基于萘酰亚胺的溶酶体定位荧光探针研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年,荧光探针领域因在化学传感、光学材料以及生物学领域具有广泛的应用而发展迅速。然而,大多数探针缺乏特异的靶向性,且不能提供客体分布的定量信息。迫切需要开发出具有细胞器定位功能以及能够定量反映客体分布的荧光探针。粘度在生理过程起着至关重要的作用。因此,开发出具有定量检测生物体内粘度分布情况,以及实时监控生物体内粘度变化探针已经成为趋势。大多数的粘度探针设计是基于扭曲分子内电荷转移机理(TICT),存在检测信号不灵敏、易受染料浓度干扰和细胞渗透性差等缺点。光致电子转移(PET)是典型的被用来设计荧光传感器的方法之一,具有灵敏度高和响应时间快等优点。所以,本文设计合成了两类可用于生物体内具有特定功能的荧光探针,一类是基于PET和FRET机理设计的比率型探针,可以定量反映细胞内粘度的分布;另一类是能够定位于溶酶体内检测硫化氢的荧光分子探针
     1、基于PET机理和FRET机理,设计合成了比率型粘度探针VN-1。将苯胺作为PET电子供体,葸和1,8-萘酰亚胺分别作为PET电子受体和FRET的供-受体对。随着溶剂粘度的增加以及温度的降低,探针VN-1中1,8-萘酰亚胺和葸的荧光信号呈现比率的变化。与参比化合物VN-2和VN-3比较得知,探针VN-1中TICT的抑制促进了荧光增强。通过不同激发波长实验以及单晶研究,确认FRET在探针VN-1中高效发生。探针VN-1对pH、金属离子和生物大分子均不敏感。通过荧光寿命的研究以及理论计算可以从另一个角度解释探针VN-1中PET的作用机理。
     2、相比于另外几个探针,VN-1能够更好地反映细胞内粘度分布。在不同种类的细胞中,探针VN-1与商品化染料的共定位实验表明,溶酶体粘度最大,其次是线粒体。利用双光子比率成像和荧光寿命成像,探针VN-1可以反映细胞内粘度的分布情况,验证了溶酶体粘度最大的结论。在细胞凋亡实验中,利用双光子比率成像和荧光寿命成像观察到细胞内整体荧光强度且荧光寿命增加,这表明细胞内粘度增加。而溶酶体观察到的现象与上述相反,表明其粘度减小。
     3、以1,8-萘酰亚胺为母体设计合成了识别硫化氢的反应型探针NI-NSH和lyso-NSH。将具有溶酶体导向性的吗啉环引入探针lyso-NSH中,与参照化合物NI-NSH相比,其在溶酶体pH范围内荧光信号稳定。探针lyso-NSH和NI-NSH在牛血清中对硫化氢表现出良好的识别性质。与硫化氢结合后,探针lyso-NSH和NI-NSH双光子吸收截而积分别增加至175GM和186GM。与商品化染料的共定位实验表明,探针lyso-NSH可以在溶酶体中识别外加的硫化氢。
In recent years, the field of fluorescent probe is developing very fast. It was widely applied in chemical sensing, optical materials and biology. However, there are no targeting and quantitative information of the distribution of object can be recieved from most probes. So there is an urgent demand of the fluorescent probes which have the cell organelle positioning function and provided the quantitative information of the object distribution. It plays a vital role for viscosity in physiological processes, so it is important for people to develop the probes which can detect the distribution of intracellular viscosity and real-time monitor the viscosity changes in vivo. The mechanism of the most viscosity probes is based on the twisted intramolecular charge transfer mechanism (TICT). But there are some disadvantages. For example, signal insensitivity, susceptible interference by dye concentration, poor cell permeability and so on. Photoinduced electron transfer (PET) is one of the typical methods which are used to design fluorescent probe. PET usually has the advantages of high sensitivity and fast response time. So we developed two types of fluorescence probes with specific function in cells. One probe, based-on PET mechanism and FRET mechanism, can quantitatively be detected the viscosity distribution of total cells, the other can be located in lysosome to detect H2S.
     1. We designed and synthesized a ratiometric viscosity probe VN-1based on PET and FRET mechanism. Aniline was used as an electron donor,1,8-naphthalimide fluorophore and anthracene fluorophores were used as electron acceptor and as acceptor and donor for FRET. Probe VN-1performed strong fluorescence enhancement as the increasing of solvent viscosity and decreasing of temperature. The probe showed the ratiometric changes. Compared with compounds VN-2and VN-3, fluorescence enhancement of VN-1probe is mainly owed to PET and TICT inhibition. Through the analysis of the probe crystal and measurements at different excitation wavelength, we deduce that efficient FRET happened. Probe VN-1was insensitive with pH, metal ions and biomolecules which can provide its application in cells. Fluorescence lifetime studies and theoretical calculations about VN-1can be explained the PET mechanism in the viscosity of the environment from another point of view.
     2. The probe VN-1was well used in cells to reflect the intracellular viscosity distribution. Probe VN-1can reflect the different viscosity distribution by a fluorescent signal in different types of cells. The colocalization experiments showed that brightest region is lysosomes, followed by the mitochondria. The probe VN-1can be used with two-photon ratio image to detect the viscosity distribution. It also showed the highest viscosity of lysosomes. We applied VN-1in MCF-7cells to focus on viscosity changes during the process of apoptosis. The fluorescence intensity and lifetime increased of the total cells in the process of cell apoptosis observed by two-photon ratio imaging and fluorescence lifetime imaging, which means the viscosity within cells increased. But the phenomenon in lysosome was opposite from the above which means its viscosity decreased.
     3. We designed and synthesized two hydrogen sulfide-detecting reaction-based probes (NI-NHS and lyso-NHS). Probe lyso-NHS is composed of morpholine ring which used as lysosomal orientation. Comparing with NI-NHS, Lyso-NHS showed stable fluorescence signal at lysosome pH range. They performed good hydrogen sulfide detecting in the bovine serum. Two-photon absorption cross-section of both NI-NSH and lyso-NSH increased to175GM and186GM respectively after detecting hydrogen sulfide. In colocalization experiments compared with commercial dyes, it showed that lyso-NHS detected hydrogen sulfide located in lysosomes.
引文
[1]LEWIS W H, RUTAN S C. Guanidinium-induced differential kinetic denaturation of alkaline phosphatase isozymes [J]. Analytical Chemistry,1991,63(6):627-629.
    [2]BISSELL R A, DE SILVA A P, GUNARATNE H Q N, et al. Molecular fluorescent signalling with 'fluor-spacer-receptor' systems:approaches to sensing and switching devices via supramolecular photophysics [J]. Chemical Society Reviews,1992,21(3):187-195.
    [3]XIE X S. Single-Molecule Spectroscopy and Dynamics at Room Temperature [J]. Accounts of Chemical Research,1996,29(12):598-606.
    [4]COONS A H, CREECH H J, JONES R N, et al. The Demonstration of Pneumococcal Antigen in Tissues by the Use of Fluorescent Antibody [J]. The Journal of Immunology,1942,45(3):159-170.
    [5]DEMCHENKO A P. The future of fluorescence sensor arrays [J]. Trends Biotechnol,2005,23(9): 456-460.
    [6]TSIEN R Y, HAROOTUNIAN A T. Practical design criteria for a dynamic ratio imaging system [J]. Cell Calcium,1990,11(2-3):93-109.
    [7]GRYNKIEWICZ G, POENIE M, TSIEN R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties [J]. Journal of Biological Chemistry,1985,260(6):3440-3450.
    [8]DE SILVA A P, GUNARATNE H Q, GUNNLAUGSSON T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem Rev,1997,97(5):1515-1566.
    [9]AKKAYA E U, HUSTON M E, CZARNIK A W. Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution [J]. Journal of the American Chemical Society,1990,112(9):3590-3593.
    [10]LIU S-Y, HE Y-B, QING G-Y, et al. Fluorescent sensors for amino acid anions based on calix[4]arenes bearing two dansyl groups [J]. Tetrahedron:Asymmetry,2005,16(8):1527-1534.
    [11]LING-ZHI E, GONG-XIONG M, YONG-BING H, et al. Synthesis and Anion Recognition Properties of Two Novel Tetraamide Calix[4](aza)crowns for Optical Anion Sensor [J]. Acta Chimica Sinica, 2005,63(5):416-420
    [12]LEE J Y, KIM S K, JUNG J H, et al. Bifunctional Fluorescent Calix[4]arene Chemosensor for Both a Cation and an Anion [J]. The Journal of Organic Chemistry,2005,70(4):1463-1466.
    [13]W1SKUR S L, AIT-HADDOU H, LAVIGNE J J, et al. Teaching Old Indicators New Tricks [J]. Accounts of Chemical Research,2001,34(12):963-972.
    [14]HORTAL M A, FABBRIZZI L, MARCOTTE N, et al. Designing the Selectivity of the Fluorescent Detection of Amino Acids:A Chemosensing Ensemble for Histidine [J]. Journal of the American Chemical Society,2002,125(1):20-21.
    [15]TOBEY S L, ANSLYN E V. Determination of Inorganic Phosphate in Serum and Saliva Using a Synthetic Receptor [J]. Organic Letters,2003,5(12):2029-2031.
    [16]BURYAK A, SEVERIN K. An Organometallic Chemosensor for the Sequence-Selective Detection of Histidine-and Methionine-Containing Peptides in Water at Neutral pH [J]. Angewandte Chemie International Edition,2004,43(36):4771-4774.
    [17]KUBO Y, KOBAYASHI A, ISHIDA T, et al. Detection of anions using a fluorescent alizarin-phenylboronic acid ensemble [J]. Chemical Communications,2005,10(22):2846-2848.
    [18]KIM J H, NOH J Y, HWANG I H, et al. An anthracene-based fluorescent chemosensor for Zn2+[J]. Tetrahedron Letters,54(19):2415-2418.
    [19]ZENG Q, CAI P, LI Z, et al. An imidazole-functionalized polyacetylene:convenient synthesis and selective chemosensor for metal ions and cyanide [J]. Chemical Communications,2008,10(9):1094-1096.
    [20]CHAE M Y, CZARNIK A W. Fluorometric chemodosimetry. Mercury(II) and silver(1) indication in water via enhanced fluorescence signaling [J]. Journal of the American Chemical Society,1992, 114(24):9704-9705.
    [21]LIPPERT A R, NEW E J, CHANG C J. Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells [J]. Journal of the American Chemical Society,133(26):10078-10080.
    [22]GUO H, JING Y, YUAN X, et al. Highly selective fluorescent OFF-ON thiol probes based on dyads of BODIPY and potent intramolecular electron sink 2,4-dinitrobenzenesulfonyl subunits [J]. Org Biomol Chem.1039,9(10):3844-3853.
    [23]FOX M A. PHOTOINDUCED ELECTRON TRANSFER [J]. Photochemistry and Photobiology,1990, 52 (3):617-627.
    [24]DE SILVA A P, FOX D B. MOODY T S, et al. The development of molecular fluorescent switches [J]. Trends Biotechnol,2001,19(1):29-34.
    [25]ONODA M, UCHIYAMA S, ENDO A, et al. First Fluorescent Photoinduced Electron Transfer (PET) Reagent for Hydroperoxides [J]. Organic Letters,2003,5(9):1459-1461.
    [26]MIURA T, URANO Y, TANAKA K, et al. Rational design principle for modulating fluorescence properties of fluorescein-based probes by photoinduced electron transfer [J]. J Am Chem Soc,2003, 125(28):8666-8671.
    [27]VALEUR B. Molecular Fluorescence:Principles and Applications, F, [C],2001.
    [28]CHUNG S-K, TSENG Y-R, CHEN C-Y, et al. A Selective Colorimetric Hg2+ Probe Featuring a Styryl Dithiaazacrown Containing Platinum(Ⅱ) Terpyridine Complex through Modulation of the Relative Strength of ICT and MLCT Transitions [J]. Inorganic Chemistry,2011,50(7):2711-2713.
    [29]XU Z, XIAO Y, QIAN X, et al. Ratiometric and selective fluorescent sensor for Cull based on internal charge transfer (ICT) [J]. Org Lett,2005,7(5):889-892.
    [30]LU C, XU Z, CUI J, et al. Ratiometric and Highly Selective Fluorescent Sensor for Cadmium under Physiological pH Range:A New Strategy to Discriminate Cadmium from Zinc [J]. The Journal of Organic Chemistry,2007,72(9):3554-3557.
    [31]XU Z, QIAN X, CUI J, et al. Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission [J]. Tetrahedron,2006, 62(43):10117-10122.
    [32]ABDEL-MOTTALEB M S A, LOUTFY R O, LAPOUYADE R. Non-radiative deactivation channels of molecular rotors [J]. Journal of Photochemistry and Photobiology A:Chemistry,1989,48(1):87-93.
    [33]GRABOWSKI Z R, DOBKOWSKI J. Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure [J]. Pure and Applied Chemistry,1983,55(2):245-252.
    [34]GRABOWSKI Z R. Electron transfer and the structural changes in the excited state [J]. Pure and Applied Chemistry,1992,64(9):1249-1255.
    [35]RETTIG W. Charge Separation in Excited States of Decoupled Systems-TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis [J]. Angewandte Chemie International Edition in English,1986,25(11):971-988.
    [36]KOSOWER E M, HUPPERT D. Excited State Electron and Proton Transfers [J]. Annual Review of Physical Chemistry,1986,37(127-156).
    [37]BHATTACHARYYA K, CHOWDHURY M. Environmental and magnetic field effects on exciplex and twisted charge transfer emission [J]. Chemical Reviews,1993,93(1):507-535.
    [38]KOSOWER E M. Intramolecular donor-acceptor systems.9. Photophysics of (phenylamino) naphthalenesulfonates:a paradigm for excited-state intramolecular charge transfer [J]. Accounts of Chemical Research,1982,15(8):259-266.
    [39]COWLEY D J. Fluorescence of some dipolar N,N-disubstituted 4-(dichloro-1,3,5-triazinyl)anilines. Part 4. Internal and molecular rotations in homogeneous and inhomogeneous media [J]. Journal of the Chemical Society, Perkin Transactions 2,1984,0(2):281-285.
    [40]KUMAR C V, TOLOSA L M.2,6-bis(pyren-l-oyl)pyridine:a new fluorescent probe with a high sensitivity to hydrogen-bonding solvents for the development of selective sensors [J]. Journal of Photochemistry and Photobiology A:Chemistry,1994,78(1):63-69.
    [41]FORSTER T.10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation [M]. Discussions of the Faraday Society. The Royal Society of Chemistry.1959:7-17.
    [42]LAKOWICZ J R. Principles of Fluorescence Spectroscopy [M]. New York:Springer,2006.
    [43]LAKOWICZ J R. Principles of Fluorescence Spectroscopy,2nd edition [M]. New York:Kluwer Academic/Plenum 1999.
    [44]STRYER L, HAUGLAND R P. Energy transfer:a spectroscopic ruler; proceedings of the Proc Natl Acad Sci U S A, F, [C],1967.
    [45]ZLOKARNIK G, NEGULESCU P A, KNAPP T E, et al. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter [J]. Science,1998,279(5347):84-88.
    [46]TSIEN R Y, RINK T J, POENIE M. Measurement of cytosolic free Ca2+ in individual small cells using fluorescence microscopy with dual excitation wavelengths [J]. Cell Calcium,1985,6(1-2):145-157.
    [47]YUAN L, LIN W, CHEN B, et al. Development of FRET-Based Ratiometric Fluorescent Cu2+ Chemodosimeters and the Applications for Living Cell Imaging [J]. Organic Letters,2011,14(2): 432-435.
    [48]YUAN L, LIN W, XIE Y, et al. Development of a ratiometric fluorescent sensor for ratiometric imaging of endogenously produced nitric oxide in macrophage cells [J]. Chemical Communications, 2011,47(33):9372-9374.
    [49]YUAN L, LIN W, XIE Y, et al. Fluorescent detection of hypochlorous acid from turn-on to FRET-based ratiometry by a HOCl-mediated cyclization reaction [J]. Chemistry,2012,18(9):2700-2706.
    [50]Mottner, A. Lerf, X. Ni, T. Butz, J. Erfkamp, A. Bioionorganic chemistry [M]. Weinheim: Wiley-VCH,1997.
    [51]GONG Z-L, GE F, ZHAO B-X. Novel pyrazoline-based selective fluorescent sensor for Zn2+ in aqueous media [J]. Sensors and Actuators B:Chemical,2011,159(1):148-153.
    [52]INGALE S A, SEELA F. A ratiometric fluorescent on-off Zn2+ chemosensor based on a tripropargylamine pyrene azide click adduct [J]. J Org Chem,2012,77(20):9352-9356.
    [53]XU Z, SINGH N J, LIM J, et al. Unique Sandwich Stacking of Pyrene-Adenine-Pyrene for Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH [J]. Journal of the American Chemical Society,2009,131(42):15528-15533.
    [54]XU Z, YOON J, SPRING D R. A selective and ratiometric Cu2+ fluorescent probe based on naphthalimide excimer-monomer switching [J]. Chemical Communications,2010,46(15):2563-2565.
    [55]LV M, XU H. Overview of naphthalimide analogs as anticancer agents [J]. Curr Med Chem,2009, 16(36):4797-4813.
    [56]DUKE R M, VEALE E B, PFEFFER F M, et al. Colorimetric and fluorescent anion sensors:an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors [J]. Chemical Society Reviews,2010,39(10):3936-3953.
    [57]HE H, MORTELLARO M A, LEINER M J P, et al. A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water [J]. Journal of the American Chemical Society,2003,125(6): 1468-1469.
    [58]TAMANINI E, KATEWA A. SEDGER L M, et al. A Synthetically Simple, Click-Generated Cyclam-Based Zinc(Ⅱ) Sensor [J]. Inorganic Chemistry,2008,48(1):319-324.
    [59]DE SILVA A P, GUNARATNE H Q N, HABIB-JIWAN J-L, et al. New Fluorescent Model Compounds for the Study of Photoinduced Electron Transfer:The Influence of a Molecular Electric Field in the Excited State [J]. Angewandte Chemie International Edition in English,1995,34(16): 1728-1731.
    [60]PARKESH R, CLIVE LEE T, GUNNLAUGSSON T. Highly selective 4-amino-1,8-naphthalimide based fluorescent photoinduced electron transfer (PET) chemosensors for Zn(Ⅱ) under physiological pH conditions [J]. Org Biomol Chem,2007,5(2):310-317.
    [61]PFEFFER F M, BUSCHGENS A M, BARNETT N W, et al.4-Amino-1,8-naphthalimide-based anion receptors:employing the naphthalimide N-H moiety in the cooperative binding of dihydrogenphosphate [J]. Tetrahedron Letters,2005,46(38):6579-6584.
    [62]GUNNLAUGSSON T, KRUGER P E, B T C, et al. Dual responsive chemosensors for anions:the combination of fluorescent PET (Photoinduced Electron Transfer) and colorimetric chemosensors in a single molecule [J]. Tetrahedron Letters,2003,44(35):6575-6578.
    [63]BAO X-P, WANG L, WU L, et al. A Simple Colorimetric and Fluorescent Anion Sensor Based on 4-Amino-1,8-naphthalimide:Synthesis and its Recognition Properties [J]. Supramolecular Chemistry, 2008,20(5):467-472.
    [64]ESTEBAN-GOMEZ D, FABBRIZZI L, LICCHELLI M. Why, on interaction of urea-based receptors with fluoride, beautiful colors develop [J]. J Org Chem,2005,70(14):5717-5720.
    [65]SREENATH K, ALLEN J R, DAVIDSON M W, et al. A FRET-based indicator for imaging mitochondrial zinc ions [J]. Chemical Communications,47(42):11730-11732.
    [66]DODANI S C, LEARY S C, COBINE P A, et al. A Targetable Fluorescent Sensor Reveals That Copper-Deficient SCO1 and SCO2 Patient Cells Prioritize Mitochondrial Copper Homeostasis [J]. Journal of the American Chemical Society,133(22):8606-8616.
    [67]DICKINSON B, TANG Y, CHANG Z, et al. A Nuclear-Localized Fluorescent Hydrogen Peroxide Probe for Monitoring Sirtuin-Mediated Oxidative Stress Responses In Vivo [J]. Chemistry & Biology, 18(8):943-948.
    [68]LIN W, LONG L, YUAN L, et al. A Ratiometric Fluorescent Probe for Cysteine and Homocysteine Displaying a Large Emission Shift [J]. Organic Letters,2008,10(24):5577-5580.
    [69]ZHENG H, ZHANG X-J, CAI X, et al. Ratiometric Fluorescent Chemosensor for Hg2+ Based on Heptamethine Cyanine Containing a Thymine Moiety [J]. Organic Letters,14(8):1986-1989.
    [70]NORDEN B, KUBISTA M, KURUCSEV T. Linear dichroism spectroscopy of nucleic acids [J]. Q Rev Biophys,1992,25(1):51-170.
    [71]NORD N B, TJERNELD F. Optical studies on complexes between DNA and pseudoisocyanine [J]. Biophysical Chemistry,1976,6(1):31-45.
    [72]CAO R, VENEZIA C F, ARMITAGE B A. Investigation of DNA binding modes for a symmetrical cyanine dye trication:effect of DNA sequence and structure [J]. J Biomol Struct Dyn,2001,18(6): 844-856.
    [73]YARMOLUK S M, KOVALSKA V B, LUKASHOV S S, et al. Interaction of cyanine dyes with nucleic acids. XI I.beta-substituted carbocyanines as possible fluorescent probes for nucleic acids detection [J]. Bioorg Med Chem Lett,1999,9(12):1677-1678.
    [74]LOUTFY R O. Fluorescence probes for polymer free-volume [J]. Pure and Applied Chemistry,1986, 58(9):1239-1248.
    [75]KUNG C E, REED J K. Fluorescent molecular rotors:a new class of probes for tubulin structure and assembly [J]. Biochemistry,1989,28(16):6678-6686.
    [76]LUKA S. Thermally induced variations in polarity and microviscosity of phospholipid and surfactant vesicles monitored with a probe forming an intramolecular charge-transfer complex [J]. Journal of the American Chemical Society,1984,106(16):4386-4392.
    [77]HAIDEKKER M A, BRADY T P, LICHLYTER D, et al. A Ratiometric Fluorescent Viscosity Sensor [J]. Journal of the American Chemical Society,2005,128(2):398-399.
    [78]KUIMOVA M K, BOTCH WAY S W, PARKER A W, et al. Imaging intracellular viscosity of a single cell during photoinduced cell death [J]. Nat Chem,2009,1(1):69-73.
    [79]SUHLING K, FRENCH P M, PHILLIPS D. Time-resolved fluorescence microscopy [J]. Photochem Photobiol Sci,2005,4(1):13-22.
    [80]KUIMOVA M K, YAHIOGLU G, LEVITT J A, et al. Molecular Rotor Measures Viscosity of Live Cells via Fluorescence Lifetime Imaging [J]. Journal of the American Chemical Society,2008,130(21): 6672-6673.
    [81]LEVITT J A, KUIMOVA M K, YAHIOGLU G, et al. Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging? [J]. The Journal of Physical Chemistry C, 2009,113(27):11634-11642.
    [82]PENG X, YANG Z, WANG J, et al. Fluorescence Ratiometry and Fluorescence Lifetime Imaging: Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity [J]. Journal of the American Chemical Society,2011,133(17):6626-6635.
    [83]WANG L, XIAO Y, TIAN W, et al. Activatable Rotor for Quantifying Lysosomal Viscosity in Living Cells [J]. Journal of the American Chemical Society,2013,135(8):2903-2906.
    [84]MCRAE R, BAGCHI P, SUMALEKSHMY S, et al. In situ imaging of metals in cells and tissues [J]. Chemical Reviews,2009,109(10):4780-4827.
    [85]GONCALVES M S. Fluorescent labeling of biomolecules with organic probes [J]. Chemical Reviews, 2009,109(1):190-212.
    [86]LIU Y, DONG X, SUN J, et al. Two-photon fluorescent probe for cadmium imaging in cells [J]. Analyst,2012,137(8):1837-1845.
    [87]BAEK N Y, HEO C H, LIM C S, et al. A highly sensitive two-photon fluorescent probe for mitochondrial zinc ions in living tissue [J]. Chemical Communications,2012,48(38):4546-4548.
    [88]WANG X, NGUYEN D M, YANEZ C O, et al. High-fidelity hydrophilic probe for two-photon fluorescence lysosomal imaging [J]. Journal of the American Chemical Society,2010,132(35): 12237-12239.
    [89]KIM H M, CHO B R. Two-photon probes for intracellular free metal ions, acidic vesicles, and lipid rafts in live tissues [J]. Accounts of Chemical Research,2009,42(7):863-872.
    [90]QIAN X, XIAO Y, XU Y, et al. "Alive" dyes as fluorescent sensors:fluorophore. mechanism, receptor and images in living cells [J]. Chemical Communications,2010,46(35):6418-6436.
    [91]SRIKUN D, MILLER E W, DOMAILLE D W, et al. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells [J]. Journal of the American Chemical Society,2008,130(14):4596-4597.
    [92]ZHANG J F, LIM C S, BHUNIYA S, et al. A highly selective colorimetric and ratiometric two-photon fluorescent probe for fluoride ion detection [J]. Organic Letters,2011,13(5):1190-1193.
    [93]KOVALSKA V B, VOLKOVA K D, LOSYTSKYY M Y, et al.6,6'-Disubstituted benzothiazole trimethine cyanines--new fluorescent dyes for DNA detection [J]. Spectrochim Acta A Mol Biomol Spectrosc,2006,65(2):271-277.
    [94]YASUHARA K, SASAKI Y, KIKUCHI J. Fluorescent sensor responsive to local viscosity and its application to the imaging of liquid-ordered domain in lipid membranes [J]. Colloids and Surfaces B-biointerfaces,2008,67(1):145-149.
    [95]DAKANALI M, DO T H, HORN A, et al. Self-calibrating viscosity probes:design and subcellular localization [J]. Bioorganic & Medicinal Chemistry.2012,20(14):4443-4450.
    [96]LEVITT J A, KUIMOVA M K, YAHIOGLU G, et al. Membrane-Bound Molecular Rotors Measure Viscosity in Live Cells via Fluorescence Lifetime Imaging [J]. The Journal of Physical Chemistry C, 2009,113(27):11634-11642.
    [97]KAO Y T, ZHU X, MIN W. Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein [J]. Proceedings of The National Academy Of Sciences Of USA,2012,109(9):3220-3225.
    [98]DE SILVA A P, MOODY T S, WRIGHT G D. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools [J]. Analyst,2009,134(12):2385-2393.
    [99]KUSS-PETERMANN M, WOLF H, STALKE D, et al. Influence of donor-acceptor distance variation on photoinduced electron and proton transfer in rhenium(Ⅰ)-phenol dyads [J]. J Am Chem Soc,2012, 134(30):12844-12854.
    [100]OSUKA A, MARUYAMA K, MATAGA N, et al. Geometry Dependence of Intramolecular Photoinduced Electron Transfer in Synthetic Zinc-Ferric Hybrid Diporphyrins [J]. Journal of the American Chemical Society,1990,112(4958-4959).
    [101]LEWIS F D, BURCH E L. Amide Conformation-Dependent Intramolecular Photoinduced Electron Transfer [J]. Journal of the American Chemical Society,1994,116(3):1159-1160.
    [102]CRONEY J C, HELMS M K, JAMESON D M, et al. Conformational dynamics and temperature dependence of photoinduced electron transfer within self-assembled coproporphyrin:cytochrome c complexes [J]. Biophys J,2003,84(6):4135-4143.
    [103]SPARANO B A, KOIDE K. Fluorescent sensors for specific RNA:a general paradigm using chemistry and combinatorial biology [J]. J Am Chem Soc,2007,129(15):4785-4794.
    [104]SHIN B Y, CHUNG I J. Speculation on interfacial adhesion and mechanical properties of blends of PET and thermotropic polyester with flexible spacer groups [J]. Polymer Engineering & Science,1990, 30(1):13-21.
    [105]WASIELEWSKI M R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis [J]. Chemical Reviews,1992,92(3):435-461.
    [106]LEWITZKA F, L HMANNSR BEN H G. The Deactivation of Singlet Excited Perylene by Aromatic Molecules in Solution [J]. Zeitschrift for Physikalische Chemie,1990,169(Part-2):203-218.
    [107]SUNAHARA H, URANO Y, KOJIMA H, et al. Design and Synthesis of a Library of BODIPY-Based Environmental Polarity Sensors Utilizing Photoinduced Electron-Transfer-Controlled Fluorescence ON/OFF Switching [J]. Journal of the American Chemical Society,2007,129(17):5597-5604.
    [108]KAMI SKA A, KACZMAREK H, KOWALONEK J. The influence of side groups and polarity of polymers on the kind and effectiveness of their surface modification by air plasma action [J]. European Polymer Journal,2002,38(9):1915-1919.
    [109]BISSELL R A, DE SILVA A P, THILAK W, et al. Fluorescent PET (photoinduced electron transfer) indicators for solvent polarity with quasi-step functional response [J]. Tetrahedron Letters,1991,32(3): 425-428.
    [110]F RSTER T, HOFFMANN G. Die Viskositatsabhangigkeit der Fluoreszenzquantenausbeuten einiger Farbstoffsysteme [J]. Zeitschrift fur Physikalische Chemie 1971,75(1-2):63-76.
    [111]PLATT J R. Classification of Spectra of Cata-Condensed Hydrocarbons [J]. J Chem Phys,1949, 17(5):484-495.
    [112]RETTIG W K, A. Intramolecular fluorescence quenching in aminocoumarines:Identification of an excited states with full charge separation [J]. Can J Chem,1985,63(1649-1653).
    [113]LU H, ZHANG S, LIU H, et al. Experimentation and Theoretic Calculation of a BODIPY Sensor Based on Photoinduced Electron Transfer for Ions Detection [J]. The Journal of Physical Chemistry A, 2009,113(51):14081-14086.
    [114]SALMAN H, TAL S, CHUVILOV Y, et al. Sensitive and Selective PET-Based Diimidazole Luminophore for Zn2+ Ions:A Structure ctivity Correlation [J]. Inorganic Chemistry,2006,45(14): 5315-5320.
    [115]DIX J A, VERKMAN A S. Mapping of fluorescence anisotropy in living cells by ratio imaging. Application to cytoplasmic viscosity [J]. Biophys J,1990,57(2):231-240.
    [116]LUBY-PHELPS K, MUJUMDAR S, MUJUMDAR R B, et al. A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm [J]. Biophys J,1993,65(1):236-242.
    [117]SUHLING K, SIEGEL J, LANIGAN P M, et al. Time-resolved fluorescence anisotropy imaging applied to live cells [J]. Opt Lett,2004,29(6):584-586.
    [118]EZE M O. Membrane fluidity, reactive oxygen species, and cell-mediated immunity:implications in nutrition and disease [J]. Med Hypotheses,1992,37(4):220-224.
    [119]HERON D S, SHINITZKY M, HERSHKOWITZ M, et al. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes [J]. Proc Natl Acad Sci U S A,1980,77(12): 7463-7467.
    [120]KOIKE T, ISHIDA G, TANIGUCHI M, et al. Decreased membrane fluidity and unsaturated fatty acids in Niemann-Pick disease type C fibroblasts [J]. Biochim Biophys Acta,1998,28(3):327-335.
    [121]ZAKIM D, KAVECANSKY J, SCARLATA S. Are membrane enzymes regulated by the viscosity of the membrane environment? [J]. Biochemistry,1992,31(46):11589-11594.
    [122]DELICONSTANTINOS G, VILLIOTOU V, STAVRIDES J C. Modulation of particulate nitric oxide synthase activity and peroxynitrite synthesis in cholesterol enriched endothelial cell membranes [J]. Biochem Pharmacol,1995,49(11):1589-1600.
    [123]SHINITZKY M. Membrane Fluidity and Cellular Functions, in Physiology of Membrane Fluidity [M]. Boca Raton:CRC Press,1984.
    [124]GLEASON M M, MEDOW M S, TULENKO T N. Excess membrane cholesterol alters calcium movements, cytosolic calcium levels, and membrane fluidity in arterial smooth muscle cells [J]. Circ Res,1991,69(1):216-227.
    [125]OSTERODE W, HOLLER C, ULBERTH F. Nutritional antioxidants, red cell membrane fluidity and blood viscosity in type 1 (insulin dependent) diabetes mellitus [J]. Diabet Med,1996,13(12): 1044-1050.
    [126]NADIV O, SHINITZKY M, MANU H, et al. Elevated protein tyrosine phosphatase activity and increased membrane viscosity are associated with impaired activation of the insulin receptor kinase in old rats [J]. Biochem J,1994,298(Pt 2):443-450.
    [127]BERTHIAUME F, FRANGOS J. Effects of flow on anchorage dependent mammalian cells:secreted products. [M]. Physical Forces and the Mammalian Cell. San Diego, CA; Academic.1993:139-192.
    [128]DIMMELER S, HAENDELER J, RIPPMANN V, et al. Shear stress inhibits apoptosis of human endothelial cells [J]. FEBS Lett,1996,399(1-2):71-74.
    [129]YEDGAR S, REISFELD N. Regulation of cell membrane function and secretion by extracellular fluid viscosity [J]. Biorheology,1990.27(3-4):581-588.
    [130]TUVIA S, ALMAGOR A, BITLER A, et al. Cell membrane fluctuations are regulated by medium macroviscosity:evidence for a metabolic driving force [J]. Proc Natl Acad Sci U S A,1997,94(10): 5045-5049.
    [131]HIBBS R G, FERRANS V J, BLACK W C, et al. Alcoholic Cardiomyopathy; an Electron Microscopic Study [J]. Am Heart J,1965,69(766-779).
    [132]PAPAPETROPOULOS A, PYRIOCHOU A, ALTAANY Z, et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis [J]. Proc Natl Acad Sci U S A,2009,106(51):21972-21977.
    [133]YANG G, WU L, JIANG B, et al. H2S as a physiologic vasorelaxant:hypertension in mice with deletion of cystathionine gamma-lyase [J]. Science,2008,322(5901):587-590.
    [134]YANG W, YANG G, JIA X, et al. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms [J]. J Physiol,2005,569(Pt 2):519-531.
    [135]KAMOUN P, BELARDINELLI M C, CHABLI A, et al. Endogenous hydrogen sulfide overproduction in Down syndrome [M]. Am J Med Genet A.2003 Jan 30; 116A(3):310-311.,2003.
    [136]ETO K, AS ADA T, ARIMA K, et al. Brain hydrogen sulfide is severely decreased in Alzheimer's disease [J]. Biochem Biophys Res Commun,2002,293(5):1485-1488.
    [137]CULOTTA E, KOSHLAND D E, JR. NO news is good news [J]. Science,1992,258(5090): 1862-1865.
    [138]MORITA T, PERRELLA M A, LEE M E, et al. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP [J]. Proc Natl Acad Sci U S A,1995,92(5):1475-1499.
    [139]LEFER D J. A new gaseous signaling molecule emerges:cardioprotective role of hydrogen sulfide [J]. Proc Natl Acad Sci U S A,2007,104(46):17907-17908.
    [140]CALVERT J W, JHA S, GUNDEWAR S, et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling [J]. Circ Res,2009,105(4):365-374.
    [141]WEI LEI, DASGUPTA P K. Determination of sulfide and mercaptans in caustic scrubbing liquor [J]. Analytica Chimica Acta,1989,226(1):165-170.
    [142]DOELLER J E, ISBELL T S, BENAVIDES G, et al. Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues [J]. Anal Biochem,2005,341(1):40-51.
    [143]RADFORD-KNOERY J, CUTTER G A. Determination of Carbonyl Sulfide and Hydrogen Sulfide Species in Natural Waters Using Specialized Collection Procedures and Gas Chromatography with Flame Photometric Detection [J]. Analytical Chemistry,1993,65(976-982).
    [144]HYSPLER R, TICHA A, INDROVA M, et al. A simple, optimized method for the determination of sulphide in whole blood by GC-mS as a marker of bowel fermentation processes [J]. J Chromatogr B Analyt Technol Biomed Life Sci,2002,770(1-2):255-259.
    [145]CHEN Y H, YAO W Z, GENG B, et al. Endogenous hydrogen sulfide in patients with COPD [J]. Chest,2005,128(5):3205-3211.
    [146]JIANG H L, WU H C, LI Z L, et al. [Changes of the new gaseous transmitter H2S in patients with coronary heart disease] [J]. Di Yi Jun Yi Da Xue Xue Bao,2005,25(8):951-954.
    [147]LI L, BHATIA M, ZHU Y Z, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse [J]. Faseb J,2005,19(9):1196-1198.
    [148]PENG H, CHENG Y, DAI C, et al. A Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood [J]. Angewandte Chemie International Edition,50(41):9672-9675.
    [149]QIAN Y, KARPUS J, KABIL O, et al. Selective fluorescent probes for live-cell monitoring of sulphide [J]. Nat Commun,2(495).
    [150]CAO X, LIN W, ZHENG K, et al. A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether [J]. Chemical Communications,48(85):10529-10531.
    [151]WOJCIK K, DOBRUCKI J W. Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells--influence on chromatin organization and histone-DNA interactions [J]. Cytometry A,2008,73(6):555-562.
    [152]PRASANNA DE SILVA A, E. RICE T. A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC) [J]. Chemical Communications,1999,0(2):163-164.
    [153]CHRISTENSEN K A, MYERS J T, SWANSON.1 A. pH-dependent regulation of lysosomal calcium in macrophages [J]. Journal of Cell Science,2002,115(3):599-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700