bowen G D. Tree roots and the use of soil nutrients[C]. London: Academic Press, 1984.
    [13] Hughes K A,Gandar P W. Length densities, occupancies and weights of apple root system[J]. Plant and soil,1993,148:211-221.
    [14]郗荣庭.果树栽培学总论(第三版)[M].北京:中国农业出版社,1997.200-201.
    [15] Wiesler F,Horst W J. Root growth and nitrate utilization of maize cultivars underfield conditions[J]. Plant Soil,1994,163:267-277.
    [16] Eghball B,Maranville J W. Root development and nitrogen influx of corn genotype grown under combined drought and nitrogen stree[J] . Agron J,1993,85:147-152.
    [17] Weaver J E. Root development of field crops[M]. London: McGraw-hall Book Co., 1926.
    [18]郭富常,吴晓雷,孟广云.蔬菜根系发育生理与机能[M].天津:天津科学技术出版社,2000.
    [19]陈世鍠.内蒙古草原植物根系类型[M].呼和浩特:内蒙古人民出版社,1987.
    [20]萨比宁.根系在生命活动中的意义[M].北京:科学出版社,1956.
    [21] W伯姆.根系研究法[M].北京:科学出版社,1985.
    [22] Hales S. Vegetable staticks[M]. London: MacDonald, 1961.
    [23]张喜英.作物根系与土壤水利用[M].北京:气象出版社,1999.
    [24] King F H.Natural distribution of roots in field soils[J].Wisconsin Agricultural Experiment Station,1892,(9):112-120.
    [25] Cannon W A.The root habits of deser plants[M].Washington D.C.:Carnegie Institution of Washington,1911.
    [26] Kmoch H G,Ramis R E,Koehler F E.Root development of winter wheat as influenced by soil moisture and nitrogen fertilization[J].Agron.J.,1957,49:20-25.
    [27] Oskamp J.The rooting habit of deciduous fruits on different soils[J].Proc. Am. Soc. Hortic. Sci,1932,29:213-219.
    [28] Batjer L P,Oskamp J.Soils in relation to fruit growing in New York[A].Tree behavior on important soil profiles in the Kinderhook,Germantown,and Red Hook areas in Columbia and Dutchess Counties,[C] . New York: Cornell Univ.Agric.Exp.Stn Ithaca, 1935.
    [29] Pavlychenko T K . The soil-block washing method in quantitative root study[J].Can.J.Res.Sect.C,1937,15:34-57.
    [30] Duncan W G,Ohlrogge A J. Principles of nutrient uptake from fertilizer bands.II.Root development in the band[J]. Agro J,1958,50.
    [31]李勇,张晴雯,万国江,等.特大暴雨下油松林根系对土壤元素迁移的影响[J].植物营养与肥料学报,2007,13(1):51-56.
    [32] Taylor H M,Huck M G,Kleppe B,et al. Measurement of soil-grown roots in a rhizotron[J]. Agron J,1970,62:807-962.
    [33] Taylor H M,Bohm W. Use of acrylic plastic as rhizotron windows[J]. Agro J,1976,68:693-694.
    [34] Taylor H M,Willatt S T. Utilization of rhizotrons in root research[R]. 1970.
    [35] Taylor H M,Willatt S T. Utilization of rhizotrons in root research[C]. Instituto Agronomica do Parana,Londrina Brazil: IAPAR, 1981.
    [36] Klepper B,Taylor H M,Huck M G,et al. Water relations and growth of cotton in drying soil[J]. Agron. J.,1973,65:307-310.
    [37] Taylor H M,Upchurch D R,Mcmichael B L. Applications and limitations of rhizotrons and minirhizotrons for root[J]. 1990,129:29-35.
    [38] Ephrath J,Silberbush M,Berliner P. Calibration of minirhizotron readings against root length density data obtained from soil cores[J] . Plant and Soil,1999,209(2):201-208.
    [39] Waddongton J . Observations of plant roots in situ[J] . Can. J. Bot.,1971,49:1850-1852.
    [40] Sanders J L,Brown D A. A new fiber optic technique for measuring root growth of soybeans under field conditions[J]. Agron.J.,1978,70:1073-1076.
    [41] Dyer D,Brown D A. In situ root observation using fiber optic/video and fluorescence[C]. Madison,WI: 1980, 80.
    [42] Upchurch D R,Ritchie J T. Battery-operated color video camera for root observations in minirhizotrons[J]. Agron.J.,1984,76:1015-1017.
    [43] Cater W A. A method of growing plants in water vapor to facilitate examination of roots[J]. Phytopathology,1942,32:623-625.
    [44] Ahmadi N. Genetic variability and inheritance of drought mechanisms inrice[J]. Agronomic Tropical,1983,38(2):118-122.
    [45] Conrad J P,Veihmeyer F J.Root development and soil moisture[J].Hilgardia,1929,(4):113-134.
    [46] Peter K,Celined F,Steffen P,et al. Automated method for non-destructive 3D visualisation of plant root[C]. Montepllier,France: UMR AMAP, 2004.
    [47] Tennant D. A test of a modified line intersect method of estimating root length[J]. J Ecol,1975,63:995-1001.
    [48]王立国,孟亚利,周治国,等.麦棉两熟双高产条件下麦棉复合根系生长的时空动态分布[J].作物学报,2005,31(7):888-896.
    [49]高利平,乌兰巴特尔,樊明寿.燕麦根系对缺磷胁迫的适应性反应[J].中国农学通报,2006,22(11):221-223.
    [50]韦兰英,上官周平.黄土高原子午岭天然柴松林细根垂直分布特征[J].西北农林科技大学学报,2007,35(7):69-74.
    [51]张立桢,曹卫星,张思平,等.棉花根系生长和空间分布特征[J].植物生态学报,2005,29(2):266-273.
    [52]李鹏,李占斌,等.黄土高原天然草地根系主要参数的分布特征[J].水土保持研究,2003,10(1):144-145.
    [53]易建华,孙在军,贾志红.烤烟根系构型及动态建成规律的研究[J].作物学报,2005,31(7):915-920.
    [54] Zhou Z C,Shangguan Z P. The effects of ryegrass roots and shoots on loess erosion under simulated rainfall[J]. CATENA,2007,70:350-355.
    [55]马秀玲,宋兆民.农林复合系统中林带和作物的根系分布特征[J].中国农业大学学报,1997,2(1):109-116.
    [56]赵忠,李鹏.渭北黄土高原主要造林树种根系发分布特征的研究[J].应用生态学报,2000,11(1):37-39.
    [57]曹扬,赵忠,渠美,等.刺槐根系对深层土壤水分的影响[J].应用生态学报,2006,17(5):765-768.
    [58]张爱良,苗果园,王建平.作物根系与水分关系[J].作物研究,1997,11(2):4-6.
    [59]康绍忠,蔡焕杰.根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2002.
    [60]王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报,1992,7(4):1-8.
    [61] Smucker A J M,Aiken R M. Dynamic root responses to water deficits[J]. Soil Science,1992,154(4):281-289.
    [62]马元喜,周继泽.小麦根系主要生态效果的研究[J].河南农业大学学报,1994,28(1):12-18.
    [63]翟丙年,孙春梅,王俊儒,等.氮素亏缺对冬小麦根系生长发育的影响[J].作物学报,2003,29(6):913-918.
    [64] Asseng S,Ritchie J T,Smucker A J,et al. Root growth and water uptake during water deficit and recovering in wheat[J]. Plant and Soil,1998,201(2):265-273.
    [65]李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报:英文版,2001,43(11):1154-1160.
    [66]何维明,董鸣.异质养分环境中一年生分蘖草本黍根系的生长特征[J].植物学报:英文版,2001,43(8):846-851.
    [67]张永清,苗果园.冬小麦根系对施肥深度的生物学响应研究[J].中国生态农业学报,2006,14(4):72-75.
    [68]李秧秧,刘文兆.土壤水分与氮肥对玉米根系生长的影响[J].中国生态农业学报,2001,9(1):13-15.
    [69]王东升,束怀瑞.土壤理化因子对苹果树根系生长发育的影响[J].果树科学,1997,14(2):110-112.
    [70]白尚斌,王懿祥,左显东,等.磷胁迫条件下北美红杉幼苗生长的适应性反应[J].生态环境,2005,14(4):488-492.
    [71]姚贤良,程云生.土壤物理学[M].北京:农业出版社,1983.
    [72]杨林丰,钟南.根系生长与土壤物理性状之间的关系[J].农机化研究,2007,(8):22-24.
    [73]束怀瑞.果树栽培生理学[M].北京:农业出版社,1993.
    [74] Ryan M G . Effects of climate change on plant respiration[J] . Ecological Applications,1991,1:157-167.
    [75]范爱武,刘伟,刘炳成.土温对植物生长的影响及其机理分析[J].工程热物理学报,2004,25(1):124-126.
    [76]李笃仁,高绪科,汪德水.土壤紧实度对根系生长的影响[J].土壤通报,1982,(3):20-22.
    [77]汪景彦.苹果优质生产入门到精通[M].北京:中国农业出版社,2001.
    [78]束怀瑞.我国果树业生产现状和待研究的问题[J].中国工程科学,2003,5(2):45-48.
    [79]赵领军,张丽军,赵善仓.果树根系与水分关系[J].河北果树,2007,(1):1-1.
    [80]傅友.果树根剪控冠技术研究——文献综述[J].园艺学报,1993,20(4):346-352.
    [81]王齐瑞,谭晓风.果园生草栽培生理、生态效应研究进展[J].中南林学院学报,2005,25(4):120-126.
    [82]郝淑英,刘蝴蝶,牛俊玲,等.黄土高原区果园生草覆盖对土壤物理性状、水分及产量的影响[J].土壤肥料,2003,(1):25-27.
    [83]李登绚,张玉琴,米发杰,等.黄土高原果园生草与覆草对土壤和果树生长发育的影响[J].北方果树,2005,(5):15-16.
    [84]陈培元,李英,郝明德,等.王东沟试验区种植业调查与发展规划[A].李玉山,苏陕民.长武王东沟高效生态经济系统综合研究[C].北京:科学技术文献出版社, 1991.
    [85]张殿瑾,孙永华,李应仓.王东沟试验区畜牧业生产现状及其发展规划[A].李玉山,苏陕民.长武王东沟高效生态经济系统综合研究[C].北京:科学技术文献出版社, 1991.253-260.
    [86] Schenk H J. Vertical vegetation structure below ground scaling from root to globe[J]. Ecology,2005,66:341-373.
    [87] Johnson M G,Tingey D T,Phillips D L,et al. Advancing fine root research with minirhizotrons[J]. Environmental and Experimental Botany,2001,45:263-289.
    [88] Hendrick R L,Pregitzer K S. Patterns of fine root mortality in two sugar maple forests[J]. Nature,1993,361:59-61.
    [89] Christina E W,Eissenstat D M. Beyond the roots of young seedlings:the influence of age and order on fine root Physiology[J]. J Plant Growth Regul,2003,21:324-334.
    [90]杨洪强,接玉玲,张连忠,等.断根和剪枝对盆栽苹果叶片光合蒸腾及WUE的影响[J].园艺学报,2002,29(3):197-202.
    [91]刘文兆,李秧秧.断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题[J].西北植物学报,2003,23(8):1320-1324.
    [92] Jackson R B,Canadell J,Ehleringer J R,et al. A global analysis of root distributions for terrestrial biomes[J]. Oecologia,1996,108:389-411.
    [93]李鹏,赵忠,等.渭北黄土高原不同立地上刺槐根系分布特征研究[J].水土保持通报,2002,22(5):15-19.
    [94]李鹏,赵忠,等.植被根系与生态环境相互作用机制研究进展[J].西北林学院学报,2002,17(2):26-32.
    [95] Eissenstat D M,Bauerle T L,Comas L H,et al. Seasonal patterns of root growth in relation to shoot phenoology in Grape and apple[J]. In: Retamales, J.B., Lobos, G.A. Acta Horticulturae 721. Proceedings of the Fifth International Symposium on Mineral Nutrition of Fruit Plants,,2006,:21-26.
    [96]张劲松,孟平,尹昌君.果农复合系统中果树根系空间分布特征[J].林业科学,2002,38(4):30-33.
    [97]王志强,刘宝元,路炳军.黄土高原半干旱区土壤干层水分恢复研究[J].生态学报,2003,23(9):1944-1950.
    [98]郭民主.苹果安全优质高效生产配套技术[M].北京:中国农业出版社,2006.
    [99] Silva H N,Hall A J,Tustin D S,et al. Analysis of distribution of root length density of apple trees on different dwarfing rootstocks[J] . Annals of Botany,1999,83:335-345.
    [100]韦兰英,上官周平.黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系[J].生态学报,2006,26(11):3740-3748.
    [101] Fransen B,Kroon H D,Berendse F.Root morphological plasticity and nutrient acquisition of perennial grass species from habitas of different nutrient availability[J].Oecologia,1998,115(3):351-358.
    [102] Eissenstat D M.On the relationgship between specific root length and the rate of root proliferation: a field study suing citrus rootstocks[J].New Phytologist,1991,118(1991):63-68.
    [103] Eissenstat D M . Costs and benefits of construction roots of small diameter[J].Journal of Plant Nutrition,1992,15:763-782.
    [104] Davis J P,Haines B,Coleman D,et al. Fine root dynamics along an elevational gradient in the southern Appalachian Mountains,USA[J]. Forest Ecology and Management,2004,187:19-34.
    [105] Joslin J D,Wolfe M H. Impacts of Water Input Manipulations on Fine Root Production and Mortality in a Mature Hardwood Forest[J] . Plant and Soil,1998,204(2):165-174.
    [106] Robinson D,Hodge A,Fitter A.Constraints on the form and fuction of root systems[A].Kroon H D.Root Ecology[C]. Heidel-berg: Springer-Verlag, 2003.
    [107]康绍忠,胡笑涛,蔡焕杰,等.现代农业与生态节水的理论创新及研究重点[J].水利学报,2004,(12):1-7.
    [108]何福红,黄明斌,党廷辉.黄土高原沟壑区小流域土壤干层的分布特征[J].自然资源学报,2003,18(1):30-36.
    [109]樊军,胡波.黄土高原果业发展对区域环境的影响与对策[J].中国农学通报,2005,21(11):355-359.
    [110]陈锡云,刘文兆.半干旱黄土丘陵区果园水分蒸散特征研究[J].水土保持学报,2000,14(3):67-70.
    [111]冉辛拓,俎文芳.干旱区苹果园的田间耗水状况探析[J].河南农业大学学报,2001,35(2):195-198.
    [112]朱德兰,吴发启.黄土高原旱地果园土壤水分管理研究[J].水土保持研究,2004,11(1):40-42.
    [113]殷淑燕,黄春长.黄土高原苹果基地土壤干燥化原因及其对策[J].干旱区资源与环境,2005,19(2):76~80.
    [114]杨文治,邵明安,彭新德,等.黄土高原环境的旱化与黄土中水分关系[J].中国科学(D辑),1998,28(4):357-365.
    [115]陈洪松,邵明安,王克林.黄土区深层土壤干燥化与土壤水分循环特征[J].生态学报,2005,25(10):2491-2498.
    [116]李玉山.旱作高产田产量波动性和土壤干燥化[J].土壤学报,2001,38(3):353-356.
    [117]侯庆春,韩蕊莲,韩仕锋.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999,(5):11-14.
    [118]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640~1647.
    [119]樊军,郝明德,邵明安.黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应[J].农业工程学报,2004,20(1):61-64.
    [120]李玉山,史竹叶.长武山东沟小流域土壤墒情影响因素与分布特征[J].水土保持通报,1990,10(6):1-6.
    [121]杨文治,邵明安.黄土高原土壤水分研究[G].北京:科学出版社, 2000. 107-111.
    [122]李开元,李玉山.黄土高原农田水量平衡研究[J].水土保持学报,1995,9(2):39-44.
    [123]孙洪仁,刘国荣,张英俊,等.紫花苜蓿的需水量、耗水量、需水强度、耗水强度和水分利用效率研究[J].草业科学,2005,(12).
    [124]郭晓寅,程国栋.遥感技术应用于地表面蒸散发的研究进展[J].地球科学进展,2004,19(1):107-114.
    [125]牛丽丽,张学培,曹奇光.植物蒸腾耗水研究[J].水土保持研究,2007,(02).
    [126] Rosenberg N J,Blad B L,Uerma S B.Microclimate the biological environment of plants[M].New York:Johnwiley & Sons,1983.
    [127]徐敏云,刘自学,胡自治.灌溉对三种冷季型草坪草蒸散耗水的影响[J].草原与草坪,2004,104(1):36-39.
    [128]胡顺军,艾尼瓦尔吾买尔,宋郁东,等.南疆棉田实际蒸散的计算模式[J].干旱区研究,2001,18(1):40-42.
    [129] Chapin F S,Matson P A,Mooney H A.Principles of terrestrial ecosystem ecology[M].New York:Springer-Verlag,2002.
    [130]张宇清,朱清科,齐实,等.梯田埂坎立地植物根系分布特征及其对土壤水分的影响.[J].生态学报,2005,25(3):500—506.
    [131]张宇清,朱清科,齐实,等.梯田生物埂几种灌木根系的垂直分布特征[J].北京林业大学学报,2006,28(2):34-38.
    [132] Kaetterer T,Fabiao A,Madeira M,et al. Fine root dynamics,soil moisture and soil carbon content in Eucalyptus globues plantation under different irrigation and fertilization regimes[J]. Forest Ecology and Management,1995,74:1-12.
    [133]吴林,李亚东.果树水分胁迫研究进展[J].吉林农业大学学报,1996,18(2):91-97.
    [134]薛沛沛,王克勤,郭逢春,等.金沙江干热河谷不同土壤水分对台湾青枣根系生长的影响[J].福建林业科技,2007,34(1):89-92.
    [135]单长卷,梁宗锁.黄土高原刺槐人工林根系分布与土壤水分的关系[J].中南林学院学报,2006,26(1):19-21.
    [136]刘传和,陈杰忠.我国果园生草栽培研究概况(综述)[J].亚热带植物科学,2005,34(2):76-80.
    [137]山仑,黄占斌,张岁岐.节水农业[M].北京:清华大学出版社,2000.
    [138] Unger P W.Surface residue,water application and soil texture effects on water accumulation[J].Soil Science Society of America Journal,1976,40:298-300.
    [139] Tolk J A,Howell T A,Evett S R.Effect of mulch, irrigation and soil type on water use and yield of maize[J].Soil & Tillage Research,1999,50:137-147.
    [140] Jia S N,Paul W U.Soil water accumulation under different precipitation,potential evaporation, and straw mulch conditions[J].Soil Science Society of American Journal,2001,65:442-448.
    [141]张建国,张磊.旱地苹果园秸秆覆盖效应分析[J].山西水土保持科技,2001,(2):34-35.
    [142]张文,朱元娣,李光晨.实用高效的果园土壤管理方法——果园生草法[J].农业新技术,2003,(4):7-8.
    [143]张先来,李会科,张广军,等.种植不同牧草对渭北苹果园土壤水分影响的初步分析[J].西北林学院学报,2005,20(3):56-59.
    [144]齐鑫山,丁卫建,王仁卿,等.果树间种白三叶草对土壤生态及果树生产的影响[J].农村生态环境,2005,21(2):13-17.
    [145]马雪华.森林水文学[M].北京:中国林业出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700