时间分辨荧光分析用新型稀土荧光探针研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土配合物荧光探针因具有荧光寿命长、Stokes位移大及发光峰尖锐等特殊的荧光性质在高灵敏度时间分辨荧光分析、临床检测与生物技术等领域得到了广泛的应用。在本学位论文研究中,分别设计合成了稀土离子与几种功能性多羧酸联三吡啶配位体的配合物,在充分考察其荧光性质的基础上,建立了这些配合物在时间分辨荧光分析中的应用方法。
     设计合成了一种新型的以硼酸基为识别基团的联三吡啶多羧酸配体的铕配合物荧光探针(4’-硼酸基-2,2’:6’,2”-联三吡啶-6,6”-二甲胺四乙酸)-Eu3+(BTTA-Eu3+)以用于过氧化氢的特异性识别与荧光测定。BTTA-Eu3+本身具有很强的荧光,与过氧化氢反应生成其脱硼酸化衍生物(4’-羟基-2,2’:6’,2”-联三吡啶-6,6”-二甲胺四乙酸)-Eu3+(HTTA-Eu3+)后荧光可被强烈淬灭。由于作为硼酸化试剂BTTA可与溴苯进行Suzuki偶联反应生成4’-苯基-2,2’:6’,2”-联三吡啶-6,6”-二甲胺四乙酸(PTTA),而PTTA-Eu3+的荧光不受H202影响,利用H2O2-BTTA-Eu3+体系成功地建立了该偶联反应动力学的时间分辨荧光监测新方法。
     设计合成了一种新型的铕-铽混合配合物比率型pH荧光探针4’-羟基-2,2’:6’,2”-联三吡啶-6,6”-二甲胺四乙酸-Eu3+/Tb3+(HTTA-Eu3+/Tb3+)以用于pH值的比率型时间分辨荧光测定。研究发现配合物HTTA-Eu3+的荧光强度在pH值4.8-7.5之间随pH值的增加显著减弱,而配合物HTTA-Tb3+的荧光强度则不随pH值的变化而变化,因此可利用混合配合物HTTA-Eu3+/Tb3+的1540nm/1610nm荧光强度比值作为信号进行pH值的比率型荧光测定。为考察新型探针在细胞成像中的应用价值,分别制备了HTTA-Eu3+及HTTA-Tb3+标记的HeLa细胞,并对标记细胞进行了荧光成像及时间分辨荧光成像测定,所得结果表明探针可作为一种有用的工具用于测定细胞内的pH值。
     设计合成了一种基于铕配合物的具有更宽pH适用范围的新型NO荧光探针4’-(3-甲氨基-4氨基苯基)-2,2’:6’,2”-联三吡啶-6,6”-二甲胺四乙酸-Eu3+(MATTA-Eu3+)以用于NO的时间分辨荧光测定。在系统表征了该探针对NO荧光响应的基础上,制备出了MATTA-Eu3+标记的PC12神经细胞,并通过时间分辨荧光成像模式成功地对谷氨酸诱导下PC12细胞内NO的产生进行了荧光成像测定。
Lanthanide complex-based fluorescence probes have shown great utilities in the fields of highly sensitive time-resolved fluorescence analysis, clinical diagnostics and biotechnology owing to their unique fluorescence properties including long fluorescence lifetimes, large Stokes shifts and sharp emission peaks. In this doctoral dissertation, several new lanthanide complexes with functional terpyridine polyacid ligands were designed and synthesized. After the detailed fluorescence characterizations of the complexes, the application methods of the complexes for the time-resolved fluorescence detections were established.
     A new europium(III) complex with a borono-substituted terpyridine polyacid ligand,(4'-borono-2,2':6',2"-terpyridine-6,6"-diyl) bis(methylenenitrilo) tetrakis(acetate)-Eu3+(BTTA-Eu3+), was designed and synthesized as a probe for the-time-resolved luminescence detection of hydrogen peroxide (H2O2). The complex BTTA-Eu3+is highly luminescent in aqueous media, upon reaction with H2O2to form its deboronation derivative (4'-hydroxy-2,2':6',2"-terpyridine-6,6"-diyl) bis(methylenenitrilo) tetrakis(acetate)-Eu3+(HTTA-Eu3+), the luminescence can be remarkably weakened in neutral and basic buffers. Because the pyridine-4-boronic acid structure of BTTA allows it to be a useful reagent for the Suzuki cross-coupling reaction with bromobenzene to synthesize (4'-phenyl-2,2':6',2"-terpyridine-6,6"-diyl) bis(methylenenitrilo) tetrakis(acetic acid)(PTTA), the luminescence of BTTA-Eu3+can be quenched by H2O2, while that of PTTA-Eu3+is not affected by H2O2, a new time-resolved luminescence method for tracking the kinetics of the Suzuki cross-coupling reaction between BTTA-Eu3+and bromobenzene was developed by using the H2O2-BTTA-Eu3+system to monitor the PTTA formation.
     A new lanthanide complex mixture-based ratiometric luminescence probe,(4'-hydroxy-2,2':6',2"-terpyridine-6,6"-diyl) bis(methylenenitrilo) tetrakis(acetate)-Eu3+/Tb3+(HTTA-Eu3+/Tb3+), was designed and synthesized for the pH detection. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu3+is strongly dependent on the pH value in the pH range of4.8-7.5, while that of HTTA-Tb3+is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu3+and HTTA-Tb3+(the HTTA-Eu3+/Tb3+mixture) to be used as a ratiometric luminescence probe for the time-resolved luminescence detection of pH with the intensity ratio of Tb3+emission at540nm to Eu3+emission at610nm, I540nm/l610nm, as a signal. For investigating the utility of the new probe for cell imaging, the HTTA-Eu3+-loaded and HTTA-Tb3+-loaded HeLa cells were prepared, and used for the luminescence imaging measurements, respectively. The results suggest that the new probe could be a useful tool for the intercellular pH detection.
     A new europium(Ⅲ) complex-based luminescence probe having wider pH available range,[4'-(3-methylamino-4-aminophenoxy)-2,2':6',2"-terpyridine-6,6"-diyl] bis(methyle-nenitrilo) tetrakis(acetate)-Eu3+(MATTA-Eu3+), was designed and synthesized for the time-resolved luminescence detection of NO. After systemic characterizations of the luminescence response of the probe to NO, the MATTA-Eu3+-loaded PCl2cells were prepared, and the glutamate-induced NO production in the cells was successfully imaged with time-resolved luminescence imaging mode.
引文
[1]齐艳,陈煦,王越明.吡啶类,N-氧化物的研究进展[J].天津化工,2005,19(2):1-4.
    [2]蒋健,莫卫民,孙楠等.催化氧化法制备2-氯-5-甲基吡啶-N-氧化物[J].浙江化工,2003,34(8):17-19.
    [3]朱秋华,陈卫民.4-硝基吡啶-N-氧化物制备方法的改进[J].中国医药工业杂志,2000,31(12):556-557.
    [4]王长守,黄建良,张志杰等.催化氧化法制备2-氯毗啶-N-氧化物[J].陕西化工,1999,28(2):23-25.
    [5]Mandal A. B., Augustine J. K., Quattropani A., et al. The expedientaccess to bromo-pyridine carbaldehyde scaffolds using gem-dibromomethylintermediates [J]. Tetrahedron Lett.,2005,46(36):6033-6036.
    [6]Schubert U. S., Eschbaumer C., Heller M. Stille-type cross-coupling-An efficient way to various symmetrically and unsymmetrically substituted methyl-bipyridines: toward new ATRP catalysts [J]. Org. Lett.,2000,2 (21):3373-3376.
    [7]Franca K. W. R., Oliveira J. L., f lorencio T., et al. Mixed effect of the supporting electrolyte and the zinc anode in the electrochemical homocoupling of 2-bromopyridines catalyzed by nickel complexes in an undivided cell [J]. J. Org. Chem., 2005,70 (26):10778-10781.
    [8]Setsukinai K., Urano Y., Kikuchi K., et al. Fluorescence switching by O-dearylation of 7-aryloxycoumarins. Development of novel fluorescence probes to detect reactive oxygen species with high selectivity [J]. J. Chem. Soc. Perkin Trans. 2000,2:2453-2457.
    [9]Setsukinai K., Urano Y., Kakinuma K., et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species [J]. J. Biol. Chem.,2003,278(5):3170-3175.
    [10]Alicki R. Efficient Deoxygenation of heteroaromatic N-Oxides with ammonium formate as a catalytic hydrogen transfer agent [J]. Synthesis,1989,(8):645-646.
    [11]Koide Y., Urano Y., Kenmoku S., et al. Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells [J]. J. Am. Chem. Soc,2007,129 (34):10324-10325.
    [12]Zhang Y., Lin R. Some Deoxygenation and reducation reactions with samarium diiodide [J]. Synth. Commun.,1987,17(3):329-332.
    [13]Malinowski M., Kaczmarek L. Titanium(O) Reagent; 2. A selective and efficient deoxygenation of halogen containing heteroaromatic N-Oxides [J]. Synthesis, 1987,11:1013-1015.
    [14]Yuan J. L., Wang G. L. Lanthanide-based luminescence probes and time-resolved luminescence bioassays [J]. TrAC-Trends Anal. Chem.,2006,25 (5):490-500.
    [15]Blomberg K., Granberg C., Hemmila I., et al. Europium-labelled target cells in an assay of nataral killed cell activity [J]. J. Immunol. Methods.,1986,86:225-229.
    [16]胡继明,陈观锉,曾云鹦.稀土配合物的发光机理和荧光分析特性研究[J].高等学校化学学报,1990,11(8):817-821.
    [17]陈国珍,黄贤智,许金钩,等.荧光分析法[M].北京:科学出版社,1990:388-396.
    [18]杨退,杨燕生.发光镧系超分子的设计及应用[J].大学化学,1995,10(1):6-10.
    [19]Mujumdar R. B., Ernst L. A., Mujumdar S. R. Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters [J]. Bioconjugate Chem.,1993,4(2):105-111.
    [20]Yuan J. L., Matsumoto K., Kimura H. A new tetradentate P-diketonate-europium chelate that can be covalently bound to proteins for time-resolved f luoroimmunoassay [J]. Anal. Chem.,1998,70:596-601.
    [21]Weissman S. A. Time required for the elimination of quinidine from the heat and other organs [J]. J. Chem. Phys.,1942,10:214-217.
    [22]Bretonniere Y., Cann M. J., Parker D., et al. Ratiometric probes for hydrogencarbonate analysis in intracellular or extracellular environments using europium luminescence [J]. Chem. Commun.,2002,1930-1931.
    [23]吴晶.纳米稀土荧光生物探针及时间分辨荧光生物成像分析法研究[D].博士学位论文,大连:中国科学院大连化学物理研究所,2009.
    [24]Xue F., Ma Y., Fu L., et al. A europium complex with enhanced long-wavelength sensitized luminescent properties [J]. Phys. Chem. Chem. Phys.,2010,12:3195-3202.
    [25]Pal R., Parker D. A ratiometric optical imaging probe for intracellular pH based on modulation of europium emission [J]. Org. Biomol. Chem.,2008,6:1020-1033.
    [26]Grosby G. A. Luminescent organic complexes of the rare earth metals [J]. Mol. Cryst. 1966,1:37-81.
    [27]Sinha S. P., Rao C. N. I, Farrao J. R. Spectroscopy in inorganic [M]. New York: Academic Press,1971.
    [28]Horrocks W. D., Albin M. Lanthanide ion luminescence in coordination chemistry and biochemistry [J]. Prog. Inorg. Chem.,1984,31:1-104.
    [29]Horrocks W. D., Sudnick D. R. Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules [J]. J. Am. Chem. Soc.,1979,101(2):334-340.
    [30]Yuan J. L., Matsumoto K. Synthesis of a new tetradentate β-diketone-europium chelate and its application for time-resolved fluorimetry of albium [J]. J. Pharm. Biomed. Anal.,1997,15:1397-1403.
    [31]Yuan J. L., Matsumoto K. Fluorescence enhancement by electron-withdrawing groups on β-diketones in Eu(Ⅲ)-β-diketonato-topo ternary complexes [J]. Anal. Sci. 1996,12:695-699.
    [32]De M. D. C., Alves Jr. S., De Sd. G. F. Synthesis, luminescence and quantum yields of Eu(III) mixed complexes with 4,4,4-trifluoro-l-phenyl-1,3-butanedione and 1,10-phenanthroline-N-oxide [J]. J. Alloys. Comp.,1997,250:422-426.
    [33]Li M., Selvin P. R. Luminescent polyaminocarboxylate chelates of terbium and europium:the effect of chelate structure [J]. J. Am. Chem. Soc.,1995,117(31): 8132-8138.
    [34]Evangelista R. A., Pollak A., Allore B., et al. A new europium chelate for protein labeling and time-resolved fluorometric applications [J]. Clin. Biochem. 1988,21:173-178.
    [35]Horrocks De Jr. W. W., Bolender P., Smith W. D., et al. Photosensitized near infrared luminescence of ytterbium(ⅲ) in proteins and complexes occurs via an internal redox process [J]. J. Am. Chem. Soc.1997,119:5972-5973.
    [36]Mikola H., TakkaloH., Hemmila Ⅰ. Syntheses and properties of luminescent lanthanide chelate labels and labeled haptenic antigens for homogeneous immunoassays [J]. Bioconjugate. Chem.,1995,6:235-241.
    [37]De S6. G. F., Nunes L. H. A, Wang Z. M., et al. Synthesis, characterization, spectroscopic and photophysical studies of ternary complexes of Eu(III) with 3-aminopyrazine-2-carboxylic acid (HL) and heterobiaryl ligands (2,2'-bipyridine and 1,10-phenanthroline) [J]. J. Alloys Comp.,1993,196:17-23.
    [38]Oude W. M. P., Van V. F. C. J. M., Snellink-Ruel B. H. M., et al. Photophysical studies of nrterphenyl-sensitized visible and near-infrared emission from organic lratiol lanthanide ion complexes in methanol solutions [J]. J. Chem. Soc. Perkin Trans.,1998,2:2141-2150.
    [39]Diamandis E. P., Morton R. C. Time-resolved fluorescence using a europium chelate of 4,7-bis-(chlorosulfophenyl)-l,10-phenanthroline-2,9-dicarboxylic acid (BCPDA) [J]. J. Immunol. Methods,1988,112:43-52.
    [40]Beeby R. S. D., Faulkner S., Parker D., et ah Luminescence from ytterbium(II I) and its complexes in solution [J]. Chem. Commun.,1997,1401-1402.
    [41]Weibel N., Charbonniere L. J., GuardigliM., etal. Engineering of highly luminescent lanthanide tags suitable for protein labeling and time-resolved luminescence imaging [J]. J. Am. Chem. Soc.,2004,126(5):4888-4896.
    [42]Horiguchi D., Katayama Y., Sasamoto K., et al. A new ligand for europium (Ⅲ) that forms a stable fluorescent complex in aqueous solution [J]. Chem. Pharm. Bull. 1992,40 (12):3334-3337.
    [43]Sabbatini N., Guardigli M., Lehn J. M. Luminescent lanthanide complexes as photochemical supramolecular devices [J]. Coord. Chem. Rev.,1993,123:201-228.
    [44]Blasse G., Dirksen G. J., Sabbatini N., et al. Photophysics of Ce! cryptates [J]. Inorg. Chim. Acta.,1987,133:167-173.
    [45]Jones P. L., Amoroso A. J., Jeffery J. C., et al. Lanthanide complexes of the hexadentate n-donor podand tris[3-(2-pyridyl)pyrazolyl]hydroborate:solid-state and solution properties [J]. Inorg. Chem.,1997,36:10-18.
    [46]Ludwig R., Matsuraoto H., Takeshita M., et al. Study on monolayers of metal complexes of calixarenes and their luminescence properties [J]. Supramol. Chem.,1995,4: 319-327.
    [47]BUnzli J. C. G., Moret E., Foiret V., et al. Structural and photophysical properties of europium(Ⅲ) mixed complexes with β-diketonates and o-phenanthroline [J]. J. Alloys Comp.,1994,207-208:107-111.
    [48]Van Deun R., Nockemann P., Parac-Vogt T. N., et al. Near-infrared photoluminescence of lanthanide complexes containing the hemicyanine chromophore [J]. Polyhedron, 2007,26:5441-5447.
    [49]Zhang J., Petoud S. Azulene-moiety-based ligand for the efficient sensitization of four near-infrared luminescent lanthanide cations:Nd3-, Er3-, Tm3-, and Yb3" [J]. Chem. Eur. J.,2008,14:1264-1272.
    [50]Hasegawa Y., Yasuda T., Nakamura K., et al. Photosensitized near-infrared luminescence of Yb(Ⅲ) complexes containing phenanthroline derivatives [J]. Jpn. J. Appl. Phys.,2008,47:1192-1195.
    [51]Zheng Y. X., Motevalli M., Tan R. H. C., et al. Synthesis and luminescence of rare earth 3,4,5,6-tetrafluoro-2-nitrophenoxide complexes [J]. Polyhedron. 2008,27:1503-1506.
    [52]Brunet E., Juanes 0., Sedano R., et al. Synthesis of novel macrocyclic lanthanide chelates derived from bis-pyrozolylprindine [J]. Org. Lett.,2002,4:213-216.
    [53]Latva M., Takalo H., Mukkala V. M., et al. Correlation between the lowest triplet state energy level of the ligand and lanthanide(Ⅲ) luminescence quantum yield [J]. J. Lumin.,1997,75:149-169.
    [54]Yu J. H., Parker D., Robert P., et al. A europium complex that selectively stains nucleoli of cells [J]. J. Am. Chem. Soc.,2006,128:2294-2299.
    [55]Bretonniere Y., Cann M. J., Parker D., et al. Ratiometric probes for hydrogencarbonate analysis in intracellular or extracellular environments using europium luminescence [J]. Chem. Commun.,2002,17:1930-1931.
    [56]Werts M. H. V., Duin M. A., Hofstraat J. W., et al. Bathochromicity of Michler's ketone upon coordination with lanthanide(Ⅲ) b-diketonates enables efficient sensitisation of Eu3- for luminescence under visible light excitation [J]. Chem. Commun.,1999,9:799-800.
    [57]Yang C., Fu L. M., Wang Y., et al. A highly luminescent europium complex showing visible-light-sensitized red emission:direct observation of the singlet pathway [J]. Angew. Chem. Int. Ed.,2004,43:5010-5013.
    [58]Schaferling M., Wolfbeis O. S. Europium tetracycline as a luminescent probe for nucleoside phosphates and its application to the determination of kinase activity [J]. Chemistry,2007,13:4342-4349.
    [59]Hou F. J., Miao Y. H., Jiang C. Q. Determination of adenosine disodium triphosphate (ATP) using oxytetracycline-Eu3+ as a fluorescence probe by spectrofluorimetry [J]. Spectrochim Acta A,2005,61:2891-2895.
    [60]Hou F. J, Wang X. L, Jiang C. Q. Determination of ATP as a fluorescence probe with europium (Ⅲ)-doxycycline [J]. Anal. Sci.,2005,21:231-234.
    [61]Wolfbeis O. S., Durkop A., Wu M., et al. A europium-ion-based luminescent sensing probe for hydrogen peroxide [J]. Angew. Chem., Int. Ed.,2002,41:4495-4498.
    [62]Courrol L. C., Bellini M. H., Tarelho L. V. G. S. Urea hydrogen peroxide determi determination in whole blood using europium tetracycline probe [J]. Anal. Biochem. 2006,355:140-144.
    [63]Courrol L. C., Samad R. E. Applications of europium tetracycline complex:a review [J]. Curr. Pharm. Anal.,2008,4:238-248.
    [64]Shtykov S. N., Smirnova T. D. Bylinkin Determination of adenosine triphosphoric acid by its effect on the quenching of the fluorescence of europium diketonate in micelles of brij-35 [J]. J. Anal. Chem.,2004,59,438-441.
    [65]Duerkop A., Aleksandrova D., Scripinets Y. Sensitive terbium probes for luminescent determination of both alkaline phosphatase and codeine phosphate [J]. Acad. Sci. 2008,1130:172-178.
    [66]Charbonnie re L. J., Mameri S., Kadjane P. Tuning the coordination sphere around highly luminescent lanthanide complexes [J]. Inorg. Chem.,2008,47:3748-3762.
    [67]Song B., Wang G. L., Yuan J. L. A new europium chelate-based phosphorescence probes specific for singlet oxygen [J]. Chem. Commun.,2005,28:3553-3555.
    [68]Liu M. J., Ye Z. Q., Wang G. L., et al. Synthesis and time-gated fluorometric application of a europium(Ⅲ) complex with a borono-substituted terpyridine polyacid ligand [J]. Talanta,2012,91:116-121.
    [69]Xiao Y. N., Ye Z. Q., Wang G. L., et al. A ratiometric luminescence probe for highly reactive oxygen species based on lanthanide complexes [J]. Inorg. Chem. 2012,51 (5):2940-2946.
    [70]Chen Y. G., Guo W. H., Ye Z. Q., et al. A europium chelate as an efficient time-gated luminescence probe for nitic oxide [J]. Chem. Commun.,2011,47:6266-6268.
    [71]Song C. H., Ye Z. Q., Wang G. L., et al. A lanthanide-complex-based ratiometric luminescence probe specific for peroxynitrite [J]. Chem. Eur. J.,2010,22:6464-6472.
    [72]Ye Z. Q., Chen J. X., Wang G. L., et al. Development of a terbium complex-based luminescent probe for imaging endogenous hydrogen peroxide generation in plant tissues [J]. Anal. Chem.,2011,83:4163-4169.
    [73]Cui G. F., Ye Z. Q., Chen J. X., et al. Development of a novel terbium (111) chelate-based luminescent probe for highly sensitive time-resolved luminescence detection of hydroxyl radical [J]. Talanta,2011,84:971-976.
    [74]Ye Z. Q., Wang G. L., Chen J. X., et al. Development of a novel terbium chelate-based luminescent chemosensor for time-resolved luminescence detection of intracellular Zn2- ions [J]. Biosens Bioelectron.,2010,26:1043-1048.
    [75]Barnard G., Kohen F. Monitoring varian function by the simultaneous time-resolved fluorescence immunoassay of two urinary steroid metabolites [J]. Clin. Chem. 1998,44(12):1520-1528.
    [76]Phimphivong S., Kolchens S., Edmiston P. L., et al. Time-resolved, total internal reflection fluorescence microscopy of cultured cells using a Tb chelate label [J]. Anal. Chim. Acta.,1995,307:403-417.
    [77]Wu J., Ye Z. Q., Wang G. L., et al. Visible-light-sensitized highly luminescent europium nanoparticles:preparation and application for time-gated luminescence bioimaging [J]. J. Mater. Chem.,2009,19:1258-1264.
    [78]Xu Y. Y., Hemmila I. A. Co-fluorescence enhancement system based on pivaloytrifluoroacetone and yttrium for the simultaneous detection of europium, terbium, samarium and dysprosium [J]. Anal. Chim. Acta,1992,256(1):9-16.
    [79]Zhou J., Liu J., Xia S. Effect of chelation to lanthanum ions on the photodynamic properties of hypocrellin A [J]. J. Phys. Chem. B.,2005,109:19529-19535.
    [80]Connally R., Veal D., Piper J. High resolution detection of fluorescently labeled microorganisms in environmental samples using timeresolved fluorescence microscopy [J]. FEMS Microbiol. Ecol.,2002,41:239-245.
    [81]Seveus L., Vaisala M., Syrjanen S., et al. Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization [J]. Cytometry,1992,13:329-338.
    [82]Eskolaju., Nevalainen T. J., Lovgren T. N. Time-resolved fluoroimmunassay of human pancereatic phospholipas Az [J]. Clin Chem.,1983,29:1777-1780.
    [83]Harma H., Soukka T., Lovgren T. Europium nanoparticles and time resolved fluorescence for ultrasensitive detection of prostate-specific antigen [J]. Clin. Chem.,2001,47:561-568.
    [84]Pettersson K., Siitari H., Hemmila I., et al. Time-resolved fluorcimmunoassay of HCG [J]. Clin. Chem.,1983,29:60-64.
    [85]De Haas R. R., Verwoerd N. P., Van Der Corput M. P., et al. The use of peroxidase-mediated deposition of biotin-tyramide in combination with time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization [J]. J. Histochem. Cytochem.,1996,44:1091-1099.
    [86]Rulli M., Kuusisto A., Salo J., et al. Time-resolved fluorescence imaging in islet cell autoantibody quantitat ion [J]. J. Immunol. Methods,1997,208:169-179.
    [87]Bjartell A., Laine S., Pettersson. K., et al. Time-resolved fluorescence in immunocytochemical detection of prostate-specific antigen in prostatic tissue sections [J]. Histochem. J.,1999,31:45-52.
    [88]Connally R., Veal D., Piper J. Time-resolved fluorescence microscopy using an improved europium chelate BHHST for the in situ detection of Cryptosporidium and Giardia [J]. Microsc. Res. Tech.,2004,64:312-322.
    [89]Hanaoka K., Kikuchi K., Kobayashi S., et al. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. [J]. J. Am. Chem. Soc.,2007,129:13502-13509.
    [90]Wu J., Wang G. L., Jin D. Y., et al. Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabel ing and time-gated luminescence bioimaging [J]. Chem. Commun.,2008,365-367.
    [91]Marriott G., Hekiecker M., Diamndis D. P., et al. Time-resolved delayed luminescence image microscopy using an europium ion chelate complex [J]. Biophys. J. 1994,67:957-965.
    [92]Deng W., Jin D., Drozdowicz-Tomsia K., Yuan J., et al. Ul trabright Eu-doped plasmonic Ag@SiO2 nanostructures:time-gated bioprobes with single particle sensitivity and negligible background [J]. Adv. Mater.,2011,23(40):4649-4654.
    [93]Deng W., Jin D., Drozdowicz-Tomsia K., et al. Europium chelate (BHHCT-Eu3+) and its metal nanostructure enhanced luminescence applied to bioassays and time-gated bioimaging [J]. Langmuir.,2010,26(12):10036-10043.
    [94]Tanner P. A., Wong A. Y. S. Spectrophotometric determination of hydrogen peroxide in rainwater [J]. Anal. Chim. Acta.,1998,370(3):279-287.
    [95]Mark J. L. Oxyen free radicals linded to mang disease [J]. Scinece,1987,235:529-531.
    [96]朱玲.工业过氧化氢含量测试方法的探讨[J].安徽化工,2002,120(6):45-46.
    [97]Westbroek P., Temmerman E., Kiekens P. Measurement and control of hydrogen peroxide concentration in alkaline solution by means of amperometric sensor system [J]. Anal. Chim. Acta.,1999,385(13):423-428.
    [98]Toniolo R., Geatti P., Bontempelli G., et al. Amperometric monitoring of hydrogen peroxide in workp lace at mospheres by electrodes supported on ion-exchange membranes [J]. J. Electroanal. Chem.,2001,514(1-2):123-128.
    [99]高甲友,秦希亚.流动注射-分光光度法测定痕量过氧化氢[J].分析化学1995,23(6):678-680.
    [100]王开雄,许利君,姚铭.离子色谱仪流动注射电导法测定过氧化氢[J].分析化学,2003,31(5):555-558.
    [101]Arnous A., Petrakis C., Makris D. P. A peroxyoxalate chemilumine-scence-based assay for the evaluation of hydrogen peroxide scavenging activity employing 9, 10-diphenylanthracene as the fluorophore [J]. J. Pharmacol. Toxicol., Methods, 2002,48:171-177.
    [102]Liang A. H., Zhou S. M., Jiang Z. L. A simple and sensitive resonance scattering spectral method for determination of hydroxyl radical in Fenton system using rhodamines and its application to screening the antioxidant [J]. Talanta, 2006,70:444-448.
    [103]Hanson A. K., Tindale N. W., Abdel M. An equatorial pacific rain event:influence on the distribution of iron and hydrogen peroxide in surface waters [J]. Mar. chem., 2001,75:69-88.
    [104]Wang H., Jouseph J. J. A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader [J]. Free Radic. Biol. Med. 1999,27:612-616.
    [105]Abo M., Urano Y., Hnaoka K., et al. Development of a Highly Sensitive Fluorescence Probe for Hydrogen Peroxide [J]. J. Am. Chem. Soc.,2011,133(27):10629-10637.
    [106]Chang C. J., Loh Z. H., Shi C., et al. Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic pacman porphyrins [J]. J. Am. Chem. Soc. 2004,126(32):10013-10020.
    [107]Srikun D., Miller E. W., Domaille D. W., et al. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells [J]. J. Am. Chem. Soc.,2008,130(14):4596-4597.
    [108]Dickinson B. C., Chang C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells [J]. J. Am. Chem. Soc. 2008,130(34):9638-9639.
    [109]Srikun D., Albers A. E., Nam C. I., et al. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling [J]. J. Am. Chem. Soc.,2010,132 (12):4455-4465.
    [110]Lippert A. R., Bittner G. C. V., Chang C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems [J]. Acc. Chem. Res.,2011,44(9):793-804.
    [111]Miller E. W., Tulyathan O., Isacoff E. Y., et al. Molecular imaging of hydrogen peroxide produced for cell signaling [J]. Nat. Chem. Biol.,2007,3:263-267.
    [112]Albers A. E., Okreglak V. S., Chang C. J. A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide [J]. J. Am. Chem. Soc. 2006,128(30):9640-9641.
    [113]Kooy N. W., Royall J. A., Ischiropoulos H., et al. Peroxynitrite-mediated oxidation of dihydrorhodamine 123 [J]. Free Radic. Biol. Med.,1994,16:149-156.
    [114]Tang B., Zhang L., Xu K. H. FIA-near-infrared spectrof luorimetric trace determination of hydrogen peroxide using tricarchlorobocyanine dye (Cy.7. C1) and horseradish peroxidase (HRP) [J]. Talanta,2006,68:876-882.
    [115]Mohanty J. G., Jaffe J. S., Shulman E. S., et al. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative [J]. J. Immunol. Methods.,1997,202:133-141.
    [116]Raible D. G., Mohanty J. G., Jaffe J. S., et al. Hydrogen peroxide release from human eosinophils on fibronectin:scopoletin enhances eosinophil activation [J]. Free Radic. Biol. Med.,2000,28:1652-1660.
    [117]Pazdzioch-Czochra M., Windenska A. Spectrofluorimetric determination of hydrogen peroxide scavenging activity [J]. Anal. Chim. Acta,2002,452:177-184.
    [118]Soh N., Makihara K., Sakoda E., et al. A ratiometric fluorescent probe for imaging hydroxyl radicals in living cells [J]. Chem. Commun.,2004,496-497.
    [119]Richardson F. R. Terbium (Ⅲ) and europium(Ⅲ) ions as luminescent probes and stains for biomolecular systems [J]. Chem. Rev.,1982,82:541-552.
    [120]Rakicioglu Y., Perrin J. H., Schulman S. G. Increased luminescence of the tetracycline-europium(Ⅲ) system following oxidation by hydrogen peroxide [J]. J. Pharm. Biomed. Anal.,1999,20:397-399.
    [121]Wu M., Lin Z., Durkop A. Time-resolved enzymatic determination of glucose using a fluorescent europium probe for hydrogen peroxide [J]. Anal. Bioanal. Chem. 2004,380:619-626.
    [122]Lipppert A. R, Gschneidtner T., Chang C. J. Lanthanide-based luminescent probes for selective time-gated detection of hydrogen peroxide in water and in living cells [J]. Chem. Commun.,2010,46:7510-7512.
    [123]Peng H. S., Stolwijk J. A., Sun L. N., et al. A nanogel for ratiometric fluorescent sensing of intracellular pH values [J]. Angew. Chem. Int. Ed.,2010,49:4246-4249.
    [124]Urano Y., Asanuma D., Nagano T. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. [J]. Nat. Med.,2009,15:104-109.
    [125]Sun K. M., Mclaughlin C. K., Lantero D. R., et al. Biomarkers for phenol carcinogen exposure act as pH-sensing fluorescent probes [J]. J. Am. Chem. Soc. 2007,129:1894-1895.
    [126]Tang B., Yu F., Li P. A near-infrared neutral pH fluorescent probe for monitoring minor pH changes imaging in living HepG2 and HL-7702 Cells [J]. J. Am. Chem. Soc. 2009,131:3016-3023.
    [127]Yuli L., Oplatka A. Cytosolic acidification as an early transductory signal of human neutrophil chemotaxis [J]. Science,1987,235:340-342.
    [128]Chesler M. Regulation and modulation of pH in the brain [J]. Phys. Rev. 2003,83:1183-1221.
    [129]Levine S. A., Nath S. K., Yun C. H. C., et al. Separate C—terminal domains of the epithelial specific brush border Na+/H+ exchanger isoform NHE3 are involved in stimulation and inhibition by protein kinases/growth factors [J]. J. Biol. Chem. 1995,270:13716-13725.
    [130]Deitmer J. W., Rose C. R. pH regulation and proton signalling by glial cells [J]. Prog. Neurobiol.,1996,48:73-103.
    [131]Janecki A. J., Montrose M. H., Zimniak P., et al. Subcellular redistribution is involved in acute regulation of the brush border Na+/H+ exchanger isoform 3 in human colon adenocarcinoma cell line Caco-2. Protein kinase C-mediated inhibition of the exchanger [J]. J. Biol. Chem.,1998,273:8790-8798.
    [132]Zhao H., Xu X., Diaz J., et al. Na+, K+,and H+/HCO3+ transport in submandibular salivary ducts. Membrane localization of transporters [J]. J. Biol. Chem. 1995,279:19599-19605.
    [133]Russell D. A., Pot Tier R. H., Valenzeno D. P. Continuous, noinvasive measurement of In Vivo pH in conscious mice [J]. Photochem. Photobiol.,1994,59 (3):309-313.
    [134]Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents [J]. Proc. Natl. Acad. Sci. U. S. A.,1978,75:3327-3331.
    [135]Schindler M., Grabski S., Hoff E., et al. Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr) [J]. Biochem.,1996,35:2811-2817.
    [136]Fuh M R. S., Burgess L. W., Hirschfeld T., et al. Single fibre optic fluorescence pH probe [J]. Analyst,1987,112:1159-1163.
    [137]Safavi A., Abdollahi H. Optical sensor for high pH values [J]. Anal. Chim. Acta. 1998,367:167-173.
    [138]Peterson J. I., Goldstein S. R., Fitzgerald R. V. Fiber optic pH probe for physiological use [J]. Anal. Chem.,1980,52:864-869.
    [139]Saari L., Seitz W. R. pH sensor based on immobilized fluoresceinamine [J]. Anal. Chem.,1982,54:821-823.
    [140]Lin J., Liu D. An optical pH sensor with a linear response over a broad range [J]. Anal. Chim. Acta.,2000,408:49-55.
    [141]Srivastava A., Krishnamoorthy G. Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH [J]. Anal. Biochem., 1997,249:140-146.
    [142]Thiebaut F., Currier S J., Whitaker J., et al. Activity of the multidrug transporter results in alkalinization of the cytosol:measurement of cytosolic pH by microinjection of a pH-sensitive dye [J]. Cytochem.,1990,38:685-690.
    [143]Han J., Loudet A., Barhoumi R., et al. A ratiometric pH reporter for imaging protein-dye conjugates in living cells [J]. J. Am. Chem. Soc.,2009,131:1642-1643.
    [144]Green F A. Leukotriene production associated with leukocyte membrane destruction: evidence of a terminal signal [J]. Inflammation,1988,12:133-140.
    [145]Tsien R. Y. A non-disruptive technique for loading calcium buffers and indicators into cells [J]. Nature,1981,290:527-528.
    [146]Munkholm C., Walt D. R., Milanovich F. P., et al. Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement [J]. Anal. Chem.,1986,58:1427-1430.
    [147]Wirnsberger G., Scott B. J., Stucky G. D. pH Sensing with mesoporous thin films [J]. Chem. Commun.,2001:119-120.
    [148]Glaasker E., Konings W. N., Poo 1 man B. The application of pH-sensitive fluorescent dyes in lactic acid bacteria reveals distinct extrusion systems for unmodified and conjugated dyes [J]. Mol. Membr. Biol.,1996,13:173-181.
    [149]Ge F. Y., Yan X. L., Yan F. Y., et al. New fluorescent labels:4-and 7-chlorofluorescein [J]. J. Fluoresc.2005,15:829-833.
    [150]Bradley M. L., Alexander K., Duncan M., et al. pH sensing in living cells using fluorescent microspheres [J], Bioorg. Med. Chem. Lett.,2008,18:313-317.
    [151]Whitaker J. E., Haugland R. P., Prendergast F. G. Spectral and photophysical studies of benzo[c]xanthene dyes:dual emission pH sensors [J]. Anal. Biochem., 1991,194:330-344.
    [152]Yang Y., Lowry M., Xu X., et al. Seminaphthof luorones are a family of water-soluble, low molecular weight, NIR-emitting fluorophores [J]. Proc. Natl. Acad. Sci., 2008,105:8829-8834.
    [153]Tsien R. Y. Fluorescent probes of cell signaling [J]. Ann. Rev. Neurosci., 1989,12:227-253.
    [154]Povrozin Y. A., Markova L. I., Tatarets A. L., et al. Molecular dynamics simulations of atomic carbon on tungsten surface [J]. Anal. Biochem.,2009,390:136-139.
    [155]Lee H., Berezin M. Y., Guo K., et al. Near-infrared pH-fluorescent probes via unexpected barbituric acid mediated synthesis [J]. Org. Lett.2009,11:29-32.
    [156]Galande A. K., Weissleder R, Tung C. H. Fluorescence probe with a pH-sensitive trigger [J]. Bioconjugate Chem.,2006,17:255-257.
    [157]Hilderbrand S. A., Kelly K. A., Niedre M., et al. Near infrared fluorescence-based bacteriophage particles for ratiometric pH imaging [J]. Bioconjugate. Chem., 2008,19:1635-1639.
    [158]Peng X., Song F., Lu E., et al. Heptamethine cyanine dyes with a large stokes shift and strong fluorescence:a paradigm for excited-state intramolecular charge transfer [J]. J. Am. Chem. Soc.,2005,127:4170-4171.
    [159]Chan C., Wong K. Evaluation of a luminescent ruthenium complex immobilized inside Nafion as optical pH sensor [J]. Analyst,1998,123 (9):1843-1847.
    [160]de Silva A. P., Gunaratne H. Q. N., Rice T. E. Proton-controlled switching of luminescence in lanthanide complexes in aqueous solution:pH sensors based on long-lived emission [J]. Angew. Chem. Int. Ed. Engl.,1996,35(18):2116-2118.
    [161]Parker D. Excitement in f block:structure, dynamics and function of nine-coordinate chiral lanthanide complexes in aqueous media [J]. Chem. Soc. Rev. 2004,33:156-165.
    [162]Pal R., Parker D. A single component ratiometric pH probe with long wavelength excitation of europium emission [J]. Chem. Commun.,2007,5:474-476.
    [163]于法标.用于细胞内具有重要生物学意义的活性小分子荧光探针的合成研究及其在生物体系中的应用[D].山东师范大学,2009.
    [164]Galindo F., Burguete M. I., Vigara L., et al. Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live Cells [J]. Angew. Chem. Int. Ed.,2005,44:6504-6508.
    [165]Loudet A., Burgess K. BODIPY dyes and their derivatives:syntheses and spectroscopic properties [J]. Chem. Rev.,2007,107:4891-4932
    [166]Baruah M., Qin W. W., Basaric' N., et al. BODIPY-based hydroxyaryl derivatives as fluorescent pH probes [J]. J. Org. Chem.,2005,70:4152-4157.
    [167]Qin W. W., Baruah M., Stefan A., et al. Photophysical properties of BODIPY(?)-derived hydroxyaryl fluorescent pH probes in solution [J]. Chem. Phys. Chem. 2005,6:2343-2351.
    [168]Yogo T., Urano Y., Mizushima A., et al. Selective photoinactivation of protein function through environment-sensitive switching of singlet oxygen generation by photosensitizer [J]. Proc. Natl. Acad. Sci.,2008,105:28-32.
    [169]Leonard J. P., Dos Santos C. M. G., Plush S. E., et al. pH driven self-assembly of a ternary lanthanide luminescence complex:the sensing of anions using a β-diketonate-Eu (Ⅲ) displacement assay [J]. Chem. Commun.,2007,129-131.
    [170]Coord P. D. Luminescent lanthanide sensors for pH, pO2 and selected anions [J]. Chem. ReV.,2000,205:109-130.
    [171]Parker D., Senanayake P. K., Williams J. A. G. Luminescent sensors for pH, pO2, halide and hydroxide ions using phenanthridine as a photosensitiser in macrocyclic europium and terbium complexes [J]. J. Chem. Soc., Perk in Trans 2.,1998,2129-2139.
    [172]McCoy C. P., Stomeo F., Plush S. E., et al. Soft matter pH sensing:From luminescent lanthanide pH switches in solution to sensing in hydrogels [J]. Chem. Mater. 2006,18:4336-4343.
    [173]Gunnlaugsson T., Mac Donaill D. A., Parker D. Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices [J]. J. Am. Chem. Soc. 2001,123:12866-12876.
    [174]Liu J. X., Diwu Z. Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators [J]. Bioorg. Med. Chem. Lett. 2001,11:2903-2905.
    [175]Montgomery C. P., Murray B. S., New E. J., et al. Cell-penetrating metal complex optical probes:targeted and responsive systems based on lanthanide luminescence [J]. Ace Chem Res.,2008,42(7):925-937.
    [176]Matthew S., Tremblay M. H., Sames D. Cocktails of Tb(3+) and Eu(3+) complexes: a general platform for the design of ratiometric optical probes [J]. J. Am. Chem. Soc,2007,129:7570-7577.
    [177]Gusarov I., ShatalinK., Starodubtseva M., et al. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics [J]. Science,2009,325:1380-1384.
    [178]Butler A. R., Williams D. L. H. The physiological role of nitric oxide [J]. Chem. Soc. Rev.,1993,233-241.
    [179]Loscalzo J. Nitric oxide redux [J]. Arterioscler. Thromb. Vase. Biol. 2006,26:696-697.
    [180]Mocellin S., Bronte V., Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities [J]. Med. Res. Rev.,2007,27:317-352.
    [181]Ignarro L. J. Nitric oxide:a unique endogenous signaling molecule in vascular biology [J]. Biosci. Rep.,1999,19(2):51-71.
    [182]Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling [J]. Biosci. Rep.,1999,19(3):133-154.
    [183]Nagano T., Yoshimura T. Bioimaging of nitric oxide [J]. Chem. Rev. 2002,102:1235-1269.
    [184]Ricciabrdolo F. L. M., Sterk P. J., Gaston. B., et al. Nitric oxide in health and disease of the respiratory system [J]. Physiol. Rev.,2004,84:731-765.
    [185]Kosaka H., Watanabe M., Yoshihara H., et al. Detection of nitric oxide production in lipopolysacchari [J]. Biochem. Biophys. Res. Commun.,1992,184:1119-1124.
    [186]Ridnour L. A., Sim J. E., Hayward M. A., et al. A rapid spectrophotometric method for quantification of nitric oxide, nitrite, and nitrate in cell culture media [J]. Anal. Biochem.,2000,281:223-229.
    [187]Kojima H., Nakastsubo N., Kikuchi K., et al. Detection and imaging of nitric oxide with novel fluorescent indicators:diaminofluoresceins [J]. Anal. Chem. 1998,70:2446-2453.
    [188]Lim M. H., Lippard S. J. Metal-based turn-on fluorescent probes for sensing nitric oxide [J]. Acc. Chem. Res.,2007,40:41-51.
    [189]Brien J. F., McLaughlin B. E., Nakatsu K., et al. Chemiluminescence headspace-gas analysis for determination of nitric oxide formation in biological systems [J]. Methods Enzymol.,1996,268:83-92.
    [190]Katayama Y., Takahashi S., Maeda M. Design, synthesis and characterization of a novel fluorescent probe for nitric oxide (nitrogen monoxide) [J]. Anal. Chim. Acta. 1998,365:159-167.
    [191]Soh N., Katayama Y., Maeda M. A fluorescent probe for monitoring nitric oxide production using a novel detection concept [J]. Analyst,2001,126:564-566.
    [192]Ford P. C., Lorkovic I. M. Mechanistic aspects of the reactions of nitric oxide with transition-metal complexes [J]. Chem. Rev.,2002,102:993-1017.
    [193]Lim M. H., Lippard S. J. Fluorescent nitric oxide detection by copper complexes bearing anthracenyl and dansyl fluorophore ligands [J]. Inorg. Chem. 2006,45:8980-8989.
    [194]Lim M. H., Lippard S. J. Copper complexes for fluorescence-based NO detection in aqueous solution [J]. J. Am. Chem. Soc.,2005,127:12170-12171.
    [195]Franz K. J., Singh N., Spingler B., et al. Aminotroponiminates as ligands for potential metal-based nitric oxide sensors [J]. Inorg. Chem.,2000,39:4081-4092.
    [196]Lee J., Chen L., West A. H., et al. Interactions of organic nitroso compounds with metals [J]. Chem. Rev.,2002,102:1019-1065.
    [197]Lim M. H., Xu D., Lippard S. J. Visualization of nitric oxide in living cells by a copper-based fluorescent probe [J]. Nat. Chem. Biol.,2006,2:375-380.
    [198]Misko T. P., Schilling R. J., Salvemini D., et al. A fluorometric assay for the measurement of nitrite in biological samples [J]. Anal. Biochem.,1993,214:11-16.
    [199]Nagano T., Takazawa H., Hirove M. Reactions of nitric oxide with amines in the presence of dioxygen [J]. Tetrahedron Lett.,1995,36:8239-8242.
    [200]Miller E. W., Chang C. J. Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling [J]. Curr. Opin. Chem. Bio.,2007,11:620-625.
    [201]Hu J. X., Yin L. L., Xu K. H., et al. Vicinal diaminobenzoacridine used as the fluorescent probe for trace nitric oxide determination by flow injection spectrofluorimetry and macrophage cells imaging [J]. Anal. Chim. Acta. 2008,606:57-62.
    [202]Huang K. J., Xie W. Z., Wang H., et al. Sensitive determination of S-nitrosothiols in human blood by spectrofluorimetry using a fluorescent probe: 1,3,5,7-tetramethyl-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacene [J]. Talanta,2007,73:62-67.
    [203]Plater M. J., Greig I., Helfrich M. H., et al. The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection [J]. J. Chem. Soc. Perkin Trans.,2001,1:2553-2559.
    [204]Kojima H., Sakurai K., Kikuchi K., et al. Biol. Development of a fluorescent indicator for the bioimaging of nitric oxide [J]. Pharm. Bull.,1997,20:1229-1232.
    [205]Kojima H., Nakatsubo N., Kikuchi K., et al. Detection and imaging of nitric oxide with novel fluorescent indicators:diaminofluoresceins [J]. Anal. Chem. 1998,70:2446-2453.
    [206]Kojima H., Urano Y., Kikuchi K., et al. Fluorescent indicators for imaging nitric oxide production [J]. Angew. Chem. Int Ed.,1999,38:3209-3212.
    [207]Nagano T., Takizawa H., Hirobe M. Reactions of nitricoxide with amines in the presence of dioxygen [J]. Tetrahedron Lett.,1995,36:8239-8242.
    [208]Nakatsubo N., Kojima H., Kikuchi K., et al. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins [J]. FEBS Lett.,1998,427:263-266.
    [209]Kojima H., Hirotani M., Nakatsubo N., et al. Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore [J]. Anal. Chem. 2001,73:1967-1973.
    [210]Kojima H., Hirotani M., Urano Y., et al. Fluorescent indicators for nitric oxide based on rhodamine chromophore [J]. Tetra. Lett.,2000,41:69-72.
    [211]Gabe Y., Urano Y., Kikuchi H., et al. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe [J]. J. Am. Chem. Soc. 2004,126:3357-3367.
    [212]Zhang H. X., Chi R. A., Zou J., et al. Development of a novel fluorescent probe for nitric oxide detection:8-(3',4'-diaminophenyl)-difluoroboradiaza-S-indacence [J]. Spectrochim. Acta A Mol. BiomoL Spectrosc.,2004,60:3129-3234.
    [213]Huang K. J., Zhang M. Xie W. Z., et al. Sensitive determination of ultra-trace nitric oxide in blood using derivatization-polymer monolith microextract ion coupled with reversed-phase high-performance liquid chromatography [J]. Ana. Chim. Acta.,2007,591(1):116-122.
    [214]Sasaki E., Kojima H., Nishimatsu H., et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs [J]. J. Am. Chem. Soc.,2005,127:3684-3685.
    [215]Smith R. C., Tennyson A. G., Lira M. H., et al. Conjugated polymer-based fluorescence turn-on sensor for nitric oxide [J]. Org. Lett.,2005,7:3573-3575.
    [216]McQuade L. E., Lippard S. J. Fluorescence-based nitric oxide sensing by Cu(Ⅱ) complexes that can be trapped in living cells [J]. Inorg. Chem.,2010,49:7464-7471.
    [217]Kumar P., Kalita A., Mondal B. Reduction of copper(Ⅱ) complexes of tridentate ligands by nitric oxide and fluorescent detection of NO in methanol and water media [J]. Dalton Trans.,2011,40:8656-8663.
    [218]Lim M. H., Lippard S. J. Fluorescence-based nitric oxide detection by ruthenium porphyrin fluorophore complexes [J]. Inorg. Chem.,2004,43:6366-6370.
    [219]Lim M. H., Xu D., Lippard S. J. Visualization of nitric oxide in living cells by a copper-based fluorescent probe [J]. Nat. Chem. Bio.,2006,2:375-380.
    [220]Lim M. H., Wong B. A., William H., et al. Direct nitric oxide detection in aqueous solution by copper(Ⅱ) fluorescein complexes [J]. J. Am. Chem. Soc. 2006,128:14364-14373.
    [221]Suzuki A. Organoborates in new synthetic reactions [J]. Acc. Chem. Res.,1982,15 (6):178-184.
    [222]Miyaura N., Yamada K., Suginome H., et al. Novel and convenient method for the stereo- and regiospecific synthesis of conjugated alkadienes and alkenynes via the palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with bromoalkenes and bromoalkynes [J]. J. Am. Chem. Soc.,1985,107(4):972-980.
    [223]Miyaura N., Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboron compounds [J]. Chem. Rev.,1995,95(7):2457-2483.
    [224]Ishiyama T., Nishijima K., Miyaura N., et al. Palladium(0)-catalyzed thioboration of terminal alkynes with 9-(alkylthio)-9-borabicyclo[3.3.1]nonane derivatives: stereoselective synthesis of vinyl sulfides via the thioboration-cross-coupling sequence [J]. J. Am. Chem. Soc,1993,115(16):7219-7225.
    [225]Suzuki A. Recent advances in the cross-coupling reactions of orgaoboron derivatives with organic electrophiles,1995-1998 [J]. J. Organomet. Chem.,1999,576:147-168.
    [226]Suzuki A. Synthetic studies via the cross-coupling reaction of organoboron derivatives with organic halides [J]. Pure Appl. Chem.,1991,63:419-422.
    [227]Aspley C. J., Williams J. A. G. Palladium-catalysed cross-coupling reactions of ruthenium bis-terpyridyl complexes:strategies for the incorporation and exploitation of boronic acid functionality [J]. New J. Chem.,2001,25:1136-1147.
    [228]Chang M. C. Y., Palle A., Isacoff E. Y., et al. A selective, cell-permeable optical probe for hydrogen peroxide in living cells [J]. J. Am. Chem. Soc.,2004,126 (47):15392-15393.
    [229]Miller E. W., Albers A. E., Pralle A., et al. Boronate-based fluorescent probes for imaging cellular hydrogen peroxide [J]. J. Am. Chem. Soc,2005, 127 (47):16652-16659.
    [230]Miller E. W., Tulyathan 0., Isacoff E. Y., et al. Molecular imaging of hydrogen peroxide produced for cell signaling [J]. Nat. Chem. Biol.,2007,3:263-267.
    [231]Dichinson B. C., Chang C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells [J]. J. Am. Chem. Soc,2008, 130(30):9638-9639.
    [232]Dickinson B. C., Huynh C., Chang C. J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells [J]. J. Am. Chem. Soc.,2010,132(16):5906-5915.
    [233]Hemmila I., Mukkala V. M. Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays [J]. Crit. Rev. Clin. Lab. Sci. 2001,38:441-519.
    [234]Thibon A., Pierre V. C. Principles of responsive lanthanide-based luminescent probes for cellular imaging [J]. Anal. Bioanal. Chem.,2009,394:107-120.
    [235]Guo W. H., Ye Z. Q., Wang G. L., et al. Measurement of ol igochitosan-tobacco cell interaction by fluorometric method using europium complexes as fluorescence probes [J]. Talanta,2009,78:977-982.
    [236]Eliseeva S. V., Bunzli J. C. G. Lanthanide luminescence for functional materials and bio-sciences [J]. Chem. Soc. Rev.,2010,39:189-227.
    [237]Hagan A. K., Zuchner T. Lanthanide-based time-resolved luminescence immunoassays [J]. Anal. Bioanal. Chem.,2011,400(9):2847-2864.
    [238]Song B., Wang G. L., Tan M. Q., et al. A europium(III) complex as an efficient singlet oxygen luminescence probe [J]. J. Am. Chem. Soc,2006,128 (41):13442-13450.
    [239]Germain M. E., Knapp M. J. Turn-on fluorescence detection of H2O2 and TATP [J]. Inorg. Chem.,2008,47 (21):9748-9750.
    [240]Kadjane P., Platas-Iglesias C., Ziessel R., et al. Luminescence properties of heterodinuclear Pt-Eu complexes from unusual nonadentate ligands [J]. Dalton Trans.,2009,5688-5700.
    [241]Lei B., Adachi N., Arai T. Measurement of the extracellular HiA in the brain by microdialysis [J]. Brain Res. Protoc.,1998,3:33-36.
    [242]Diamandis E. P., Christopoulos T. K. Europium chelate labels in time-resolved fluorescence immunoassays and DNA hybridization assays [J]. Anal. Chem. 1990,62:1149A-1157A.
    [243]Werts M. H. V., Verhoeven J. W., Hofstraat J. W. Efficient visible light sensitisation of water-soluble near-infrared luminescent lanthanide complexes [J]. J. Chem. Soc. Perkin Trans.2,2000,433-439.
    [244]Zhang X. B., Guo C. C., Li Z. Z., et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer [J]. Anal. Chem.,2002,74(4):821-825.
    [245]Moore E. G., Samuel A. P. S., Raymond K. N. From antenna to assay:lessons learned in lanthanide luminescence [J]. Acc. Chem. Res.,2009,42:542-552.
    [246]Tan M. Q., Song B., Wang G. L., et al. A new terbium(Ⅲ) chelate as an efficient singlet oxygen fluorescence probe [J]. Free Radic. Biol. Med.,2006,40:1644-1653.
    [247]Thibon A., Pierre V. C. A highly selective luminescent sensor for the time-gated detection of potassium [J]. J. Am. Chem. Soc.2009,131:434-435.
    [248]Weitz E. A., Pierre V. C. A ratiometric probe for the selective time-gated luminescence detection of potassium in water [J]. Chem. Commun.,2011,47:541-543.
    [249]Donoso P., Beltran M., Hidalgo C. Luminal pH regulated calcium release kinetics in sarcoplasmic reticulum vesicles [J]. Biochem.,1996,35:13419-13425.
    [250]Speake T., Elliott A. C. Modulation of calcium signals by intracellular pH in isolated rat pancreatic acinar cells [J]. J. Physiol.,1998,506:415-430.
    [251]Anderson R. G. W., Orci L. A view of acidic intracellular compartments [J]. J. Cell Biol.,1988,106:539-543.
    [252]Simon S., Roy D., Schindler M. Intracellular pH and the control of multidrug resistance [J]. Proc. Natl. Acad. Sci. USA.,1994,91:1128-1132.
    [253]Gottlieb R. A., Giesing H. A., Zhu J. Y., et al. Cell acidification in apoptosis: granu-locyte colony stimulating factor delays programmed cell death in neutrophiles by up-regulating the vacuolar H(+)-ATPase [J]. Proc Natl Acad Sci. USA. 1995,92:5965-5968.
    [254]Han J., Burgess K. Review of the structure and properties of fluorescent pH indicators [J]. Chem. Rev.,2010,110:2709-2728.
    [255]Ji J., Rosenzweig Z. Fiber optic pH/Ca2+ fluorescence microsensor based on spectral processing of sensing signals [J]. Anal. Chim. Acta.,1999,397:93-102.
    [256]Szmacinski H., Lakowicz J. R. Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry [J]. Anal. Chem.,1993,65:1668-1674.
    [257]Overly C. C., Hollenbeck P. J. Dynamic organization of endocytic pathways in axons of cultured sympathetic neurons [J]. J. Neurosci.,1996,16:6056-6064.
    [258]Miltsov S., Encinas C., Alonso J. Nortricarbocyanines:new near-infrared pH-indicators [J]. Tetrahedron Lett.,1998,39:9253-9254.
    [259]Su M. H., Liu Y., Ma H. M., et al.1,9-Dihydro-3-phenyl-4H-pyrazolo[3,4-b]quinolin-4-one, a novel fluorescentprobe for extreme pH measurement [J].Chem. Commun., 2001,960-961.
    [260]Wang R., Yu C. W., Yu F. B., et al. Molecular fluorescent probes for monitoring pH changes in living cells [J]. Trends Anal. Chem.,2010,29,1004-1013.
    [261]Blair S., Lowe M. P., Mathieu C. E., et al. Narrow-range optical pH sensors based on luminescent europium and terbium complexes immobilized in a sol gel glass [J]. Inorg. Chem.,2001,40:5860-5867.
    [262]Bonnet C. S., Gunnlaugsson T. Lanthanide macrocyclic quinolyl conjugates as luminescent molecular switches and logic gate functions using HO" and O2 as inputs [J]. New J. Chem.,2009,33:1025-1030.
    [263]Poole R., Kielar F., Richardson S. L., et al. A ratiometric and non-enzymatic luminescence assay for uric acid:differential quenching of lanthanide excited states by anti-oxidants [J]. Chem. Commun.2006,4084-4086.
    [264]Law G. L., Pal R., Palsson L.0., et al. Responsive and reactive terbium complexes with an azaxanthone sensitiser and one naphthyl group:applications in ratiometric oxygen sensing in vitro and in regioselective cell killing [J]. Chem. Commun. 2009,7321-7323.
    [265]Berezin M. Y., Achilefu S. Fluorescence lifetime measurements and biological imaging [J]. Chem. Rev.,2010,110:2641-2684.
    [266]Choi D. W. Glutamate neurotoxicity and diseases of the nervous system [J]. Neuron, 1998,1:623-634.
    [267]Craven S. E., Bredt D. S. PDZ proteins organize synaptic signaling pathways [J]. Cell,1998,93:495-498.
    [268]Nowak L., Bregestovski P., Ascher P., et al. Magnesium gates glutamate-activated channels in mouse central neurons [J]. Nature,1984,307:462-465.
    [269]Riccio D. A., Schoenfisch M. H. Nitric oxide release:Part Ⅰ. Macromolecular scaffolds [J]. Chem. Soc. Rev.,2012,41:3731-3741.
    [270]Carpenter A. W., Schoenfisch M. H. Nitric oxide release:Part Ⅱ. Therapeutic applications [J]. Chem. Soc. Rev.,2012,41:3742-3752.
    [271]Coneski P. N., Schoenfisch M. H. Nitric oxide release:Part Ⅲ. Measurement and reporting [J]. Chem. Soc. Review.,2012,41:3753-3758.
    [272]McQuade L. E., Lippard S. J. Molecular imaging [J].Curr. Opin. Chem. Biol. 2009,14:1-7.
    [273]Nims R. W., Darbyshire J. F., Saavedra J. E., et al. Colorimetric methods for the determination of nitric oxide concentration in neutral aqueous solutions. Methods: A Companion Methods in Enzymology [J]. Methods,1995,7:48-54.
    [274]Ridnour L. A., Sim J. E., Hayward M. A., et al. A rapid spectrophotometric method for quantification of nitric oxide, nitrite, and nitrate in cell culture media [J]. Anal. Biochem.,2000,281:223-229.
    [275]Hu X. Y., Wang J., Zhu X., et al. A copper (II) rhodamine complex with a tripodal ligand as a highly selective fluorescence imaging agent for nitric oxide [J]. Chem. Commun.,2011,47:11507-11509.
    [276]Hrabie J. A., Klose J. R., Wink D. A., et al. New nitric oxide-releasing zwitterions derived from polyamines [J]. J. Org. Chem.,1993,58:1472-1476.
    [277]Zhang R., Ye Z. Q., Wang G. L., et al. Development of a ruthenium(II) complex based luminescent probe for imaging nitric oxide production in living cells [J]. Chem. Eur. J.,2010,16:6884-6891.
    [278]Beeby A., Clarkson I. M., Dickins R. S., et al. Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators:an improved luminescence method for establishing solution hydration states [J]. J. Chem. Soc., Perkin Trans 2., 1999,493-504.
    [279]Ghosh A., Das P., Saha S., et al. Diamine derivative of a ruthenium(II)-polypyridyl complex for chemodosimetric detection of nitrite ion in aqueous solution [J]. Inorg. Chim. Acta.,2011,372:115-119.
    [280]Evans P., Spencer A., Wilkinson G. Dichlorotetrakis (dimethyl sulphoxide) ruthenium (Ⅱ) and its use as a source material for some new ruthenium (II) complexes [J]. J. Chem. Soc. Dalton. Trans.,1973,204-209.
    [281]Gould K. S., Lamotte 0., Klinguer A., et al. Nitric oxide production in tobacco leaf cells:a generalized stress response? [J]. Plant. Cell. Environ. 2003,26:1851-1862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700