土壤水分对黄土高原主要造林树种细根表面积季节动态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分是黄土高原植被建设及恢复的主要限制因子。近年来,该地区广泛出现的土壤干化现象引起了人们的高度关注。刺槐、侧柏、油松是黄土高原水土保持林的主要造林树种,前人对这些树种的细根(长度、生物量)垂直分布和季节动态做了许多的研究工作。但是,有关细根表面积的研究不多。细根表面积是根系与土壤之间进行营养交换的界面,与水分吸收密切相关。根系表面积是研究水分吸收或养分吸收的重要参数之一。因此,开展树木细根分布、季节动态及其与环境因子关系研究,对于揭示黄土高原土壤干层形成的机理,科学地选择造林树种,加快西北山川秀美工程建设具有十分重要的意义。
     本研究根据黄土高原降水量的区域分异特征,以位于半干旱地区的陕西省安塞县和位于半湿润地区的陕西省长武县、甘肃省泾川县为研究区域,以现有刺槐、油松和侧柏人工林为研究对象,于2006年和2007年生长季采用土钻法获取根样和土样,从水分生态区大尺度和林地生态环境小尺度,研究土壤水分对黄土高原主要造林树种细根表面积季节动态的影响。主要研究结果如下:
     (1)半湿润气候区的长武县2006年生长季内、泾川县2007年生长季内,阳坡、阴坡立地刺槐林地0~150 cm土层的土壤含水量变动较大,有87.6%以上的细根表面积分布。长武县阳坡和阴坡刺槐林地土壤含水量动态变化均为4月>10月>7月,刺槐细根表面积的动态变化均为4月>7月>10月;泾川县阳坡和阴坡刺槐林地土壤含水量动态变化均为10月>4月>6月>8月,刺槐细根表面积的动态变化均为4月>6月>8月>10月。
     半干旱气候区的陕西省安塞县2007年生长季内,阴坡刺槐、侧柏、油松林地0~200 cm土层的土壤含水量变动较大,有82.4%以上的细根表面积分布。刺槐、侧柏、油松林地土壤含水量的动态变化均表现为10月>4月>6月>8月。刺槐、油松细根表面积在6月出现1个高峰,侧柏在6月和10月各出现1个高峰。
     安塞县、长武县、泾川县不同树种细根表面积垂直分布都表现为随土层深度的增加而逐渐减小,数学模型S =Ah~B(C+Dh+Eh~2+Fh~3)可以较好地拟合安塞县、长武县和泾川县不同树种细根表面积的垂直分布,拟合决定系数R~2均在0.85以上。生长季内土壤含水量变动较大的土层具有较多的树木细根表面积分布。但是,安塞县、长武县、泾川县不同树种细根表面积季节动态与土壤含水量的季节动态不完全一致。
     (2)安塞和泾川刺槐细根垂直分布深度、细根表面积数量和季节动态均有一定的差异。0~200 cm和0~150 cm土层分别为安塞和泾川刺槐细根表面积的主要分布层,分别有86.5%和87.6%的细根表面积分布。2007年生长季内,泾川和安塞刺槐细根表面积的峰值分别出现在4月和6月。但是,6月份安塞与泾川刺槐的累积细根表面积差异不显著。与泾川刺槐细根表面积特征相比,安塞刺槐细根表面积表现为,单位土体内细根表面积数量较小,细根垂直分布深度较大,以此维持树木生长所需要的细根表面积总量。
     (3)安塞县、长武县、泾川县不同树种细根表面积垂直分布与剖面土壤水分间呈显著正相关(p<0.05)。总体上树木细根表面积季节动态滞后于林地土壤含水量变化。这表明土壤水分明显影响着树木细根表面积的垂直分布,但是,树木细根表面积季节动态不仅受土壤水分的影响,还受到温度、养分和树种本身遗传特性等因子的综合影响。
     (4)树木细根垂直分布土层(长武县和泾川县为0~200 cm土层,安塞县为0~300 cm土层)的土壤含水量变异系数明显大于深层土壤中(长武县为220~380 cm土层,泾川县为220~500 cm土层,安塞县为320~500 cm土层)的土壤含水量变异系数。依据林地土壤含水量变异系数的垂直分布,可将林地土壤垂直划分为水分变化活跃层(长武县和泾川县为0~200 cm土层,安塞县为0~300 cm土层)和水分变化稳定层(长武县为220~380 cm土层,泾川县为220~500 cm土层,安塞县为320~500 cm土层)。
     水分变化活跃层树木细根表面积变异系数与树木细根垂直分布层(长武县和泾川县为0~200 cm土层,安塞县为0~300 cm土层)下1米处土层(长武县和泾川县为210~300 cm土层,安塞县为320~400 cm土层)和2米处土层(长武县和泾川县为320~400 cm土层,安塞县为420~500 cm土层)土壤含水量变异系数均呈显著负相关(p<0.05),与细根垂直分布层下3米处土层(泾川县420~500 cm土层)土壤含水量变异系数相关不显著(p>0.05)。这表明树木根系对深层土壤水分有一定的影响,但是其影响深度在黄土高原不同水分生态区有所不同,在安塞县的影响深度明显大于泾川县。
     综上所述,土壤水分是黄土高原主要造林树种细根表面积季节动态的重要影响因子。全面了解树木细根季节动态的机理,还需对水分、温度、养分和树种本身遗传特性等影响因子进行综合研究。
Water is key limiting factor for vegetation restoration in Loess Plateau of China. In recent years, soil aridization has turned into an important restricted factor on ecological construction in Loess Plateau and has been paid more attention by researchers. Robinia pseudoacacia, Platycladus orientalis and Pinus tabulaeformis are the planting tree species that are widely planted in this region to control soil erosion and land desertification. There is much research on vertical distribution and seasonal dynamics of fine root biomass. However, the importance of fine root surface area for nutrient and water uptake is apparent and the seasonal dynamics of fine root surface area remain poorly understood. The study of tree fine root distribution, seasonal dynamics and its relationship with environmental factors, is significant to the revealing of the formation mechanism of soil dried layer, to the scientifically selecting tree species in forestation, to the speeding up construction of the Northwest Landscape Beautification Project.
     During the growing season in 2006 and 2007, we selected Changwu county, Jingchuan county and Ansai county as the study area, according to the different characteristics of precipitation in Loess Plateau region. Ansai county lies in the semiarid region of the Loess Plateau of China, but Changwu county and Jingchuan county lie in the semihumid region of the Loess Plateau of China. In study area, by using soil coring method, we got the samples of tree fine root and the soil samples in R. pseudoacacia, P. orientalis and P. tabulaeformis forests. The impact of soil moisture on the seasonal dynamics of fine root surface area of main planting tree species in Loess Plateau was studied from the view of ecological zones large-scale and the forest environment small-scale. The main results were below:
     (1) Characteristics of vertical distribution and seasonal dynamics of fine root surface area and soil water content of main planting tree species in Loess Plateau
     In Changwu county and Jingchuan county, during the growing season in 2006 and 2007, respectively, the soil moisture actively changed in the 0-150 cm soil layer where more than 87.2% of the total fine root surface area were concentrated in the R. pseudoacacia plantation. In Changwu county, the mean soil water content in the R. pseudoacacia plantation changed in order of April>October>July and the mean total fine root surface area changed in order of April > July > October. In Jingchuan county, the mean soil water content in the R. pseudoacacia plantation changed in order of October>April>June>August and the mean total fine root surface area changed in order of April>June>August>October.
     In Ansai county, during the growing season in 2007, the soil moisture actively changed in the 0-200 cm soil layer where more than 82.4% of the total fine root surface area were concentrated in the R. pseudoacacia, P. orientalis and P. tabulaeformis plantations, respectively. The mean soil water content in various forests all changed in order of October>April>June>August. The highest value of fine root surface area was in June for R. pseudoacacia and P. tabulaeformis, while it was in June and October for P. orientalis.
     In Ansai county, Changwu county and Jingchuan county, the values of fine root surface area of different tree species all decrease slowly along the soil profile. The model S =Ah~B(C+Dh+Eh~2+Fh~3) can well described the fine root surface area vertical distribution of the R. pseudoacacia, P. orientalis and P. tabulaeformis plantations, the fit decide coefficient (R~2) was more than 0.85. During the growing season, there was more fine root surface area in the soil layer where the soil moisture actively changed. But In Ansai county, Changwu county and Jingchuan county, there lay differences in the seasonal dynamics of fine root surface area and soil water content.
     (2) Difference of surface area of fine roots of R. pseudoacacia in the different climate regions of Loess Plateau
     The vertical depth of fine root distribution, the fine root area and seasonal dynamics of fine root area of R. pseudoacacia were different between Ansai County and Jingchuan county. The 86.5% of total fine root area was in the 0~200 cm soil layer in Ansai county , but the 87.6% of total fine root area was in the 0~150 cm soil layer in Jingchuan county. In the growing season in 2007, the highest value of fine root area was observed in April in Jingchuan county, while it was in June in Ansai county. The difference of cumulative fine root area between Ansai and Jingchuan was not significant in June. By comparing the characteristic of fine root area of R. pseudoacacia in Ansai County with the characteristic of fine root area of R. pseudoacacia in Jingchuan county, the R. pseudoacacia in Ansai County was to reduce the density of fine root area, to increase the vertical depth of fine root distribution and to maintain the cumulative fine root area for tree growth.
     (3) Correlation between soil water content and vertical distribution, seasonal dynamics of tree fine root surface area
     In Ansai county, Changwu county and Jingchuan county, there was a significant positive correlation (p<0.05) between vertical distribution of fine root surface area and soil water distribution in the profile. But there was not significant correlation (p>0.05) between the seasonal dynamics of fine root surface area and soil water content. The results indicates that combined and integrated soil moisture, temperature, available nitrogen and genetic characteristics of tree species should be considered in research on seasonal dynamics of fine roots.
     (4) Correlation between tree fine root surface area and seasonal dynamics of soil water content in the deep soil layer
     The coefficient of variation of soil moisture in the soil layer (0-200 cm soil layer for Changwu and Jingchuan county, 0-300 cm soil layer for Ansai county) where the tree fine roots distributed was bigger than it in the deep soil layer (220-380 cm soil layer for Changwu, 220-500 cm soil layer for Jingchuan county, 320-500 cm soil layer for Ansai county). In Changwu, Jingchuan and Ansai county, the soil profiles of woodland were divided into two layers based on the vertical distribution of coefficient of variation of soil moisture. One was the soil moisture actively changing layer where the soil moisture changed actively. The other was the soil moisture stably changing layer where the soil moisture changed stably. The soil moisture actively changing layer was in the 0-200 cm soil layer for Changwu and Jingchuan county, but was in the 0-300 cm soil layer for Ansai county. The soil moisture stably changing layer was in the the 220-380 cm, 220-500 cm and 320-500 cm soil layer for Changwu, Jingchuan and Ansai county, respectively.
     There was a significant negative correlation (p<0.05) between the coefficient of variation of fine root surface area in the soil moisture actively changing layer and the coefficient of variation of soil moisture in the 220-380 cm, 220-500 cm and 320-500 cm soil layer for Changwu, Jingchuan and Ansai county, respectively, but there was not significant correlation (p>0.05) between the coefficient of variation of fine root surface area in the soil moisture actively changing layer and the coefficient of variation of soil moisture in the 420-500 cm for Jingchuan county. The results indicates that tree root affected on the soil moisture status in the deep soil layer, but the affected depth of soil moisture status was different in the different climate regions of Loess Plateau. The affected depth of soil moisture status in Ansai was bigger than it in Jingchuan.
     This study indicates that soil water is the important factor to effect the growth and distribution of fine root surface area of main planting tree species in Loess Plateau, combined and integrated soil moisture, temperature, available nitrogen and genetic characteristics of tree species should be considered in research on seasonal dynamics of fine roots.
引文
白文明,程维信,李凌浩. 2005.微根窗技术及其在植物根系研究中的应用.生态学报,25(11):3076~3081
    曹扬,赵忠,曲美,成向荣,王迪海. 2006.刺槐根系对深层土壤水分的影响.应用生态学报, 17(5): 765~768
    陈宝群,赵景波,李艳花. 2009.黄土高原土壤干层形成原因分析.地理与地理信息科学,25(3): 85~89
    陈光水,何宗明,谢锦升,杨玉盛,蒋宗垲. 2004.福建柏和杉木人工林细根生产力、分布及周转的比较.林业科学, 40(4): 15~21
    陈金林,许新建,姜志林,张武兆,张井义,贾永正. 1999.空青山次生栎林细根周转.南京林业大学学报23(1):6~10
    陈亚明,傅华,张荣,成长贵.2004.根-土界面水分再分配研究现状与展望.生态学报. 24(5):1040~1047
    成向荣,赵忠,郭满才,王迪海,袁志发. 2006.刺槐人工林细根垂直分布模型的研究.林业科学,42(6): 40~48
    程云环,韩有志,王庆成,王政权. 2005.落叶松人工林细根动态与土壤资源有效性关系研究.植物生态学报,29(3): 403~410
    付明胜,钱卫东,牛萍,马光亮. 2002.连续干旱对土壤干层深度及植物生存的影响.干旱区研究, 19(2): 71~74
    郭银,周丹. 2008.林木细根的研究进展.防护林科技,2:50~52
    郝文芳,韩蕊莲,单长卷,梁宗锁. 2003.黄土高原不同立地条件下人工刺槐林土壤水分变化规律研究.西北植物学报, 23(6): 964~968
    何永涛,郎海玲. 2009.植被建设在黄土高原水土保持中的意义及其对策.水土保持研究,16(4):30~38
    何东兴,高玉葆. 2003.干旱区水力提升的生态作用.生态学报.23(5):996~1002
    何维明. 2000.不同生境中沙地柏根面积分布特征.林业科学, 36(5): 17~21.
    何永涛,石培礼,张宪洲,钟志明,徐玲玲,张东秋. 2009.拉萨河谷杨树人工林细根的生产力及其周转.生态学报,29(6),2877~2883.
    侯庆春,李宏平. 2000.关于黄土丘陵典型地区植被建设中有关问题的研究I.水土保持研究, 7(2): 102~110
    黄建辉,韩兴国,陈灵芝. 1999.森林生态系统根系生物量研究进展.生态学报19(2):270~277
    黄建辉,韩兴国,陈灵芝.森林生态系统根系生物量研究进展.生态学报, 1999, 19(2): 270~277
    贺金生,王政权,方精云. 2004.全球变化下的地下生态学:问题与展望.科学通报, 49 (13) : 1226~1233
    靳铁治,王开锋,王永奇. 2009.陕北黄土高原植被建设现状分析.陕西林业科技,1:105~107
    梁宗锁,韩蕊莲,刘淑明,勒爱仙,王俊峰. 2008.黄土高原树木水分生理生态学特征.北京:中国林业出版社:45,106
    李培芝,范世华,王力华,许思明. 2001.杨树细根及草根的生产力与周转的研究.应用生态学报12(6):829~832
    李鹏,赵忠,李占斌,王乃江. 2002.植被根系与生态环境相互作用机制研究进展.西北林学院学报17(2):26~32
    李俊英,王孟本,史建伟. 2007.应用微根管法测定细根指标方法评述.生态学杂志,26 (11):1842~1848
    李裕元,邵明安. 2001.黄土高原气候变迁,植被演替与土壤干层的形成.干旱区资源与环境, 15(1): 72~77
    李修仓,胡顺军,李岳坦,李雪梅. 2008.干旱区旱生芦苇根系分布及土壤水分动态.草业学报,17(2):97~101
    林希昊,王真辉,陈秋波,杨礼富. 2008.不同树龄橡胶( Hevea brasiliensis)林细根生物量的垂直分布和年内动态.生态学报,28(9): 4129~4135.
    刘建军. 1998.林木根系生态研究综述.西北林学院学报13(3):74~78
    刘建军. 2002.秦岭油松、锐齿栎根系生态研究.西安:西北大学出版社.
    刘颖,邓丽琴. 1995.从根系特点分析辽西地区树种的抗旱性.沈阳农业大学学报, 26(2): 171~176
    廖荣伟,刘晶淼. 2008.作物根系形态观测方法研究进展讨论.气象科技,36(4):429~435
    梅莉,韩有志,于水强,史建伟,王政权. 2006.水曲柳人工林细根季节动态及其影响因素.林业科学, 42(9): 7~12
    梅莉,王政权,程云环,郭大立. 2004.林木细根寿命及其影响因子研究进展.植物生态学报,28 (4): 704~710
    梅莉,王政权,韩有志,谷加存,王向荣,程云环,张秀娟.2006.水曲柳根系生物量、比根长和根长密度的分布格局.应用生态学报,17 (1):1~4
    穆兴民,徐学选,王文龙,温仲明,杜峰. 2003.黄土高原人工林对区域深层土壤水分环境的影响. 土壤学报. 40(2):210~217
    马长明,翟明普,刘春鹏. 2009.单作与间作条件下核桃根系分布特征研究.北京林业大学学报,31(6):181~186
    杨丽韫,李文华. 2005.长白山原始阔叶红松林细根分布及其周转的研究.北京林业大学学报, 27 (2) :1~5
    孙长忠,黄宝龙,陈海滨,刘增文,温仲明. 1998.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报,20(3):7~14
    苏宏斌,赵岷阳. 2006.干旱黄土区造林地土壤水分对植物根系分布的影响研究.林业实用技术,1:9~11
    史建伟,于水强,于立忠,韩有志,王政权,郭大立. 2006.微根管在细根研究中的应用.应用生态学报,17 (4):715~719
    单长卷,梁宗锁. 2007.土壤干旱对冬小麦幼苗根系生长及生理特性的影响.中国生态农业学报,15(5):3841
    单长卷,梁宗锁,郝文芳. 2003.黄土高原刺槐林生长与土壤水分关系研究进展.西北植物学报23(8):1341-1346
    谭波,张健,杨万勤,汪明,薛樵,董生刚. 2008.岷江干旱河谷~山地森林交错区典型人工林细根生物量及其碳储量特征.四川林业科技,29(2): 18~22
    王国梁,刘国彬,周生路. 2003.黄土高原土壤干层研究述评.水土保持学报,17(6):156~159
    王力,邵明安,李裕元. 2004.陕北黄土高原人工刺槐林生长与土壤干化的关系研究.林业科学,40(1):84~91.
    王力,邵明安,王全九,贾志宽. 2005.黄土高原子午岭天然林与刺槐人工林地土壤干化状况对比.西北植物学报,25 (7) : 1279~1286.
    王力,邵明安,侯庆春,杨岗民. 2001.延安试区人工刺槐林地的土壤干层分析.西北植物学报, 21(1):101~106
    王力,邵明安,侯庆春. 2000.延安试区土壤干层现状分析.水土保持通, 20(3): 35~37
    王晓冬,叶生欣,沈海龙,李长海. 2008.不同土壤水分条件对真桦幼苗形态特征、生物量及光合生理特征的影响.东北林业大学学报,36(5):31~33
    王文全,王世绩,刘雅荣,刘建伟. 1994.粉煤灰田立地上杨,柳,榆,刺槐根系的分布和生长特点.林业科学,30(1):25~33
    王庆成,程云环. 2004.土壤养分空间异质性与植物根系的觅食反应.应用生态学报,15 (6):1063~1068
    王进鑫,王迪海,刘广全. 2004.刺槐和侧柏人工林有效根系密度分布规律研究.西北植物学报,4 (12):2208~2214
    卫星,张国珍. 2008.树木细根主要研究领域及展望.中国农学通报, 24(5): 143~147
    韦兰英,上官周平. 2006.黄土高原白羊草、沙棘和辽东栎细根比根长特性.生态学报, 26 (12):4164~4170
    吴钦孝,杨文治. 1998.黄土高原植被建设与可持续发展.北京:科学出版社
    吴楚,王政权,范志强.2004.树木根系衰老研究的意义与现状.应用生态学报,15(7):1276~1280
    徐彩霞,赵忠,陈明涛. 2009.水分胁迫对5个树种苗木根系部分生理指标的影响.西北农林科技大学学报(自然科学版),37(8):109~114
    荀俊杰,李俊英,陈建文,史建伟王孟本. 2009.幼龄柠条细根现存量与环境因子的关系.植物生态学报,33(4):764~771
    杨维西. 1996.试论我国北方地区人工植被的土壤干化问题.林业科学, 32(1): 78~85
    杨文治,田均良. 2004.黄土高原土壤干燥化问题探源.土壤学报, 41(1): 1~6
    杨文治,马玉玺,韩仕峰,杨新民. 1994.黄土高原地区造林土壤水分生态分区研究.水土保持学报,8(1): 1~9
    杨文治. 2001.黄土高原土壤水资源与植树造林.自然资源学报, 16(5): 433~438
    杨秀云,韩有志,张芸香. 2008.距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化.植物生态学报,32(6): 1277~1284
    宇万太,于永强. 2001.植物地下生物量研究进展.应用生态学报,12 (6):927~932
    余新晓,张建军,朱金兆. 1996.黄土地区防护林生态系统土壤水分条件的分析与评价.林业科学,32(4):289~297
    翟明普,蒋三乃,贾黎明. 2002.沙地杨树刺槐混交林细根动态.北京林业大学学报, 24 (5 - 6):39~44
    翟明普,蒋三乃,贾黎明. 2004.杨树刺槐混交林细根养分动态研究.林业科学, 40(4):46~51
    张爱良,苗果园,王建平. 1997.作物根系与水分的关系.作物研究,2:4~6
    张国盛,吴国玺,王林和,秦艳,胡永宁,长忠山. 2009.毛乌素沙地臭柏( Sabina vulgaris)和油蒿(Artemisia ordosica)群落的细根分布特征.生态学报,29(1): 18~27.
    张小全,吴可红. 2001.森林细根生产和周转研究.林业科学,37(3):126~137
    张小全. 2001.环境因子对树木细根生物量、生产与周转的影响.林业科学研究,14(5): 566~573
    张小全,吴可红,Dieter Murach. 2000.树木细根生产与周转研究方法评述.生态学报,20(5):875~883
    张劲松,孟平,尹昌君. 2002.果农复合系统中果树根系空间分布特征.林业科学,38 (4):30~33
    周本智,张守攻,傅懋毅. 2007.植物根系研究新技术Minirhizotron的起源、发展和应用.生态学杂志, 26 ( 2 ):253~260
    周云龙. 1999.植物生物学.北京:高等教育出版社:88
    朱维琴,吴良欢,陶勤南. 2002.作物根系对干旱胁迫逆境的适应性研究进展.土壤与环境,11(4):430~433
    赵忠,成向荣,薛文鹏,王迪海,袁志发. 2006.黄土高原不同水分生态区刺槐细根垂直分布的差异. 林业科学, 42(11): 1~7.
    赵垦田. 2000.国外针叶树种根系生态学研究综述.世界林业研究,13(5):7~12
    赵忠,李鹏. 2002.渭北黄土高原主要造林树种根系分布特征及抗旱性研究.水土保持学报, 16(1): 96~99
    赵忠,李鹏,王乃江. 2000.渭北黄土高原主要造林树种根系分布特征的研究.应用生态学报,11(1):37~39
    赵忠,李鹏,薛文鹏,郭生武. 2004.渭北主要造林树种细根生长及分布与土壤密度关系.林业科学, 40(5): 34~39
    朱美秋,马长明,翟明普,王学勇. 2009.河北石质山区花椒细根分布特征.林业科学, 45(2):131~135
    朱胜英,周彪,毛子军,王秀伟,孙元发.2006.帽儿山林区6种林分细根生物量的时空动态.林业科学, 42(6):13~19
    朱桂林,韦文珊,张淑敏,吴冬秀. 2008.植物地下生物量测定方法概述及新技术介绍.中国草地学报,30(3):94~99
    Bohdan K, Jorge C Y, Ivan A J. 2005. Comparison of fine root dynamics in Scots pine and Pedunculate oak in sandy soil. Plant and Soil, 276:33~45
    Burton AJ , Pregitzer KS , Hendrick RL. 2000. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia ,125 (3) :389~399
    Carolyn S W, Joseph W F, George C J F. 2004. Fine root growth dynamics of four Mojave desert shrubs as related to soil moisture and microsite. Journal of Arid Environments, 56:129~148
    Casper BB , Cahill J F J r ,Jackson RB. 2000. Plant competition in spatially heterogeneous environments. In : Huntchings MJ ,eds. The Ecological Consequences of Environmental Heterogeneity. Oxford : Blackwell Science. 111~130
    Cheng X R, Huang M B, Shao M A. 2009. A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom. grown in two soils in a semiarid region, China. Plant Soil, 315:149~161
    Christmann A, Weiler, EW, Steudle E, Grill, E. 2007. A hydraulic signal in root-to-shoot signaling of water shortage. The Plant Journal, 52:167~174
    Chun W X, Wei G S, Wang R Z. 2008. Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. Forest Ecology and Management, 255:765~773
    Copley J. 2000. Ecology goes underground. Nature, 406: 452~454
    Davies W J , Zhang J H. Root signals and the regulation of growth and developmen t of plants in dryingsoil. Annu RevPlant Physiol Mol Biol, 1991, 42: 55~76
    Dickmann D I, Nguyen P V, Pregitzer K S. 1996. Effects of irrigation and coppicing on above_ground growth, physiology, and fine root dynamics of two field grown hybrid poplar clones. Forest Ecology and Management, 80:163~174
    Eissenstat DM, Yanai RD. 1997. The ecology of root lifespan. Advances in Ecological Research, 27: 1~60
    Fransen B , Kroon HD ,Berendse F. 1998. Root morphological plasticity and nutrient acquisition of perennial grass species from habitats of different nutrient availabilit y. Oecologia ,115 (3) :351~358
    Farrar J F, Jones DL. 2000. The control of carbon acquisition by roots. New Phytol ,147 (1) :43~53
    George E. Seith B. Schaeffer C. Marschner H. 1997.Responses of Picea .Pinus.and Pseudotsuga roots to heterogeneous nutrient distribution in soil. Tree Physiology. 17 (1 ): 39~45
    Gill RA ,Jackson RB. 2000. Global patterns of root turnover for terrestrial ecosystems. New Phytol ,147 : 13~31
    Gongd Z,Kang S Z,Lu Z. 2006. A 2-d model of root water uptake for single apple trees and its verification with sap flow and water content measurements. Agricultural Water Management, 83:119~129
    Green S R, B E. 1995. Root water uptake by kiwifruit vines following partial wetting of the root zone .Clothier. Plant and Soil, 173:317~328
    Guo Z S,Shao M A. 2003. Soilwater carrying capacity of vegetation and soil desiccation in artificial forestry and grassland in semi-arid regions of the Loess plateau. Acta Ecologica Sinica, 23(8):1640~1647
    Guo DL ,Mitchell RJ ,Hendricks JJ . 2004. Fine root branch orders respond differentially to carbon sourcesink manipulations in a longleaf pine forest . Oecologia ,140 (3) :450~457
    Hodge A ,Robinson D , Griffiths BS. 1999. Why plants bother :Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Envi ron ,22 : 811~820
    Hodge A ,Robinson D , Fitter. AH. 2000. An arbuscular myorrhizal inoculum enhances root proliferation in , but not nitrogen capture from ,nutrient-rich patches in soil. New Phytol ,145 :575~584
    Jackson R B, Canadell J et al.. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389~411
    Jackson R B, Mooney H A, Schulze E D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America , 94:7362~7366.
    Jam den Unden, Danielle Vogels. 1997. Mechenical resistance by an ectorganic soil layer on root development of seedling Pinus sylvetris.Plant and Soil, 197:209~217
    Jon P D, Bruce H, David C. 2004. Fine root dynamics along an elevational gradient in the southern Appalachian Mountains, USA. Forest Ecology and Management, 187:19~34
    Jose S, Gillespie AR, Seifert JR, Pope PE. 2001. Comparison of minirhizotron and soil core methods for quantifying root biomass in a temperate alley cropping system. Agroforestry Systems, 52: 161~168
    Kang S Z,Zhang F C,Zhang J H. 2001. A Simulation model of water dynamics in winter wheat field and its application in a semiarid region. Agricultural Water Management, 49(2):115~129
    Hmuller K. and Wagner S.. 2003. Fine root dynamics in gaps of Norway spruce stands in the German Ore Mountains. Forestry ,vol.76 (2): 149~158
    Kummerow J, Kummerow M, Souza D S W. 1982. Fine root growth dynamics in cacao (Theobroma cacao).Plant and Soil, 65:193~201
    Leena Finer, Chrustian Messier, Louis De Grandpre. 1997. Fine root dynamic in mixed boreal conifer—broad—leafed forest stands at different successional stages after fire. Can. J. For. Res, 27: 304~314
    Li P, Zhao Z, Li Z B. 2004. Vertical root distribution characters of Robinia pseudoacacia on the Loess Plateau in China. Journal of Forestry Research, 15(4): 87~92
    Liu W G, Shan L. 2003. Aquaporin activities in sunflower root system increased with increasing seedling age.Acta Botanica Boreali-Occidentalia Sinica, 23(10):1663~1668
    Lopez B, Sabate S, Gracia CA. 2001. Annual and seasonal changes in fine root biomass of a Quercus ilex L. forest. Plant and Soil, 230: 125~134
    Majdi H, Andersson P. 2005. Fine root p roduction and turnover in a Norway sp ruce stand in northern Sweden: Effects of nitrogen and watermanipulation. Ecosystem s, 8: 191~199
    Mark R. Bakker. 1999. Fine-root parameters as indicators of sustainability of forest ecosystems. Forest Ecology and Management,122:7-16
    M.M.Parker and D.H.Van lear. 1996. Soil heterogeneity and root distribution of mature Lobolly pine stands in Piedmont soils.Soil Sci.Soc Am.J, 60:1920~1925
    Milan Kodrik. 1994. Distribution of root biomass and length in Picea abies ecosystem under different immission regimes.Plant and Soil, 167:173~179
    Nicoll B C, Ray D. 1996. Adaptive growth of tree systems in response to wind action and site conditions. Tree physiology,16 (11/12): 891~898
    Norby RJ ,Jackson RB. 2000. Root dynamics and global change : Seeking an ecosystem perspective. New Phytol ,147 : 3~12
    Baldwin P.J. and Stewart H.T.L. 1997. Distribution,length,andweight of roots in yong plangtations of Eucalyptus grandis W.hill ex maiden irrigated with recycled water.Plant and Soil, 17:243~252
    Pregitzer K S, King J S, Burton A J. 2000. Response of tree fine roots to temperature. New Phytologist, 147:105~115.
    Pu Mou,Robert J.Mitohell. 1997. Root distribution of two tree species under a heterageneous nutrient environment.J.Appli.Eco,, 34:645~656
    Jackson R.B.. Canadell J.. Mooney H.A.. 1996. A global analysis of root distribution for terrestrial biomes. Oecologia, 180: 389~411
    Roman T, Jordi C, Alberto V. 2006. Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.) . Trees-Structure and Function, 20(3): 334~339
    Robinson D, Hodge A, Fitter A. 2003. Constraints on the form and function of root systems. In : Kroon HD ,eds. Root Ecology. Heidelberg :Springer-Verlag. 1~26
    Ruess RW, Hendrick RL, Bryant JP. 1998. Regulation of fine root dynamics bymammalian browsers in early successional Alaskan taiga forests. Ecology, 79: 2706~2720
    Scholz F G, Bucci S J, Goldstein G. 2002. Hydraulic redistribution of soil water by neotropical savanna trees.tree Physiol. 22:603~612
    Schenk HJ, Jackson RB. 2002. Rooting depth ,lateral root spreads, and belowground/ aboveground allometries of plants in water limited ecosystems. J Ecol ,90 (3) :480~494
    Smit AL, George E, Groenwold J. 2000. Root observations and measurements at ( transparent) interfaceswith soil/ / Smit AL, ed. RootMethods: A Handbook. Heidelberg, Germany:Springer:236~264
    Son Y, Hwang J H. 2003. Fine root biomass, production and turnover in a fertilized Larix lep tolep is plantation in central Korea. Ecological Research, 18: 339~346
    Tierney GL ,Fahey TJ . 2001. Evaluation of minirhizotron estimates of fine root longevity in the forest floor of a temperate broadleaf forest . Plant Soil , 229 : 167~176
    Van Kleunen M.Stuefer J F. 1999. Quantifying the effects fo reciprocal assimilate and water translocation in a clonal plant by the use of steam-girdling. Oilos,85:135~145
    Wang Z Q, Burch W H, Mou P. 1995. Accuracy of visible and ultraviolet light for estimation live root proportions with minirhizotrons. Ecology, 76:2330~2334.
    Widell S. 1994. Activities of plasma membrane-bound enzymes isolated from roots of spruce ( picea abies) growth in the presence of aluminium. Physiologia Plantarum. 92 (3 ):459~466
    Xiao CW, Sang WG, Wang RZ. 2008. Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. Forest Ecology and Management, 255,765–773.
    Zhou ZC, Shangguan ZP. 2007. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. Forest of the Loess Plateau of China. Plant Soil, 291,119~129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700