罗丹明及香豆素衍生物新功能荧光染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命活动是由许多的生物活性物质参与的各种化学反应的结果,包括很多活性的金属离子及生物小分子等。近些年来,荧光检测技术已经被广泛地应用于生物成像,生物监测,免疫分析和环境保护等方面。荧光增强型分子探针可以有效地避免生物体的自身干扰,而基于能量转移的荧光比率型探针更是备受关注。在众多优秀的荧光团中,罗丹明和香豆素类的染料由于其良好的光稳定性和易于修饰的特点,越来越多地应用于生物实验中。
     本论文设计并合成了一例罗丹明B衍生物D2。作为专一识别Cu2+的探针,在水溶液中,可以很好的选择性识别Cu2+,而对其它常见金属离子都没有响应。紫外吸收光谱显示D2对较低浓度Cu2+的检测仍呈良好的线性关系,最低检出限为1.29×10-7mol/L。对于1×10-6mol/L的Cu2+仍可以实现裸眼可见的颜色变化,且识别过程可逆。制成试纸可以检测含Cu2+ppm级别水样。
     利用PET机理,设计合成了一例罗莎明类荧光增强型Ag+探针,以冠醚[15]aneNO2S2为配体,在纯水相测试体系中对Ag+检出限可达9.3×10-8mol/L,且响应快速。第一次真正意义上实现了可以细胞内成像的Ag+荧光探针,具有重要生理意义。同时利用理论计算证实了的在水相中对Ag+的荧光响应要远远大于对于Cu2+和Hg2+的响应,很好的解释了实验现象。
     设计合成了一例新型的香豆素衍生物荧光分子T1,基于ICT机理可以作为Cys和Hcy的新型反应型探针。被测物的加入,可以有效地引起吸收波长发生70nm的蓝移,并伴随着荧光强度的明显增强,并可在细胞中以及人血浆样品中检测Cys/Hcy。
     基于FRET机理,设计了两例比率检测Cu2+的荧光分子探针T1RB-1和T1RB-2。以香豆素衍生物作为能量供体,罗丹明作为能量受体。特别对于探针T1RB-2,由于将C=N双键还原为C-N,在络合Cu2+的同时,对于Cu+也有响应,这与探针T1RB-1不同,分析其原因可能是由于电子分布及空间构型造成的。T1RB-2能够穿透过细胞膜对不同的活细胞进行荧光呈像,且可以荧光比率检测细胞内的Cu2+并定位在溶酶体中。
     将罗丹明与香豆素/萘酰亚胺利用炔苯基连接,使能量供体和受体之间有一定的空间转角,实现了经空间转移与经键能量转移(TBET)的同时发生。可增加赝斯托克斯位移至200nm。
The activity of life is an effect of different chemical reactions by lots of biological active substances, including metal ions and small active molecules. In recent years, fluorescent technology has been widely used in bioimaging, biosensing, medical diagnosis and environmental detection. The fluorescence-enhanced signal can avoid the interference well, and the fluorometric methods based on energy transfer have attracted more attentions. Among these talent fluorophores, because of the good photostability and easy to modify, rhodamine and coumarin derivative have been more and more used in the biological experiments.
     Designed and synthesized a new type of Rodamine B derivative D2. As a specific probe for Cu2+in aqueous solution, the detection process was not effect by other ions. The color change reduced by1×10-6mol/L Cu2+still can be seen by naked eyes. The binding process of the probe and the Cu2+is reversible. D2has potential application for detection Cu2+in the actual environment for rapid real-time analysis.
     Rosamine derivative RC-1, bearing macrocyclic ligand [15]aneNO2S2as receptor, was synthesized as an enhanced fluorescent chemosensor for Ag+in absolute aqueous solution. The detection limit was9.3×10-8mol/L. The fluorescence images in living cells show the potential application of RC-1. The difference of fluorescence enhancement process after binding with Ag+/Hg2+in acetonitrile/water solution was first clarified by theoretical calculations.
     A novel molecule T1with efficient intramolecular charge transfer was designed as a fluorescent chemodosimeter for cysteine (Cys) and homocysteine (Hcy). Upon addition of Cys/Hcy, T1exhibited greatly enhanced fluorescence intensity as well as a large absorption peak shift (70nm), and can be used for bioimaging of Cys/Hcy in living cells and detection in human plasma by visual color change. The detection mechanism was clarified by'H NMR, mass spectrometry analysis and Gaussian calculations.
     A couple of fluorescent tools bearing rhodamine B and aza-coumarin groups have been synthesized as selective and quantitative probes for Cu2+. Based on FRET mechanism, compounds T1RB-1and T1RB-2exhibited selective changes in the absorption and emission spectra towards Cu2+ion over miscellaneous cations. Interesting, the different electron density and structure geometry make chemosensor T1RB-2, which has C-N in the structure could bind with Cu2+, simultaneously with Cu+, that was not like probe T1RB-1with C=N. T1RB-2 could penetrate the membrane and detect Cu2+by ratiometry imaging in living cells. The probe T1RB-2also exhibits subcellular localized fluorescence staining of lysosome.
     The coumarin/naphthalimide-rhodamine cassettes were constructed through a conjugated acetylene phenyl linker, which prevents the fluorophores from becoming planar, makes the energy transfer through space and through bond simultaneously. The pseudo-Stokes shifts could get to about200nm.
引文
[1]AMAT-GUERRI F, COSTELA A, FIGUERA J M, et al. Laser action from rhodamine 6G-doped poly (2-hydroxyethyl methacrylate) matrices with different crosslinking degrees [J] Chemical Physics Letters,1993,209 (4):352-356.
    [2]DUJOLS V, FORD F CZARNIK A W. A Long-Wavelength Fluorescent Chemodosimeter Selective for Cu(II) Ion in Water [J] Journal of the American Chemical Society,1997,119 (31):7386-7387.
    [3]KUO Y-M, ZHOU B, COSCO D, et al. The copper transporter CTR1 provides an essential function in mammalian embryonic development [J] Proceedings of the National Academy of Sciences,2001,98 (12):6836-6841.
    [4]MULTHAUP G, SCHLICKSUPP A, HESSE L, et al. The Amyloid Precursor Protein of Alzheimer's Disease in the Reduction of Copper(Ⅱ) to Copper(Ⅰ) [J] Science,1996,271 (5254): 1406-1409.
    [5]L VSTAD R A. A kinetic study on the distribution of Cu(Ⅱ)-ions between albumin and transferrin [J] Biometals,2004,17 (2):111-113.
    [6]QUE E L, DOMAILLE D W CHANG C J. Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging [J] Chemical Reviews,2008,108 (5):1517-1549.
    [7]XIE P, GUO F, LI D, et al. A Cu2+ chemodosimeter based on amplified fluorescence in the red region [J] Journal of Luminescence,2011,131 (1):104-108.
    [8]XIANG Y, TONG A, JIN P, et al. New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(Ⅱ) with High Selectivity and Sensitivity [J] Organic letters,2006,8(13):2863-2866.
    [9]HUO F-J, SU J, SUN Y-Q, et al., A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium [J] Dyes and Pigments,2010,86 (1): 50-55.
    [10]XI P, DOU J, HUANG L, et al. A selective turn-on fluorescent sensor for Cu(Ⅱ) and its application in imaging in living cells [J] Sensors and Actuators B:Chemical,2010,148 (1):337-341.
    [11]XIANG Y TONG A. Ratiometric and selective fluorescent chemodosimeter for Cu(Ⅱ) by Cu(Ⅱ)-induced oxidation [J] Luminescence,2008,23 (1):28-31.
    [12]YU M X, SHI M, CHEN Z G, et al. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging [J] Chemistry-a European Journal, 2008,14 (23):6892-6900.
    [13]VALKO M, MORRIS H CRONIN M T D. Metals, Toxicity and Oxidative Stress [J] Current Medicinal Chemistry,12 (10):1161-1208.
    [14]AHN Y-H. Combinatorial Rosamine Library and Application to in Vivo Glutathione Probe [J] J. Am. Chem. Soc,2007,129 (15):4510-4511.
    [15]IM C N, KANG N Y, HA H H, et al. A Fluorescent Rosamine Compound Selectively Stains Pluripotent Stem Cells [J] Angewandte Chemie International Edition,2010,49 (41):7497-7500.
    [16]TURKI H, ABID S, FERY-FORGUES S, et al. Optical properties of new fluorescent iminocoumarins: Part 1 [J] Dyes and Pigments,2007,73 (3):311-316.
    [17]WOLFBEIS O S, KOLLER E HOGHMUTH P. The Unusually Strong Effect of a 4-Cyano Group upon Electronic Spectra and Dissociation Constants of 3-Substituted 7-Hydroxycoumarin [J] Bulletin of the Chemical Society of Japan,1985,58 (2):731-734.
    [18]ELANGOVAN A, LIN J-H, YANG S-W, et al. Synthesis and Electrogenerated Chemiluminescence of Donor-Substituted Phenylethynylcoumarins [J] The Journal of Organic Chemistry,2004,69 (23):8086-8092.
    [19]HIRANO T, HIROMOTO K KAGECHIKA H. Development of a Library of 6-Arylcoumarins as Candidate Fluorescent Sensors [J] Organic letters,2007,9 (7):1315-1318.
    [20]BRUNET E, ALONSO M T, JUANES O, et al. Unusual behaviour of 7-diethylamino-3-(3,4-ethylen-dioxybenzoyl)coumarin towards Group ⅡA cations:A potential photoactive probe for magnesium [J] Tetrahedron Letters,1997,38 (25):4459-4462.
    [21]SUZUKI Y, KOMATSU H, IKEDA T, et al. Design and Synthesis of Mg2+ -Selective Fluoroionophores Based on a Coumarin Derivative and Application for Mg2+ Measurement in a Living Cell [J] Analytical Chemistry,2002,74 (6):1423-1428.
    [22]SOH N, SAKAWAKI O, MAKIHARA K, et al. Design and development of a fluorescent probe for monitoring hydrogen peroxide using photoinduced electron transfer [J] Bioorganic & Medicinal Chemistry,2005,13 (4):1131-1139.
    [23]WU Z, LI Z, YANG L, et al. Fluorogenic detection of hydrogen sulfide via reductive unmasking of o-azidomethylbenzoyl-coumarin conjugate [J] Chemical Communications,2012,48 (81): 10120-10122.
    [24]TSIEN R Y HAROOTUNIAN A T, Practical design criteria for a dynamic ratio imaging system [J] Cell Calcium,11 (2-3):93-109.
    [25]DOS REMEDIOS C G MOENS P D J. Fluorescence Resonance Energy Transfer Spectroscopy Is a Reliable "Ruler" for Measuring Structural Changes in Proteins:Dispelling the Problem of the Unknown Orientation Factor [J] Journal of Structural Biology,1995,115 (2):175-185.
    [26]STRYER L HAUGLAND R P. Energy transfer:a spectroscopic ruler [J] Proceedings of the National Academy of Sciences,1967,58 (2):719-726.
    [27]OEVERING H, PADDON-ROW M N, HEPPENER M, et al. Long-range photoinduced through-bond electron transfer and radiative recombination via rigid nonconjugated bridges:distance and solvent dependence [J] Journal of the American Chemical Society,1987,109 (11):3258-3269.
    [28]ROEST M R, LAWSON J M, PADDON-ROW M N, et al. Identification of a totally charge separated state in completely rigid trichromophoric compounds [J] Chemical Physics Letters,1994,230 (6): 536-542.
    [29]ANTOLOVICH M, KEYTE P J, OLIVER A M, et al. Modeling long-range photosynthetic electron transfer in rigidly bridged porphyrin-quinone systems [J] The Journal of Physical Chemistry, 1991,95 (5):1933-1941.
    [30]JIAO G S, THORESEN L H BURGESS K. Fluorescent, through-bond energy transfer cassettes for Labeling multiple biological molecules in one experiment [J] Journal of the American Chemical Society,2003,125 (48):14668-14669.
    [31]LI F Y, ZHOU Z G, YU M X, et al. FRET-based sensor for imaging chromium(Ⅲ) in living cells [J] Chemical Communications,2008, (29):3387-3389.
    [32]YOON S, LEE M H, KIM H J, et al. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine [J] Organic Letters,2008,10 (2):213-216.
    [33]YUAN L, LIN W, CAO Z, et al. Development of FRET-Based Dual-Excitation Ratiometric Fluorescent pH Probes and Their Photocaged Derivatives [J] Chemistry-A European Journal,2012, 18(4):1247-1255.
    [34]YUAN L, LIN W, CHEN B, et al. Development of FRET-Based Ratiometric Fluorescent Cu2+ Chemodosimeters and the Applications for Living Cell Imaging [J] Organic Letters,2011,14 (2): 432-435.
    [35]YUAN L, LIN W, XIE Y, et al. Fluorescent Detection of Hypochlorous Acid from Turn-On to FRET-Based Ratiometry by a HOCI-Mediated Cyclization Reaction [J] Chemistry-A European Journal,2012,18 (9):2700-2706.
    [36]YUAN L, LIN W, XIE Y, et al. Single Fluorescent Probe Responds to H2O2, NO, and H2O2/NO with Three Different Sets of Fluorescence Signals [J] Journal of the American Chemical Society,2011, 134(2):1305-1315.
    [37]XIAO Y, ZHANG X L QIAN X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg(2+) Ions in Living Cells [J] Angewandte Chemie-International Edition,2008,47 (42):8025-8029.
    [38]XIAO Y, YU H B, GUO H Y, et al. Convenient and Efficient FRET Platform Featuring a Rigid Biphenyl Spacer between Rhodamine and BODIPY:Transformation of 'Turn-On' Sensors into Ratiometric Ones with Dual Emission [J] Chemistry-a European Journal,2011,17(11):3179-3191.
    [39]RUDKEVICH D M ZHANG H X. A FRET approach to phosgene detection [J] Chemical Communications,2007, (12):1238-1239.
    [40]ZHOU X, SU F, LU H, et al. An FRET-based ratiometric chemosensor for in vitro cellular fluorescence analyses of pH [J] Biomaterials,2012,33 (1):171-180.
    [41]KUMAR M, KUMAR N, BHALLA V, et al. Naphthalimide Appended Rhodamine Derivative: Through Bond Energy Transfer for Sensing of Hg(2+) Ions [J] Organic Letters,2011,13 (6): 1422-1425.
    [42]. JIAO G-S, THORESEN L H BURGESS K. Fluorescent, Through-Bond Energy Transfer Cassettes for Labeling Multiple Biological Molecules in One Experiment [J] Journal of the American Chemical Society,2003,125 (48):14668-14669.
    [43]JIAO G S, THORESEN L H, KIM T G, et al. Syntheses, photophysical properties, and application of through-bond energy-transfer cassettes for biotechnology [J] Chemistry-a European Journal,2006, 12 (30):7816-7826.
    [44]. DE SILVA A P, GUNARATNE H Q N, GUNNLAUGSSON T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J] Chemical Reviews,1997,97 (5):1515-1566.
    [45]FABBRIZZI L POGGI A. Sensors and switches from supramolecular chemistry [J] Chemical Society Reviews,1995,24(3):197-202.
    [46]BEER P D GALE P A. Anion Recognition and Sensing:The State of the Art and Future Perspectives [J] Angewandte Chemie International Edition,2001,40 (3):486-516.
    [47]VALEUR B LERAY I. Design principles of fluorescent molecular sensors for cation recognition [J] Coordination Chemistry Reviews,2000,205 (1):3-40.
    [48]FABBRIZZI L, LICCHELLI M, RABAIOLI G, et al. The design of luminescent sensors for anions and ionisable analytes [J] Coordination Chemistry Reviews,2000,205 (1):85-108.
    [49]. JIANG P GUO Z. Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors [J] Coordination Chemistry Reviews,2004,248 (1-2): 205-229.
    [50]ROGERS C W WOLF M O. Luminescent molecular sensors based on analyte coordination to transition-metal complexes [J] Coordination Chemistry Reviews,2002,233-234 341-350.
    [51]ELLIS-DAVIES G C R, Neurobiology with Caged Calcium [J] Chemical Reviews,2008,108 (5): 1603-1613.
    [52]NOLAN E M LIPPARD S J. Tools and Tactics for the Optical Detection of Mercuric Ion [J] Chemical Reviews,2008,108 (9):3443-3480.
    [53]KIM J S QUANG D T. Calixarene-Derived Fluorescent Probes [J] Chemical Reviews,2007,107 (9): 3780-3799.
    [54]LODEIRO C, CAPELO J L, MEJUTO J C, et al. Light and colour as analytical detection tools:A journey into the periodic table using polyamines to bio-inspired systems as chemosensors [J] Chemical Society Reviews,2010,39 (8):2948-2976.
    [55]KIKUCHI K. Design, synthesis and biological application of chemical probes for bio-imaging [J] Chemical Society Reviews,2010, (39):2048-2053.
    [56]QIAN X, XIAO Y, XU Y, et al. "Alive" dyes as fluorescent sensors:fluorophore, mechanism, receptor and images in living cells [J] Chemical Communications,2010,46 6418-6436.
    [57]SONG K C, KIM J S, PARK S M, et al. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline [J] Organic letters,2006,8(16):3413-3416.
    [58]LIN W Y, LONG L L, CHEN B B, et al. A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction [J] Chemistry-a European Journal,2009,15 (10):2305-2309.
    [59]LI A F, HE H, RUAN Y B, et al. Oxidative cyclization of N-acylhydrazones. Development of highly selective turn-on fluorescent chemodosimeters for Cu2+ [J] Organic & Biomolecular Chemistry,2009,7 (1):193-200.
    [60]JOU M J, CHEN X, SWAMY K M K, et al. Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide [J] Chemical Communications,2009, (46):7218-7220.
    [61]YANG Y K, LEE S TAE J. A Gold(III) Ion-Selective Fluorescent Probe and Its Application to Bioimagings [J] Organic letters,2009,11 (24):5610-5613.
    [62]DU J, FAN J, PENG X, et al. A New Fluorescent Chemodosimeter for Hg2+:Selectivity, Sensitivity, and Resistance to Cys and GSH [J] Organic letters,2010,12 (3):476-479.
    [63]SIPPEL T O. New fluorochromes for thiols:maleimide and iodoacetamide derivatives of a 3-phenylcoumarin fluorophore [J] Journal of Histochemistry & Cytochemistry,1981,29 (2):314-316.
    [64]SIPPEL T O. Microfluorometric analysis of protein thiol groups with a coumarinylphenylmaleimide [J] Journal of Histochemistry & Cytochemistry,1981,29(12):1377-1381.
    [65]. MATSUMOTO T, URANO Y, SHODA T, et al. A Thiol-Reactive Fluorescence Probe Based on Donor-Excited Photoinduced Electron Transfer:Key Role of Ortho Substitution [J] Organic letters, 2007,9 (17):3375-3377.
    [66]CORRIE J E T. Thiol-reactive fluorescent probes for protein labelling [J] Journal of the Chemical Society, Perkin Transactions 1,1994, (20):2975-2982.
    [67]RUSIN O, ST. LUCE N N, AGBARIA R A, et al. Visual Detection of Cysteine and Homocysteine [J] Journal of the American Chemical Society,2003,126 (2):438-439.
    [68]LIN W, LONG L, YUAN L, et al. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift [J] Organic letters,2008,10 (24):5577-5580.
    [69]. LI H, FAN J, WANG J, et al. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine [J] Chemical Communications,2009, (39):5904-5906.
    [70]TANG B, XING Y, LI P, et al. A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells [J] Journal of the American Chemical Society, 2007,129(38):11666-11667.
    [71]PULLELA P K, CHIKU T, CAR VAN III M J, et al. Fluorescence-based detection of thiols in vitro and in vivo using dithiol probes [J] Analytical Biochemistry,2006,352 (2):265-273.
    [72]AKKAYA E U. Ion Sensing Coupled to Resonance Energy Transfer:A Highly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(Ⅰ) by a Modular Approach [J] Journal of the American Chemical Society,2005,127 (30):10464-10465.
    [73]YOON S, MILLER E W, HE Q, et al. A bright and specific fluorescent sensor for mercury in water, cells, and tissue [J] Angewandte Chemie-International Edition,2007,46 (35):6658-6661.
    [74]ZHOU Z G, YU M X, YANG H, et al. FRET-based sensor for imaging chromium(Ⅲ) in living cells [J] Chemical Communications,2008, (29):3387-3389.
    [75]LI H L, FAN J L, DU J J, et al. A fluorescent and colorimetric probe specific for palladium detection [J] Chemical Communications,2010,46 (7):1079-1081.
    [76]GAGGELLI E, KOZLOWSKI H, VALENSIN D, et al. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis) [J] Chemical Reviews,2006,106 (6):1995-2044.
    [77]KUMAR N. Copper Deficiency Myelopathy (Human Swayback) [J] Mayo Clinic Proceedings,2006, 81 (10):1371-1384.
    [78]HAN O WESSLING-RESNICK M. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells [J] Am J Physiol Gastrointest Liver Physiol,2002,282 (3):G527-533.
    [79]RAM REZ-C RDENAS L, COSTA N M B REIS F P. Copper-iron metabolism interaction in rats [J] Nutrition Research,2005,25 (1):79-92.
    [80]YU J WESSLING-RESNICK M. Influence of Copper Depletion on Iron Uptake Mediated by SFT, a Stimulator of Fe Transport [J] Journal of Biological Chemistry,1998,273 (12):6909-6915.
    [81]MALVANKAR P L SHINDE V M. Ion-pair extraction and determination of copper(II) and zinc(II) in environmental and pharmaceutical samples [J] Analyst,1991,116(10):1081-1084.
    [82]. OTTO M, MUELLER H WERNER G. Simple and sensitive determination of hepatic copper by use of an extractive catalytic method [J] Talanta,1979,26 (8):781-784.
    [83]郑直,李姗,王影,等.离子液体萃取光度法测定铜和铁 [J] 分析化学,2010,38(12):1838.
    [84. MORRIS M D WHITLOCK L R. Application of atomic absorption spectrometry to extraction of mercuric iodide into carbon tetrachloride [J] Analytical Chemistry,1967,39 (10):1180-1181.
    [85]CULP J H, WINDHAM R L WHEALY R D. Atomic absorption spectrometry of copper with selected organic solvents after extraction from aqueous solution with 8-hydroxyquinoline [J] Analytical Chemistry,1971,43 (10):1321-1324.
    [86]KIMURA K, YAJIMA S, TATSUMI K, et al. Silver Ion-Selective Electrodes Using π-Coordinate Calix[4]arene Derivatives as Soft Neutral Carriers [J] Analytical Chemistry,2000,72 (21): 5290-5294.
    [87]ARAVINDHAN R, MADHAN B, RAO J R, et al. Bioaccumulation of Chromium from Tannery Wastewater:An Approach for Chrome Recovery and Reuse [J] Environmental Science & Technology, 2003,38(1):300-306.
    [88]KUNWAR A, MISHRA B, BARIK A, et al.3,3'-Diselenodipropionic Acid, an Efficient Peroxyl Radical Scavenger and a GPx Mimic, Protects Erythrocytes (RBCs) from AAPH-Induced Hemolysis [J] Chemical Research in Toxicology,2007,20 (10):1482-1487.
    [89]熊敏秋,席海涛,付永胜,等.新型香豆素荧光探针的合成及其对三聚氰胺的识别性能研究[J]有机化学,2010,30(6):908-911.
    [90]许春萱,黄克靖谢宛珍.荧光探针 8-(3’,4’二氨基苯)-二氟化硼-二吡咯甲烷用于光度法灵敏测定食品中亚硝酸根和硝酸根[J]化学学报,2009,67(10):1075-1080.
    [91]KIM M H, JANG H H, YI S, et al. Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions [J] Chemical Communications,2009, (32):4838-4840.
    [92]QI X, JUN E J, XU L, et al. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+ :Cooperative selectivity enhancement toward Cu2+ [J] Journal of Organic Chemistry,2006,71 (7):2881-2884.
    [93]XIANG Y, LI M, CHEN X T, et al. Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution [J] Talanta,2008,74 (5):1148-1153.
    [94]李紫凡,梅岭,向宇,等.一种增色检测铜离子的新型罗丹明B衍生物探针[J]分析化学,2008,36(7):915-919.
    [95]XIANG Y, TONG A J, JIN P Y, et al. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity [J] Organic letters,2006,8 (13):2863-2866.
    [96]KIM H N, LEE M H, KIM H J, et al. A new trend in rhodamine-based chemosensors:application of spirolactam ring-opening to sensing ions [J] Chemical Society Reviews,2008,37 (8):1465-1472.
    [97]YANG X F, GUO X Q ZHAO Y B. Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite [J] Talanta,2002,57 (5):883-890.
    [98]WEN Z-C, YANG R, HE H, et al. A highly selective charge transfer fluoroionophore for Cu2+[J] Chemical Communications,2006, (1):106-108.
    [99]WANG J, LIN W, YUAN L, et al. Development of a reversible fluorescent gold sensor with high selectivity [J] Chemical Communications,2011,47 (46):12506-12508.
    [100]ZHANG X-B, HAN Z-X, FANG Z-H, et al.5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode [J] Analytica Chimica Acta,2006,562 (2): 210-215.
    [101]ZHANG J F, ZHOU Y, YOON J, et al. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions) [J] Chemical Society Reviews, 2011,40(7):3416-3429.
    [102]KANG J, CHOI M, KWON J Y, et al. New Fluorescent Chemosensors for Silver Ion [J] The Journal of Organic Chemistry,2002,67 (12):4384-4386.
    [103]COSKUN A AKKAYA E U. Ion Sensing Coupled to Resonance Energy Transfer: A Highly Selective and Sensitive Ratiometric Fluorescent Chemosensor for Ag(I) by a Modular Approach [J] Journal of the American Chemical Society,2005,127 (30):10464-10465.
    [104]RAY D, IYER E S S, SADHU K K, et al., Ag(i) induced emission with azines having donor-acceptor-donor chromophore [J] Dalton Transactions,2009, (29):5683-5687.
    [105]JOSEPH R, RAMANUJAM B, ACHARYA A, et al. Lower Rim 1,3-Di{bis(2-picolyl)}amide Derivative of Calix[4]arene (L) as Ratiometric Primary Sensor toward Ag+ and the Complex of Ag+ as Secondary Sensor toward Cys:Experimental, Computational, and Microscopy Studies and INHIBIT Logic Gate Properties of L(?) [J] The Journal of Organic Chemistry,2009,74 (21):8181-8190.
    [106]CHATTERJEE A, SANTRA M, WON N, et al. Selective Fluorogenic and Chromogenic Probe for Detection of Silver Ions and Silver Nanoparticles in Aqueous Media [J] Journal of the American Chemical Society,2009,131 (6):2040-2041.
    [107]PARK C S, LEE J Y, KANG E-J, et al. A highly selective fluorescent chemosensor for silver(I) in water/ethanol mixture [J] Tetrahedron Letters,2009,50 (6):671-675.
    [108]SCHMITTEL M LIN H. Luminescent Iridium Phenanthroline Crown Ether Complex for the Detection of Silver(I) Ions in Aqueous Media [J] Inorganic Chemistry,2007,46 (22):9139-9145.
    [109]XU Z, ZHENG S, YOON J, et al., Discovery of a highly selective turn-on fluorescent probe for Ag+ [J] Analyst,2010,135 (10):2554-2559.
    [110]LIU K-M, TSAI M-S, JAN M-S, et al. Convenient one-pot procedure for synthesizing 4,4 '-dimethoxy-boradiaza-s-indacene dyes and their application to cell labeling [J] Tetrahedron,2011,67 (41):7919-7922.
    [111]SHI W, SUN S, LI X, et al. Imaging Different Interactions of Mercury and Silver with Live Cells by a Designed Fluorescence Probe Rhodamine B Selenolactone [J] Inorganic Chemistry,2009,49 (3): 1206-1210.
    [112]COSKUN A AKKAYA E U. Signal Ratio Amplification via Modulation of Resonance Energy Transfer:Proof of Principle in an Emission Ratiometric Hg(II) Sensor [J] Journal of the American Chemical Society,2006,128 (45):14474-14475.
    [113]YUAN M, LI Y, LI J, et al. A Colorimetric and Fluorometric Dual-Modal Assay for Mercury Ion by a Molecule [J] Organic letters,2007,9 (12):2313-2316.
    [114]ZHU M, YUAN M, LIU X, et al. Visible Near-Infrared Chemosensor for Mercury Ion [J] Organic letters,2008,10 (7):1481-1484.
    [115]TIAN M IHMELS H. Selective ratiometric detection of mercury(ii) ions in water with an acridizinium-based fluorescent probe [J] Chemical Communications,2009, (22):3175-3177.
    [116]ZHU B, GAO C, ZHAO Y, et al. A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells [J] Chemical Communications,2011,47 (30): 8656-8658.
    [117]GAUSSIAN. [J] An ICT-based ratiometric probe for hydrazine and its application in live cells [J] Chemical Communications,2012,48 (65):8117-8119
    [118]WOOD Z A, SCHR DER E, ROBIN HARRIS J, et al. Structure, mechanism and regulation of peroxiredoxins [J] Trends in Biochemical Sciences,2003,28 (1):32-40.
    [119]CARMEL R, JACOBSEN D W EDS. Homocysteine in Health and Disease [J] Cambridge University Press,2001,
    [120]SHAHROKHIAN S. Lead Phthalocyanine as a Selective Carrier for Preparation of a Cysteine-Selective Electrode [J] Analytical Chemistry,2001,73 5972-5978.
    [121]SESHADRI S, BEISER A, SELHUB J, et al. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease [J] The New England Journal of Medicine,2002,346 476-483.
    [122]MATSUMOTO T, URANO Y, SHODA T, et al. A Thiol-Reactive Fluorescence Probe Based on Donor-Excited Photoinduced Electron Transfer:Key Role of Ortho Substitution [J] Organic letters, 2007,9 (17):3375-3377
    [123]LANGMUIR M E, YANG J-R, MOUSSA A M, et al. New naphthopyranone based fluorescent thiol probes [J] Tetrahedron Letters,1995,36 (23):3989-3992.
    [124]SILVA A P D. Fluorescent PET(Photoinduced Electron Transfer) Reagents for Thiols [J] Tetrahedron Letters,1998,39 5077-5080.
    [125]GIROUARD S, HOULE M-H, GRANDBOIS A, et al. Synthesis and Characterization of Dimaleimide Fluorogens Designed for Specific Labeling of Proteins [J] Journal of the American Chemical Society,2004,127 (2):559-566.
    [126]. ROS-LIS J V, GARC A B, JIM NEZ D, et al. Squaraines as Fluoro-Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols [J] Journal of the American Chemical Society,2004,126 (13):4064-4065.
    [127]GUY J, CARON K, DUFRESNE S, et al. Convergent Preparation and Photophysical Characterization of Dimaleimide Dansyl Fluorogens:Elucidation of the Maleimide Fluorescence Quenching Mechanism [J] Journal of the American Chemical Society,2007,129 (39):11969-11977.
    [128]YI L, LI H, SUN L, et al. A Highly Sensitive Fluorescence Probe for Fast Thiol-Quantification Assay of Glutathione Reductase [J] Angewandte Chemie International Edition,2008,48 (22): 4034-4037.
    [129]ZENG Y, ZHANG G, ZHANG D, et al. A dual-function colorimetric chemosensor for thiols and transition metal ions based on ICT mechanism [J] Tetrahedron Letters,2008,49 (52):7391-7394.
    [130]. ZHANG X H, LI C, CHENG X X, et al. A near-infrared croconium dye-based colorimetric chemodosimeter for biological thiols and cyanide anion [J] Sensors and Actuators B-Chemical,2008, 129(1):152-157.
    [131]HEW AGE H S ANSLYN E V. Pattern-Based Recognition of Thiols and Metals Using a Single Squaraine Indicator [J] Journal of the American Chemical Society,2009,131 (36):13099-13106.
    [132]HONG V, KISLUKHIN A A FINN M G. Thiol-Selective Fluorogenic Probes for Labeling and Release [J] Journal of the American Chemical Society,2009,131 (29):9986-9994.
    [133]HUO F-J, SUN Y-Q, SU J, et al. Colorimetric Detection of Thiols Using a Chromene Molecule [J] Organic letters,2009,11 (21):4918-4921.
    [134]LIN W, YUAN L, CAO Z, et al. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones [J] Chemistry-A European Journal,2009,15 (20):5096-5103.
    [135]HUANG S-T, TING K-N WANG K-L. Development of a long-wavelength fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols [J] Analytica Chimica Acta,2008,620(1-2):120-126.
    [136]ZENG Y, ZHANG G ZHANG D. A selective colorimetric chemosensor for thiols based on intramolecular charge transfer mechanism [J] Analytica Chimica Acta,2008,627 (2):254-257.
    [137]ZHANG X, LI C, CHENG X, et al. A near-infrared croconium dye-based colorimetric chemodosimeter for biological thiols and cyanide anion [J] Sensors and Actuators B:Chemical,2008, 129(1):152-157.
    [138]CHEN X, KO S-K, KIM M J, et al. A thiol-specific fluorescent probe and its application for bioimaging [J] Chemical Communications,2010, (46):2751-2753.
    [139]SHIU H-Y, CHONG H-C, LEUNG Y-C, et al. A Highly Selective FRET-Based Fluorescent Probe for Detection of Cysteine and Homocysteine [J] Chemistry-A European Journal,2010,16(11): 3308-3313.
    [140]RUSIN O, ST LUCE N N, AGBARIA R A, et al. Visual detection of cysteine and homocysteine [J] Journal of the American Chemical Society,2004,126 (2):438-439.
    [141]WANG W H, RUSIN O, XU X Y, et al. Detection of homocysteine and cysteine [J] Journal of the American Chemical Society,2005,127 (45):15949-15958.
    [142]ZHANG D, ZHANG M, LIU Z, et al. Highly selective colorimetric sensor for cysteine and homocysteine based on azo derivatives [J] Tetrahedron Letters,2006,47 7093-7096.
    [143]. CHEN H, ZHAO Q, WU Y, et al. Selective Phosphorescence Chemosensor for Homocysteine Based on an Iridium(Ⅲ) Complex [J] Inorg. Chem.,2007,4611075-11081.
    [144]ZHANG M, LI M Y, ZHAO Q, et al. Novel Y-type two-photon active fluorophore:synthesis and application in fluorescent sensor for cysteine and homocysteine [J] Tetrahedron Letters,2007,48 (13): 2329-2333.
    [145]DUAN L, XU Y, QIAN X, et al. Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage:symmetrical naphthalimide aldehyde [J] Tetrahedron Letters,2008, (49):6624-6627.
    [146]. KIM T-K, LEE D-N KIM H-J. Highly selective fluorescent sensor for homocysteine and cysteine [J] Tetrahedron Letters,2008, (49):4879-4881.
    [147]LIN W Y, LONG L L, YUAN L, et al. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift [J] Organic letters,2008,10 (24):5577-5580.
    [148]HUANG K W, YANG H, ZHOU Z G, et al. A highly selective phosphorescent chemodosimeter for cysteine and homocysteine based on platinum(Ⅱ) complexes [J] Inorganica Chimica Acta,2009, 362 (8):2577-2580.
    [149]LI H L, FAN J L, WANG J Y, et al. A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine [J] Chemical Communications,2009, (39): 5904-5906.
    [150]ZHANG X J, REN X S, XU Q H, et al. One- and Two-Photon Turn-on Fluorescent Probe for Cysteine and Homocysteine with Large Emission Shift [J] Organic letters,2009,11 (6):1257-1260.
    [151]LIM S, ESCOBEDO J O, LOWRY M, et al. Selective fluorescence detection of cysteine and N-terminal cysteine peptide residues [J] Chemical Communications,2010,46 (31):5707-5709.
    [152]XIONG L, ZHAO Q, CHEN H, et al. Phosphorescence Imaging of Homocysteine and Cysteine in Living Cells Based on a Cationic Iridium(III) Complex [J] Inorganic Chemistry,2010,49 (14): 6402-6408.
    [153]TOLBERT T J WONG C-H. New Methods for Proteomic Research:Preparation of Proteins with N-Terminal Cysteines for Labeling and Conjugation 13 [J] Angewandte Chemie International Edition, 2002,41 (12):2171-2174.
    [154]TANAKA F, MASE N III C F B. Determination of cysteine concentration by fluorescence increase: reaction of cysteine with a fluorogenic aldehyde [J] Chemical Communications,2004, (15): 1762-1763.
    [155]MAEDA H, MATSUNO H, USHIDA M, et al.2,4-Dinitrobenzenesulfonyl Fluoresceins as Fluorescent Alternatives to Ellman's Reagent in Thiol-Quantification Enzyme Assays [J] Angewandte Chemie International Edition,2005,44 (19):2922-2925.
    [156]MAEDA H, KATAYAMA K, MATSUNO H, et al.3'-(2,4-Dinitrobenzenesulfonyl)-2',7'-dimethylfluorescein as a Fluorescent Probe for Selenols [J] Angewandte Chemie International Edition, 2006,45 (11):1810-1813.
    [157]JIANG W, FU Q, FAN H, et al. A Highly Selective Fluorescent Probe for Thiophenols [J] Angewandte Chemie International Edition,2007,46 (44):8445-8448.
    [158]TANG B, XING Y L, LI P, et al. A rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells [J] Journal of the American Chemical Society, 2007,129(38):11666-11667.
    [159]BOUFFARD J, KIM Y, SWAGER T M, et al., A Highly Selective Fluorescent Probe for Thiol Bioimaging [J] Organic letters,2008,10 (1):37-40.
    [160]SHIBATA A, FURUKAWA K, ABE H, et al. Rhodamine-based fluorogenic probe for imaging biological thiol [J] Bioorganic & Medicinal Chemistry Letters,2008,18 (7):2246-2249.
    [161]JI S M, YANG J, YANG Q, et al. Tuning the Intramolecular Charge Transfer of Alkynylpyrenes: Effect on Photophysical Properties and Its Application in Design of OFF-ON Fluorescent Thiol Probes [J] Journal of Organic Chemistry,2009,74 (13):4855-4865.
    [162]LI X, QIAN S, HE Q, et al. Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells [J] Organic & Biomolecular Chemistry,2010, (8):3627-2630.
    [163]CHMIELEWSKI J, Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine [J] Organic letters,2008,10 (5):837-840.
    [164]LAUDE T, JEAN R, FRANCIS G, et al. Synthesis and Fluorescence Analysis of 3-Subsituted 7-Dialkylamino-2H-l,4-benzoxazin-2-ones [J] Bulletin of the Chemical Society of Japan,1987,60 2657-2662.
    [165]PENG X, YANG Z, WANG J, et al. Fluorescence Ratiometry and Fluorescence Lifetime Imaging:Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity [J] Journal of the American Chemical Society,2011,6626-6635.
    [166]HU M, FAN J, LI H, et al. Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells [J] Organic & Biomolecular Chemistry,2011,9 (4):980-983.
    [167]FAN J, SUN W, HU M, et al. An ICT-based ratiometric probe for hydrazine and its application in live cells [J] Chemical Communications,2012,48 (65):8117-8119.
    [168]WU J S, LIU W M, ZHUANG X Q, et al. Fluorescence turn on of coumarin derivatives by metal cations:A new signaling mechanism based on C=N isomerization [J] Organic letters,2007,9 (1): 33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700