DNA模板点击化学在生物传感器中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cu’催化的炔化物和叠氮化物的偶极环加成反应是“点击化学”的典型例子,该反应具有反应条件温和、产率高、副产物少等优点,已经大量用于生物大分子的标记。此外,这种点击化学反应对Cu’离子催化有很高的特异性,已经用于开发铜离子的生物传感方法。但传统的有机点击反应,需要较高的反应物浓度以及长时间的反应,并且检测限相对偏高。
     DNA模板有机合成(DTS)是一种极具创新性的技术。它能显著地增加反应分子的有效摩尔浓度。同时,通过DNA杂交,拉近了修饰在DNA上的小分子反应基团之间的距离,该方法能明显的加快反应速率。通过DNA将DNA相关技术引入到非天然合成反应中,有助于反应基团的识别、合成步骤的设计、反应选择性的提高以及反应的放大。基于上述优点,DTS在许多方面都有着广泛的应用前景,它是小分子库构建、生物活性分子筛选和多肽均相合成等的有效方法。然而,DTS在生物分析领域的应用仍处于起始阶段。虽然前人在这方面研究甚少,但DTS的内在优势和强大功能奠定了其在生物传感中应用的基础。
     基于以上考虑,并综合相关文献报道,本论文将点击反应与DTS反应相结合,利用DNA模板点击化学反应,开发了一系列新型的化学生物传感方法。此外,考虑到点击化学在生物大分子标记上的卓越贡献,本论文将点击化学引入到生物大分子自由基的检测上来,希望能开发一些更为简便的检测生物大分子自由基的方法。
     (1)构建了一种基于DNA模板点击化学反应的新型Cu2’的荧光检测平台。本方法利用DNA模板点击化学反应的高特异性用于目标分子识别,DNA链取代和磁珠分离作为信号的传导,高灵敏性的SYBR Green I染料作为信号输出。与传统的点击反应方法相比较,该方法具有更高的灵敏度和更低的检测限(290nM)等优点。此外,只需要把DNA上的叠氮基-炔基换成其他能形成共价键的功能基团就可以把该传感系统用于其他物质的检测。这为各种生物传感器的构建提供了一个很有潜在应用价值的通用平台。
     (2)由于在前一个工作中,需要磁珠分离过程,操作比较繁琐,而且检测时不是在均相里完成。因此,我们开发了一个更加简便的Cu2’传感方法,可以实现加入混合就能输出信号。这种方法是基于DNA模板点击反应生成的G四面体(G4)结构并用于高灵敏检测Cu2’的新型荧光传感方法。由于结晶紫与G4结合后能极大地增强其荧光强度,因而被选做信号输出分子。鉴于结晶紫能探测G4结构的变化,我们把一段富G序列的DNA分开成两段长度不等的短链DNA,然后通过DTS反应使其连接起来并形成分子内G4结构,而结晶紫可以用于识别这一结构的变化。由于DTS反应的高产率和点击化学的高特异性,这种传感器也展示了较高的灵敏度和选择性。此外,由于活细胞内含有丰富的谷胱甘肽(GSH),本方法可能用于生物体内的GSH/Cu(I)加合物检测。因此,以本方法为例,我们证明了通过合理设计后,DTS调控的分子内G4结构的形成在生物传感器的开发上具有良好的应用前景。
     (3)简便、可视化检测、可以实现现场化检测是未来分析检测方法的发展趋势,而比色分析则刚好符合这些要求。因此,我们提出了一种基于Cu’催化的点击化学反应和未修饰AuNPs作为比色指示剂的Cu2+比色检测的简便方法。用于点击反应的DNA探针由两部分组成:一部分是一条修饰了叠氮基团的单链DNA(ssDNA)与一条长链的ssDNA的部分碱基形成的双链DNA(dsDNA);另一部分是一条与长链中未杂交的碱基互补的炔基化标记的短链ssDNA。由于短链ssDNA与长链ssDNA形成的dsDNA的熔解温度很低,在没有Cu2’的情况下,这两个部分在溶液中是分开的。当溶液中存在Cu2’时,铜离子催化的叠氮-炔基的点击连接反应引起了DNA结构从分离的单链形式变为完整的双链DNA结构。由于ssDNA保护的AuNPs和dsDNA保护的AuNPs在盐溶液中的稳定性不同,因此可以通过调控未修饰的AuNPs的团聚,使其从红色变成蓝色,来监测这种DNA结构的变化。在最佳条件下,这种传感器具有较高的灵敏度,其线性范围是0.5-10μM,检测限可达到250nM。这种方法不需要对DNA进行“双标记”和对金纳米粒子进行表面修饰,从而大大减少了费用和简化了传感器的组装及分析过程。由于铜离子催化的炔基-叠氮基的点击化学反应的高特异性,本传感器能够在高浓度的其他环境相关金属离子共存下具有良好的选择性,符合实际样品的检测要求。
     (4)鉴于点击化学在生物标记上的成功经验,我们将点击化学引入到生物大分子自由基的捕获上来。提出了点击-捕获(Click-Trap)设计新概念,合成了多种环状硝酮类自由基捕获探针,并用质谱、核磁等进行了表征。将这些捕获探针对氧中心和碳中心的小分子自由基进行了ESR捕获实验。此外,具有点击功能的炔基标记的新型捕获探针(Click-DMPO)也用于蛋白质活性氧自由基的氧化性损伤的原位捕获实验。较之于免疫自旋捕获技术,本方法操作更为简单,勿需复杂的免疫实验操作;由于点击反应的优异性能,有利于对Click-DMPO和蛋白质形成的复合物进行进一步的修饰和检测。
     另一方面,DNA由于精确的碱基互补配对性质,在纳米自组装方面具有高度可控、可编码、可图案化、易于实现目标分子标记等天然优势。其自组装形成的DNA结构不仅可以在纳米尺度上实现复杂结构的精确组装,而且还具有良好的生物相容性,不仅是一种新型的生物纳米材料,而且在分析化学中有着潜在的应用前景。因此,研究基于DNA纳米结构的生物传感技术亦是一项重要和具有挑战性的工作。
     (5)发展了一种基于DNA纳米管的质量放大效应的荧光各向异性的高灵敏检测ATP的传感方法。一条长链的ssDNA探针包含了目标分子的核酸适配体序列的一部分以及用于自组装形成质量放大荧光各向异性值(FA)的DNA纳米管的碱基序列。另一条修饰荧光基团的ssDNA探针是另一部分ATP的核酸适配体序列。当ATP与这两条DNA探针结合在一起时,极大地增加了荧光ssDNA探针和ATP分子形成的复合物的分子质量,从而增加了溶液的FA值。该传感器展现了较高的灵敏度(检测限为0.5μM)和极强的选择性。结果表明,DNA纳米结构质量放大策略可以用于设计快速、灵敏、高选择性核酸适配体探针,实现对复杂生物样品中小分子的检测。
Copper(I)-catalyzed alkyne-zide Huisgen cycloaddition, the best example of "Click Chemistry", was used as a powerful linking reaction in biomacromolecule functionalization because of its high yielding capability under mild conditions with little by-product. In addition, this click reaction was intended for the development of copper ion sensors owing to its great specificity to the catalysis of copper(I). However, these methods were based on conventional organic reaction resulting in long reaction time and relatively high detection limit.
     DNA-templated organic synthesis (DTS) is an innovative technology capable of significantly increasing effective molarity of reactants and reaction specificity as well as remarkably accelerating reaction rate through DNA-encoded smallmolecule and hybridization-mediated proximity. The introduction of DNA into organic reaction allows non-natural synthetic events to be recognized, programmed, selected and amplified by DNA-based technology. Because of these features, DTS has become a promising and potent method in the construction of small molecular library, bioactive molecule screening, and homogenous peptide synthesis. However, the application of DTS in the bio-analytical field is still in its infant stage. Although there are a few pioneer works, the intrinsic advantages and powerful function of DTS warrant further efforts to develop its biosensing applications.
     Based on the above considerations and relevant reports in the literature previously, we intigrated the click reaction with the DTS reaction, and thus developed a series of new chemo/biosensors by taking advantage of DNA-templated click chemistry. In addition, this click cycloaddition was intended for the detection of biomacromolecules free raddicals owing to its powerful linking ability.
     (1) A novel fluorescent strategy has been developed for sensitive turn-on detection of Cu2+based on the high efficiency of DNA-templated organic synthesis, great specificity of alkyne-azide click reaction to the catalysis of copper ions, the sequential strand displacement for signal transduction and high sensitive SYBR Green I dye as the signal output. In comparison with the previously reported Cu2+assays using conventional organic click reaction, this DTS-based strategy has multifaceted advantages including higher sensitivity and lower detection limit (290nM). Moreover, this strategy can be readily expanded to other sensing applications by facilely changing the DNA-functionalized reactants capable for covalent bond formation. Therefore, taking this method as an example, we demonstrate that the rational design of DTS reaction is a promising platform for developing biosensors.
     (2) In order to improve the shortcomings of above-mentioned method, such as the heterogenous detection as well as the requirement of labeling biotin and megnatic separation, a novel fluorescent biosensing strategy has been developed for sensitive turn-on detection of copper ions based on the DNA-templated click chemistry induced generation of intramolecular G-quadruplex structure. Compared with the above DTS-based biosensors requiring separation, this approach provides a straightforward and homogenous fluorogenic strategy to achieve "mix-and-read" detection. Crystal violet (CV) is chosen as a signal reporter because its fluorescence can be enhanced greatly via binding to G-quadruplexe. Inspired by CV's fluorogenic property susceptible to G-quadruplex structure switch, we exploited CV to identify the integration of split-G quadruplex by DTS-caused chemical DNA ligation. This sensor shows high sensitivity and excellent selectivity because of the high yielding capability of DTS and great specificity of click chemistry. Since glutathione is abundant in living cells, this method has potential for detection of biological CuT. Therefore, this method as a representative demonstrates the great promise and potency of DTS-mediated G-quadruplex formation in biosensors development.
     (3) Simple and on-site application are the future development trends of analysis and detection methods, and the colorimetric assay appears to fulfill the necessary criteria. Herein, we developed a novel colorimetric copper(Ⅱ) biosensor based on the high specificity of alkyne-azide click reaction and unmodified gold nanoparticles (AuNPs) as the signal reporter. The clickable DNA probe consists of two parts:an azide group-modified double-stranded DNA (dsDNA) hybrid with an elongated tail and a short alkyne-modified single-stranded DNA (ssDNA). Because of low melting temperature of the short ssDNA, these two parts are separated in the absence of Cu. Copper ion-induced azide-alkyne click ligation caused a structural change of probe from the separated form to entire dsDNA form.This structural change of probe can be monitored by the unmodified AuNPs via mediating their aggregation with a red-to-blue colorimetric read-out because of the differential ability of ssDNA and dsDNA to protect AuNPs against salt-induced aggregation. Under the optimum conditions, this biosensor can sensitively and specifically detect Cu2+with a low detection limit of250nM and a linear range of0.5-10μM. The method is simple and economic without dual-labeling DNA and AuNPs modification. It is also highly selective for Cu2+in the presence of high concentrations of other environmentally relevant metalions because of the great specificity of the copper-caused alkyne-azide click reaction, which potentially meets the requirement of the detection in real samples.
     (4) The click reaction was introduced to the detection of biomacromolecules free raddicals owing to its powerful linking ability in biomacromolecule functionalization. We proposed a new concept of "Click-Trap". In this study, several kinds of cyclic-nitrone spin traps have been synthesized and characterized by ESI/MS,'H-NMR,13C-NMR and so on. These novel free radical trapping agents have been used to study small molecule free radicals including oxygen and carbon centered radicals. In addition, the alkyne functional spin trap (Click-DMPO) has also been used in situ to capture protein oxidative damged by reactive oxygen species (ROS). In contrast to immuno-spin trapping technology, the present method is simple and does not require complicated operations. Owing to the excellent performance of the click reaction, it is very convenient to further modify and detect the spin adduct of Click-DMPO and protein.
     On the other hand, DNA is a potent material for self assembly because of its precise base pairing, highly controllable and addressable assembly, ease for pattern fabrication and the labeling of functional cargos. DNA nanostructures formed by self-assembly are highly ordered and possessDNA nanostructures formed by self-assembly, have good biocompatibility. As a new type of bio-nano-materials, DNA nanostructures have shown wide application prospects in analytical chemistry. Therefore, the development of robust biosensors based on DNA nanostructures is also significant and challenging work.
     (5) We developed a DNA-nanotube-basd mass amplifying probe for sensitive fluorescense anisotropy detection of ATP. A long ssDNA probe consists of a half of targeting aptamer domain against ATP and molecular mass amplifying domain for the self-assembly of DNA nanotube. The other ssDNA probe, bearing a fluorescent molecule, is the other half of ATP aptamer sequences. When ATP binds to the probe, the molecular mass and FA value of the probe/target complex will significantly increase. This method shows high sensitivity (the detection limit is0.5μM) and excellent selectivity. The results indicate that DNA nanostructure mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.
引文
[1]Kolb H C, Finn M G, Sharpless K B. Click chemistry:diverse chemical function from a few good reactions. Angewandte Chemie International Edition,2001, 40(11):2004-2021
    [2]董卫莉,赵卫光,李玉新,et al. "链接”化学及其应用.有机化学,2006,26(3):271-277
    [3]Pringle W, Sharpless K B. The osmium-catalyzed aminohydroxylation of Baylis-Hillman olefins. Tetrahedron Letters,1999,40(28):5151-5154
    [4]Agard N J, Prescher J A, Bertozzi C R. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society,2004,126(46):15046-15047
    [5]Huisgen R.1,3-dipolar cycloadditions. Past and future. Angewandte Chemie International Edition,1963,2(10):565-598
    [6]Rostovtsev V V, Green L G, Fokin V V, et al. A stepwise huisgen cycloaddition process:copper (I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angewandte Chemie International Edition,2002,114(14):2708-2711
    [7]Tornoe C W, Christensen C, Meldal M. Peptidotriazoles on solid phase:[1,2, 3]-triazoles by regiospecific copper (I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. The Journal of Organic Chemistry,2002,67(9): 3057-3064
    [8]Li Z M, Seo T S, Ju J Y.1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water. Tetrahedron Letters, 2004,45(15):3143-3146
    [9]Link A J, Tirrell D A. Cell surface labeling eEscherichia c oli via copper (I)-catalyzed [3+2] cycloaddition. Journal of the American Chemical Society, 2003,125(37):11164-11165
    [10]Kumar R, El-Sagheer A, Tumpane J, et al. Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. Journal of the American Chemical Society,2007,129(21): 6859-6864
    [11]Chan T R, Hilgraf R, Sharpless K B, et al. Polytriazoles as copper (Ⅰ)-stabilizing ligands in catalysis. Organic Letters,2004,6(17):2853-2855
    [12]Diaz D D, Punna S, Holzer P, et al. Click chemistry in materials synthesis.1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A:Polymer Chemistry,2004,42(17):4392-4403
    [13]Wu P, Feldman A K, Nugent A K, et al. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angewandte Chemie International Edition,2004,43(30): 3928-3932
    [14]Lober S, Rodriguez-Loaiza P, Gmeiner P. Click linker:efficient and high-yielding synthesis of a new family of SPOS resins by 1,3-dipolar cycloaddition. Organic Letters,2003,5(10):1753-1755
    [15]Lee L V, Mitchell M L, Huang S J, et al. A potent and highly selective inhibitor of human a-1,3-fucosyltransferase via click chemistry. Journal of the American Chemical Society,2003,125(32):9588-9589
    [16]Manetsch R, Krasinski A, Radic Z, et al. In situ click chemistry:enzyme inhibitors made to their own specifications. Journal of the American Chemical Society,2004,126(40):12809-12818
    [17]Wang Q, Chan T R, Hilgraf R, et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. Journal of the American Chemical Society, 2003,125(11):3192-3193
    [18]Speers A E, Adam G C, Cravatt B F. Activity-based protein profiling in vivo using a copper (Ⅰ)-catalyzed azide-alkyne [3+2] cycloaddition. Journal of the American Chemical Society,2003,125(16):4686-4687
    [19]Greenbaum D, Baruch A, Hayrapetian L, et al. Chemical approaches for functionally probing the proteome. Molecular & Cellular Proteomics,2002,1(1): 60-68
    [20]Thornberry N A, Peterson E P, Zhao J J, et al. Inactivation of interleukin-1. beta. converting enzyme by peptide (acyloxy) methyl ketones. Biochemistry,1994, 33(13):3934-3940
    [21]Tsai C-S, Li Y-K, Lo L C. Design and synthesis of activity probes for glycosidases. Organic Letters,2002,4(21):3607-3610
    [22]Lo L C, Pang T L, Kuo C H, et al. Design and synthesis of class-selective activity probes for protein tyrosine phosphatases. Journal of Proteome Research, 2002,1(1):35-40
    [23]Kidd D, Liu Y, Cravatt B F. Profiling serine hydrolase activities in complex proteomes. Biochemistry,2001,40(13):4005-4015
    [24]Liu Y, Patricelli M P, Cravatt B F. Activity-based protein profiling:the serine hydrolases. Proceedings of the National Academy of Sciences,1999,96(26): 14694-14699
    [25]Seo T S, Li Z, Ruparel H, et al. Click chemistry to construct fluorescent oligonucleotides for DNA sequencing. The Journal of Organic Chemistry,2003, 68(2):609-612
    [26]Collman J P, Devaraj N K, Chidsey C E. "Clicking" functionality onto electrode surfaces. Langmuir,2004,20(4):1051-1053
    [27]Viguier R F, Hulme A N. A sensitized europium complex generated by micromolar concentrations of copper(Ⅰ):toward the detection of copper(Ⅰ) in biology. Journal of the American Chemical Society,2006,128(35):11370-11371
    [28]Zhou Y, Wang S, Zhang K, et al. Visual detection of copper(Ⅱ) by azide-and alkyne-functionalized gold nanoparticles using click chemistry. Angewandte Chemie International Edition,2008,120(39):7564-7566
    [29]Qu W, Liu Y, Liu D, et al. Copper-mediated amplification allows readout of immunoassays by the naked eye. Angewandte Chemie International Edition, 2011,123(15):3504-3507
    [30]Liu Y, Yu J, Chen W, et al. Cu2+ detection with gold nanoparticles by patterning colorimetric strips on a filter membrane assembled in a microfluidic chip. Chinese Journal of Chemistry,2012,30(9):2047-2051
    [31]Zhu K, Zhang Y, He S, et al. Quantification of proteins by functionalized gold nanoparticles using click chemistry. Analytical Chemistry,2012,84(10): 4267-4270
    [32]Fu G, Chen W, Yue X, et al. Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry. Talanta, 2013,103,110-115
    [33]Song Y J, Qu K G, Xu C, et al. Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chemical Communications,2010,46(35):6572-6574
    [34]Qiu S, Gao S, Liu Q, et al. Electrochemical impedance spectroscopy sensor for ascorbic acid based on copper(Ⅰ) catalyzed click chemistry. Biosensors and Bioelectronics,2011,26(11):4326-4330
    [35]Qiu S, Miao M, Wang T, et al. A fluorescent probe for detection of histidine in cellular homogenate and ovalbumin based on the strategy of click chemistry. Biosensors and Bioelectronics,2013,42,332-336
    [36]Qiu S, Gao S, Zhu X, et al. Development of ultra-high sensitive and selective electrochemiluminescent sensor for copper(Ⅱ) ions:a novel strategy for modification of gold electrode using click chemistry. Analyst,2011,136(8): 1580-1585
    [37]Qiu S, Gao S, Xie L, et al. An ultra-sensitive electrochemical sensor for ascorbic acid based on click chemistry. Analyst,2011,136(19):3962-3966
    [38]Qiu S, Xie L, Gao S, et al. Determination of copper(Ⅱ) in the dairy product by an electrochemical sensor based on click chemistry. Analytica Chimica Acta,2011, 707(1):57-61
    [39]Lin Z, Gao S, Lin J, et al. Visual detection of copper(Ⅱ) based on the aggregation of gold nano-particles via click chemistry. Analytical Methods,2012,4(3): 612-615
    [40]Xie L, Zheng H, Ye W, et al. Novel colorimetric molecular switch based on copper(I)-catalyzed azide-alkyne cycloaddition reaction and its application for flumioxazin detection. Analyst,2013,138(2):688-692
    [41]Phan A T, Kuryavyi V, Patel D J. DNA architecture:from G to Z. Current Opinion in Structural Biology,2006,16(3):288-298
    [42]Sen D, Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature,1990,344(6265):410-414
    [43]Reed J E, Arnal A A, Neidle S, et al. Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(Ⅱ) complexes. Journal of the American Chemical Society,2006,128(18):5992-5993
    [44]Gomez D, Paterski R, Lemarteleur T, et al. Interaction of telomestatin with the telomeric single-strand overhang. Journal of Biological Chemistry,2004, 279(40):41487-41494
    [45]Xu Y, Suzuki Y, Komiyama M. Click chemistry for the identification of G-quadruplex structures:Discovery of a DNA-RNA G-quadruplex. Angewandte Chemie International Edition,2009,48(18):3281-3284
    [46]Orgel L E. Unnatural selection in chemical systems. Accounts of Chemical Research,1995,28(3):109-118
    [47]Ertem G, Ferris J P. Synthesis of RNA oligomers on heterogeneous templates. Nature,1996,379,238-240
    [48]Orgel L E. Molecular replication. Nature,1992,358(6383):203-209
    [49]Robertson M P, Miller S L. An efficient prebiotic synthesis of cytosine and uracil Nature,1995,375,772-774
    [50]Luther A, Brandsch R, Von Kiedrowski G. Surface-promoted replication and exponential amplification of DNA analogues. Nature,1998,396(6708):245-248
    [51]Bohler C, Nielsen P E, Orgel L E. Template switching between PNA and RNA oligonucleotides.1995, Nature,376,578-581
    [52]Xu Y, Kool E T. High sequence fidelity in a non-enzymatic DNA autoligation reaction. Nucleic Acids Research,1999,27(3):875-881
    [53]Zhan Z Y, Lynn D G. Chemical amplification through template-directed synthesis. Journal of the American Chemical Society,1997,119(50):12420-12421
    [54]Li X, Zhan Z Y J, Knipe R, et al. DNA-catalyzed polymerization. Journal of the American Chemical Society,2002,124(5):746-747
    [55]Gat Y, Lynn D G. Reading DNA differently. Biopolymers,1998,48(1):19-28
    [56]Leitzel J C, Lynn D G. Template-directed ligation:From DNA towards different versatile templates. The Chemical Record,2001,1(1):53-62
    [57]Summerer D, Marx A. DNA-templated synthesis:More versatile than expected. Angewandte Chemie International Edition,2002,41(1):89-90
    [58]Summerer D, Marx A. Synthesesteuerung mit DNA-templaten:vielseitiger als erwartet. Angewandte Chemie International Edition,2002,114(1):93-95
    [59]Gartner Z J, Kanan M W, Liu D R. Expanding the reaction scope of DNA-templated synthesis. Angewandte Chemie International Edition,2002, 41(10):1796-1800
    [60]Gartner Z J, Kanan M W, Liu D R. Multistep small-molecule synthesis programmed by DNA templates. Journal of the American Chemical Society,2002, 124(35):10304-10306
    [61]Gartner Z J, Liu D R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. Journal of the American Chemical Society, 2001,123(28):6961-6963
    [62]Czlapinski J L, Sheppard T L. Nucleic acid template-directed assembly of metallosalen-DNA conjugates. Journal of the American Chemical Society,2001, 123(35):8618-8619
    [63]Xu Y, Kool E T. Rapid and selective selenium-mediated autoligation of DNA strands. Journal of the American Chemical Society,2000,122(37):9040-9041
    [64]Xu Y, Karalkar N B, Kool E T. Nonenzymatic autoligation in direct three-color detection of RNA and DNA point mutations. Nature Biotechnology,2001,19(2): 148-152
    [65]Sando S, Kool E T. Imaging of RNA in bacteria with self-ligating quenched probes. Journal of the American Chemical Society,2002,124(33):9686-9687
    [66]Ma Z, Taylor J-S. Nucleic acid-triggered catalytic drug release. Proceedings of the National Academy of Sciences,2000,97(21):11159-11163
    [67]Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science,1988,241(4869):1077-1080
    [68]Favis R, Day J P, Gerry N P, et al. Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nature Biotechnology,2000, 18(5):561-564
    [69]Nilsson M, Barbany G, Antson D O, et al. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nature Biotechnology,2000,18(7):791-793
    [70]De Mesmaeker A, Haener R, Martin P, et al. Antisense oligonucleotides. Accounts of Chemical Research,1995,28(9):366-374
    [71]Levina A, Berezovskii M, Venjaminova A, et al. Photomodification of RNA and DNA fragments by oligonucleotide reagents bearing arylazide groups. Biochimie, 1993,75(1):25-27
    [72]Ramalho Ortigao J F, Ruck A, Gupta K, et al. Solid-phase introduction and intracellular photoinduced reaction of a water-soluble meso-tetracarboxyporphine conjugated to an antisens olligodeoxyribonucleotide. Biochimie,1993,75(1):29-34
    [73]Chin J. Developing artificial hydrolytic metalloenzymes by a unified mechanistic approach. Accounts of Chemical Research,1991,24(5):145-152
    [74]Ma W P, Hamilton S E, Stowell J G, et al. Sequence specific cleavage of messenger RNA by a modified ribonuclease H. Bioorganic & Medicinal Chemistry,1994,2(3):169-179
    [75]Zhou Q, Rokita S E. A general strategy for target-promoted alkylation in biological systems. Proceedings of the National Academy of Sciences,2003, 100(26):15452-15457
    [76]Gartner Z J, Brian N T, Grubina R, et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science,2004,305(5690):1601-1605
    [77]Doyon J B, Snyder T M, Liu D R. Highly sensitive in vitro selections for DNA-linked synthetic small molecules with protein binding affinity and specificity. Journal of the American Chemical Society,2003,125(41): 12372-12373
    [78]Li X, Liu D R. DNA-templated organic synthesis:Nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angewandte Chemie International Edition,2004,43(37):4848-4870
    [79]Naylor R, Gilham P. Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry,1966,5(8):2722-2728
    [80]Wu T, Orgel L E. Nonenzymatic template-directed synthesis on hairpin oligonucleotides.3. Incorporation of adenosine and uridine residues. Journal of the American Chemical Society,1992,114(21):7963-7969
    [81]Schoning K-U, Scholz P, Guntha S, et al. Chemical etiology of nucleic acid structure:the a-threofuranosyl-(3'→2') oligonucleotide system. Science,2000, 290(5495):1347-1351
    [82]Wu X, Delgado G, Krishnamurthy R, et al.2,6-diaminopurine in TNA:effect on duplex stabilities and on the efficiency of template-controlled ligations. Organic Letters,2002,4(8):1283-1286
    [83]Wu X, Guntha S, Ferencic M, et al. Base-pairing systems related to TNA: α-threofuranosyl oligonucleotides containing phosphoramidate linkages. Organic Letters,2002,4(8):1279-1282
    [84]Herrlein M K, Nelson J S, Letsinger R L. A covalent lock for self-assembled oligonucleotide conjugates. Journal of the American Chemical Society,1995, 117(40):10151-10152
    [85]Xu Y, Kool E T. A novel 5'-iodonucleoside allows efficient nonenzymatic ligation of single-stranded and duplex DNAs. Tetrahedron Letters,1997,38(32): 5595-5598
    [86]Kozlov I A, De Bouvere B, Van Aerschot A, et al. Efficient transfer of information from hexitol nucleic acids to RNA during nonenzymatic oligomerization. Journal of the American Chemical Society,1999,121(25): 5856-5859
    [87]Pitsch S, Krishnamurthy R, Bolli M, et al. Pyranosyl-RNA ('p-RNA'): base-pairing selectivity and potential to replicate. Preliminary communication. Helvetica Chimica Acta,1995,78(7):1621-1635
    [88]Gartner Z J, Grubina R, Calderone C T, et al. Two enabling architectures for DNA-templated organic synthesis. Angewandte Chemie International Edition, 2003,42(12):1370-1375
    [89]Li X, Gartner Z J, Tse B N, et al. Translation of DNA into synthetic N-acyloxazolidines. Journal of the American Chemical Society,2004,126(16): 5090-5092
    [90]Gothelf K V, Thomsen A, Nielsen M, et al. Modular DNA-programmed assembly of linear and branched conjugated nanostructures. Journal of the American Chemical Society,2004,126(4):1044-1046
    [91]Mattes A, Seitz O. Mass-spectrometric monitoring of a PNA-based ligation reaction for the multiplex detection of DNA single-nucleotide polymorphisms. Angewandte Chemie International Edition,2001,40(17):3178-3181
    [92]Haff L A, Wilson C G, Huang Y, et al. DNA-programmed chemistry in rapid homogeneous assays for DNA and protein targets. Clinical Chemistry,2006, 52(11):2147-2148
    [93]Xu X, Daniel W L, Wei W, et al. Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small,2010,6(5):623-626
    [94]Gilbert D L. Fifty years of radical ideas. Annals of the New York Academy of Sciences,2000,899(1):1-14
    [95]Evans P, Halliwell B. Micronutrients:oxidant/antioxidant status. British Journal of Nutrition,2001,85(S2):S67-S74
    [96]Mccord J M. The evolution of free radicals and oxidative stress. The American Journal of Medicine,2000,108(8):652-659
    [97]Zheng M, Storz G. Redox sensing by prokaryotic transcription factors, Biochemical Pharmacology,2000,59(1):1-6
    [98]Lander H M. An essential role for free radicals and derived species in signal transduction. The FASEB Journal,1997,11(2):118-124
    [99]Shen Q, Nie Z, Guo M, et al. Simple and rapid colorimetric sensing of enzymatic cleavage and oxidative damage of single-stranded DNA with unmodified gold nanoparticles as indicator. Chemical Communications,2009:929-931
    [100]Blackburn A C, Doe W F, Buffinton G D. Salicylate hydroxylation as an indicator of hydroxyl radical generation in dextran sulfate-induced colitis. Free Radical Biology and Medicine,1998,25(3):305-313
    [101]Yaping Z, Wenli Y, Dapu W, et al. Chemiluminescence determination of free radical scavenging abilities of'tea pigments'and comparison with'tea polyphenols'. Food Chemistry,2003,80(1):115-118
    [102]Coolen S A, Huf F A, Reijenga J C. Determination of free radical reaction products and metabolites of salicylic acid using capillary electrophoresis and micellar electrokinetic chromatography. Journal of Chromatography B: Biomedical Sciences and Applications,1998,717(1):119-124
    [103]Janzen E G. Spin trapping. Accounts of Chemical Research,1971,4(1):31-40
    [104]Detweiler C D, Deterding L J, Tomer K B, et al. Immunological identification of the heart myoglobin radical formed by hydrogen peroxide. Free Radical Biology and Medicine,2002,33(3):364-369
    [105]Ramirez D C, Chen Y R, Mason R P. Immunochemical detection of hemoglobin-derived radicals formed by reaction with hydrogen peroxide: involvement of a protein-tyrosyl radical. Free Radical Biology and Medicine, 2003,34(7):830-839
    [106]He Y Y, Ramirez D C, Detweiler C D, et al. UVA-ketoprofen-induced hemoglobin radicals detected by immuno-spin trapping. Photochemistry and Photobiology,2003,77(6):585-591
    [107]Gomez-Mejiba S E, Zhai Z, Akram H, et al. Immuno-spin trapping of protein and DNA radicals:"tagging" free radicals to locate and understand the redox process. Free Radical Biology and Medicine,2009,46(7):853-865
    [108]Ramirez D C, Mejiba S E G, Mason R P. Immuno-spin trapping of DNA radicals. Nature Methods,2006,3(2):123-127
    [109]Ramirez D C, Gomez-Mejiba S E, Mason R P. Immuno-spin trapping analyses of DNA radicals. Nature Protocols,2007,2(3):512-522
    [110]申钦鹏.新型生物自由基检测技术:[湖南大学硕士学位论文].湖南:湖南大学化学化工学院,2009,44-53
    [111]Seeman N C. Nucleic acid junctions and lattices. Journal of Theoretical Biology, 1982,99(2):237-247
    [112]Fu T J, Seeman N C. DNA double-crossover molecules. Biochemistry,1993, 32(13):3211-3220
    [113]Reishus D, Shaw B, Brun Y, et al. Self-assembly of DNA double-double crossover complexes into high-density, doubly connected, planar structures. Journal of the American Chemical Society,2005,127(50):17590-17591
    [114]Ke Y, Liu Y, Zhang J, et al. A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures. Journal of the American Chemical Society, 2006,128(13):4414-4421
    [115]Mao C, Sun W, Seeman N C. Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. Journal of the American Chemical Society,1999,121(23):5437-5443
    [116]Yan H, Park S H, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science,2003,301(5641):1882-1884
    [117]He Y, Tian Y, Chen Y, et al. Sequence symmetry as a tool for designing DNA nanostructures. Angewandte Chemie International Edition,2005,117(41): 6852-6854
    [118]Rothemund P W. Folding DNA to create nanoscale shapes and patterns. Nature, 2006,440(7082):297-302
    [119]Ke Y, Lindsay S, Chang Y, et al. Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science,2008,319(5860):180-183
    [120]Chen J, Seeman N C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature,1991,350(6319):631-633
    [121]Zhang Y, Seeman N C. Construction of a DNA-truncated octahedron. Journal of the American Chemical Society,1994,116(5):1661-1669
    [122]Goodman R P, Schaap I A, Tardin C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science,2005,310(5754): 1661-1665
    [123]Goodman R P, Berry R M, Turberfield A J. The single-step synthesis of a DNA tetrahedron. Chemical Communications,2004:1372-1373
    [124]Wen Y, Pei H, Shen Y, et al. DNA nanostructure-based interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA. Scientific Reports,2012,2:867-872
    [125]Pei H, Lu N, Wen Y, et al. A DNA Nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Advanced Materials,2010, 22(42):4754-4758
    [126]Wen Y, Pei H, Wan Y, et al. DNA nanostructure-decorated surfaces for enhanced aptamer-target binding and electrochemical cocaine sensors. Analytical Chemistry,2011,83(19):7418-7423
    [127]Ge Z, Pei H, Wang L, et al. Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Science China Chemistry,2011,54(8):1273-1276
    [128]Lu N, Pei H, Ge Z, et al. Charge transport within a three-dimensional DNA nanostructure framework. Journal of the American Chemical Society,2012, 134(32):13148-13151
    [129]He Y, Ye T, Su M, et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature,2008,452(7184):198-201
    [130]Zhang C, Su M, He Y, et al. Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proceedings of the National Academy of Sciences,2008,105(31):10665-10669
    [131]Nie Z, Li X, Li Y, et al. Self-assembly of DNA nanoprisms with only two component strands. Chemical Communications,2013,49(27):2807-2809
    [132]Aldaye F A, Sleiman H F. Modular access to structurally switchable 3D discrete DNA assemblies. Journal of the American Chemical Society,2007,129(44): 13376-13377
    [133]Aldaye F A, Lo P K, Karam P, et al. Modular construction of DNA nanotubes of tunable geometry and single-or double-stranded character. Nature Nanotechnology,2009,4(6):349-352
    [134]Liu H, Chen Y, He Y, et al. Approaching the limit:can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie International Edition, 2006,45(12):1942-1945
    [135]Que E L, Domaille D W, Chang C J. Metals in neurobiology:probing their chemistry and biology with molecular imaging. Chemical Reviews,2008,108(5): 1517-1549
    [136]Georgopoulos P, Roy A, Yonone-Lioy M, et al. A framework and data sources for the assessment of human exposure to copper:the US situation. Journal of Toxicology and Environmental Health,2001, Part B:341-394
    [137]Brown D R, Kozlowski H. Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and alzheimer diseases. Dalton Transactions, 2004,13:1907-1917
    [138]Vulpe C, Levinson B, Whitney S, et al. Isolation of a candidate gene for menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genetics,1993,3(1):7-13
    [139]Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease. Neurobiology of Disease,1999,6(4):221-230
    [140]Zietz B P, Dieter H H, Lakomek M, et al. Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply. Science of the Total Environment,2003,302(1):127-144
    [141]Wu Q, Anslyn E V. Catalytic signal amplification using a heck reaction. An example in the fluorescence sensing of Cu(II). Journal of the American Chemical Society,2004,126(45):14682-14683
    [142]Wen Z C, Yang R, He H, et al. A highly selective charge transfer fluoroionophore for Cu2+. Chemical Communications,2006:106-108
    [143]Xiang Y, Tong A, Jin P, et al. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Organic Letters, 2006,8(13):2863-2866
    [144]Zeng L, Miller E W, Pralle A, et al. A selective turn-on fluorescent sensor for imaging copper in living cells. Journal of the American Chemical Society,2006, 128(1):10-11
    [145]Chen W, Tu X, Guo X. Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chemical Communications,2009:1736-1738
    [146]Lan G Y, Huang C C, Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chemical Communications, 2010,46(8):1257-1259
    [147]Shang L, Dong S. Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(Ⅱ). Journal of Materials Chemistry,2008,18(39):4636-4640
    [148]Chan Y H, Chen J, Liu Q, et al. Ultrasensitive copper(Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Analytical Chemistry,2010,82(9):3671-3678
    [149]Gattas-Asfura K M, Leblanc R M. Peptide-coated CdS quantum dots for the optical detection of copper(Ⅱ) and silver(Ⅰ). Chemical Communications,2003: 2684-2685
    [150]Liu M, Zhao H, Quan X, et al. Signal amplification via cation exchange reaction: an example in the ratiometric fluorescence probe for ultrasensitive and selective sensing of Cu(Ⅱ). Chemical Communications,2010,46(7):1144-1146
    [151]Zheng Y, Gattas-Asfura K M, Konka V, et al. A dansylated peptide for the selective detection of copper ions. Chemical Communications,2002:2350-2351
    [152]Etienne M, Bessiere J, Walcarius A. Voltammetric detection of copper(Ⅱ) at a carbon paste electrode containing an organically modified silica. Sensors and Actuators B:Chemical,2001,76(1):531-538
    [153]Deiters A, Cropp T A, Mukherji M, et al. Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. Journal of the American Chemical Society,2003,125(39):11782-11783
    [154]Kolb H C, Sharpless K B. The growing impact of click chemistry on drug discovery. Drug Discovery Today,2003,8(24):1128-1137
    [155]Mocharla V P, Colasson B, Lee L V, et al. In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase II. Angewandte Chemie International Edition,2005,44(1):116-120
    [156]Ladmiral V, Mantovani G, Clarkson G J, et al. Synthesis of neoglycopolymers by a combination of "click chemistry" and living radical polymerization. Journal of the American Chemical Society,2006,128(14):4823-4830
    [157]Malkoch M, Thibault R J, Drockenmuller E, et al. Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. Journal of the American Chemical Society,2005,127(42): 14942-14949
    [158]Parrish B, Breitenkamp R B, Emrick T. PEG-and peptide-grafted aliphatic polyesters by click chemistry. Journal of the American Chemical Society,2005, 127(20):7404-7410
    [159]Joralemon M J, O'reilly R K, Hawker C J, et al. Shell click-crosslinked (SCC) nanoparticles:a new methodology for synthesis and orthogonal functionalization. Journal of the American Chemical Society,2005,127(48):16892-16899
    [160]Beatty K E, Xie F, Wang Q, et al. Selective dye-labeling of newly synthesized proteins in bacterial cells. Journal of the American Chemical Society,2005, 127(41):14150-14151
    [161]Zhang Y, Li B, Xu C. Visual detection of ascorbic acid via alkyne-azide click reaction using gold nanoparticles as a colorimetric probe. Analyst,2010,135(7): 1579-1584
    [162]Kanan M W, Rozenman M M, Sakurai K, et al. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature,2004,431(7008): 545-549
    [163]Halpin D R, Harbury P B. DNA display Ⅱ. Genetic manipulation of combinatorial chemistry libraries for small-molecule evolution. PLoS Biology, 2004,2(7):1022-1030
    [164]Snyder T M, Tse B N, Liu D R. Effects of template sequence and secondary structure on DNA-templated reactivity. Journal of the American Chemical Society,2008,130(4):1392-1401
    [165]Kleiner R E, Dumelin C E, Liu D R. Small-molecule discovery from DNA-encoded chemical libraries. Chemical Society Reviews,2011,40(12): 5707-5717
    [166]Silverman A P, Kool E T. Detecting RNA and DNA with templated chemical reactions. Chemical Reviews,2006,106(9):3775-3789
    [167]Stoop M, Leumann C J. Homo-DNA templated chemistry and its application to nucleic acid sensing. Chemical Communications,2011,47(26):7494-7496
    [168]Liu X M, Thakur A, Wang D. Efficient synthesis of linear multifunctional poly (ethylene glycol) by copper(Ⅰ)-catalyzed Huisgen 1,3-dipolar cycloaddition. Biomacromolecules,2007,8(9):2653-2658
    [169]Li W, Liu Z, Lin H, et al. Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy. Analytical Chemistry,2010,82(5):1935-1941
    [170]Green C, Tibbetts C. Reassociation rate limited displacement of DNA strands by branch migration. Nucleic Acids Research,1981,9(8):1905-1918
    [171]He Y, Liu D R. A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. Journal of the American Chemical Society, 2011,133(26):9972-9975
    [172]Huang P J J, Liu J. Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. Chemistry-A European Journal,2011,17(18):5004-5010
    [173]Byrnes R W, Antholine W E, Petering D H. Oxidation-reduction reactions in ehrlich cells treated with copper-neocuproine. Free Radical Biology and Medicine,1992,13(5):469-478
    [174]Neidle S, Parkinson G N. The structure of telomeric DNA. Current Opinion in Structural Biology,2003,13(3):275-283
    [175]Arthanari H, Bolton P H. Functional and dysfunctional roles of quadruplex DNA in cells. Chemistry & Biology,2001,8(3):221-230
    [176]Hurley L H. DNA and its associated processes as targets for cancer therapy. Nature Reviews Cancer,2002,2(3):188-200
    [177]Mergny J L, Riou J F, Mailliet P, et al. Natural and pharmacological regulation of telomerase. Nucleic Acids Research,2002,30(4):839-865
    [178]Kong D M, Ma Y E, Guo J H, et al. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Analytical Chemistry, 2009,81(7):2678-2684
    [179]Bhasikuttan A C, Mohanty J, Pal H. Interaction of malachite green with guanine-rich single-stranded DNA:preferential binding to a G-quadruplex. Angewandte Chemie International Edition,2007,119(48):9465-9467
    [180]Kong D M, Ma Y E, Wu J, et al. Discrimination of G-quadruplexes from duplex and single-stranded DNAs with fluorescence and energy-transfer fluorescence spectra of crystal violet. Chemistry-A European Journal,2009,15(4):901-909
    [181]Li T, Dong S, Wang E. A lead(II)-driven DNA molecular device for turn-on fluorescence detection of lead(II) ion with high selectivity and sensitivity. Journal of the American Chemical Society,2010,132(38):13156-13157
    [182]Karsisiotis A I, Hessari N M A, Novellino E, et al. Topological characterization of nucleic acid G-quadruplexes by UV absorption and circular dichroism. Angewandte Chemie International Edition,2011,123(45):10833-10836
    [183]Barceloux D G, Barceloux D. Vanadium. Clinical Toxicology,1999,37(2): 265-278
    [184]Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. Journal of the American Chemical Society,2007,129(32):9838-9839
    [185]Song K C, Kim M H, Kim H J, et al. Hg2+ -and Cu2+ -selective fluoroionophoric behaviors of a dioxocyclam derivative bearing anthrylacetamide moieties. Tetrahedron Letters,2007,48(42):7464-7468
    [186]Ciriolo M R, Desideri A, Paci M, et al. Reconstitution of Cu, Zn-superoxide dismutase by the Cu(I)-glutathione complex. Journal of Biological Chemistry, 1990,265(19):-11030-11034
    [187]Chai F, Wang C, Wang T, et al. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Applied Materials & Interfaces,2010, 2(5):1466-1470
    [188]Li Y, Bai H, Li C, et al. Colorimetric assays for acetylcholinesterase activity and inhibitor screening based on the disassembly-assembly of a water-soluble polythiophene derivative. ACS Applied Materials & Interfaces,2011,3(4): 1306-1310
    [189]Zhong Z, Anslyn E V. A colorimetric sensing ensemble for heparin. Journal of the American Chemical Society,2002,124(31):9014-9015
    [190]Song Y, Wei W, Qu X. Colorimetric biosensing using smart materials. Advanced Materials,2011,23(37):4215-4236
    [191]Peters C, French C. Study of ferric thiocyanate reaction. Industrial & Engineering Chemistry Analytical Edition,1941,13(9):604-607
    [192]Platte J, Marcy V. Photometric determination of zinc with zincon. Application to water containing heavy metals. Analytical Chemistry,1959,31(7):1226-1228
    [193]Zhang C, Suslick K S. A colorimetric sensor array for organics in water. Journal of the American Chemical Society,2005,127(33):11548-11549
    [194]Stojanovic M N, Landry D W. Aptamer-based colorimetric probe for cocaine. Journal of the American Chemical Society,2002,124(33):9678-9679
    [195]Clark D D. Analysis and identification of acid-base indicator dyes by thin-layer chromatography. Journal of Chemical Education,2007,84(7):1186-1187
    [196]Papariello G, Commanday S. Investigation of p-nitrobenzhydrazide as an acid-base indicator. Analytical Chemistry,1964,36(6):1028-1030
    [197]Mcquade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors. Chemical Reviews,2000,100(7):2537-2574
    [198]Liu B, Bazan G C. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chemistry of Materials,2004,16(23): 4467-4476
    [199]Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. Journal of the American Chemical Society,2004,126(5): 1384-1387
    [200]He F, Tang Y, Yu M, et al. Quadruplex-to-duplex transition of G-rich oligonucleotides probed by cationic water-soluble conjugated polyelectrolytes. Journal of the American Chemical Society,2006,128(21):6764-6765
    [201]Wang S, Gaylord B S, Bazan G C. Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. Journal of the American Chemical Society,2004,126(17):5446-5451
    [202]Fan C, Plaxco K W, Heeger A J. High-efficiency fluorescence quenching of conjugated polymers by proteins. Journal of the American Chemical Society, 2002,124(20):5642-5643
    [203]李向华,黄胜堂.银纳米粒子比色传感器的研究进展.广州化工,2010,38(12):20-21
    [204]Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chemical Reviews,2009, 109(5):1948-1998
    [205]Zhao W, Brook M A, Li Y. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem,2008,9(15):2363-2371
    [206]Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications:I. Theory. Analytical Biochemistry,1998,262(2):137-156
    [207]Jin R, Wu G, Li Z, et al. What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society,2003, 125(6):1643-1654
    [208]Bohren C F, Huffman D R. Absorption and scattering by a sphere. Absorption and Scattering of Light by Small Particles,1983,82-129
    [209]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382, 607-609
    [210]Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277(5329):1078-1081
    [211]Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proceedings of the National Academy of Sciences,2004,101(39):14036-14039
    [212]Park S M, Kim M H, Choe J I, et al. Cyclams bearing diametrically disubstituted pyrenes as Cu2+-and Hg2+-selective fluoroionophores. The Journal of Organic Chemistry,2007,72(9):3550-3553
    [213]Armando I, Wang X, Van Anthony M V, et al. Reactive oxygen species-dependent hypertension in dopamine D2 receptor-deficient mice. Hypertension,2007,49(3):672-678
    [214]Ju W, Wang X, Shi H. Sensitization of TNF-induced lung cancer cell death by luteolin through ROS mediated suppression of NF-kappa B pathway. Free Radical Biology and Medicine,2006,41, S39-S41
    [215]Woo C H, Kim T H, Choi J A, et al. Inhibition of receptor internalization attenuates the TNFa-induced ROS generation in non-phagocytic cells. Biochemical and Biophysical Research Communications,2006,351(4):972-978
    [216]Janzen E G, Evans C A. Rate constants for spin trapping tert-butoxy radicals as studied by electron spin resonance. Journal of the American Chemical Society, 1973,95(24):8205-8206
    [217]Deng T, Li J, Jiang J H, et al. A Sensitive fluorescence anisotropy method for point mutation detection by using core-shell fluorescent nanoparticles and high-fidelity DNA ligase. Chemistry-A European Journal,2007,13(27): 7725-7730
    [218]Jameson D M, Ross J A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chemical Reviews,2010,110(5):2685-2708
    [219]Cao Z, Tan W. Molecular aptamers for real-time protein-protein interaction study Chemistry-A European Journal,2005,11(15):4502-4508
    [220]Zhang M, Guan Y M, Ye B C. Ultrasensitive fluorescence polarization DNA detection by target assisted exonuclease Ⅲ-catalyzed signal amplification. Chemical Communications,2011,47(12):3478-3480
    [221]Ye B C, Yin B C. Highly sensitive detection of mercury(Ⅱ) ions by fluorescence polarization enhanced by gold nanoparticles. Angewandte Chemie International Edition,2008,47(44):8386-8389
    [222]Pagano J M, Clingman C C, Ryder S P. Quantitative approaches to monitor protein-nucleic acid interactions using fluorescent probes. RNA,2011,17(1): 14-20
    [223]Liu J-H, Wang C, Jiang Y, et al. Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecule. Analytical Chemistry,2013,85(3),1424-1430
    [224]Potyrailo R A, Conrad R C, Ellington A D, et al. Adapting selected nucleic acid ligands (aptamers) to biosensors. Analytical Chemistry,1998,70(16):3419-3425
    [225]Fang X, Cao Z, Beck T, et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry,2001,73(23):5752-5757
    [226]Jayasena S D. Aptamers:an emerging class of molecules that rival antibodies in diagnostics. Clinical Chemistry,1999,45(9):1628-1650
    [227]Li W, Wang K, Tan W, et al. Aptamer-based analysis of angiogenin by fluorescence anisotropy. Analyst,2007,132(2):107-113
    [228]Zou M, Chen Y, Xu X, et al. The homogeneous fluorescence anisotropic sensing of salivary lysozyme using the 6-carboxyfluorescein-labeled DNA aptamer. Biosensors and Bioelectronics,2012,32(1):148-154
    [229]Gokulrangan G, Unruh J R, Holub D F, et al. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Analytical Chemistry,2005,77(7):1963-1970
    [230]Cui L, Zou Y, Lin N, et al. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples. Analytical Chemistry,2012,84(13):5535-5541
    [231]Xu X, Liu X, Nie Z, et al. Label-free fluorescent detection of protein kinase activity based on the aggregation behavior of unmodified quantum dots. Analytical Chemistry,2010,83(1):52-59
    [232]Li W, Li W, Hu Y, et al. A fluorometric assay for acetylcholinesterase activity and inhibitor detection based on DNA-templated copper/silver nanoclusters. Biosensors and Bioelectronics,2013,47,345-349
    [233]Hunt C E, Pasetto P, Ansell R J, et al. A fluorescence polarisation molecular imprint sorbent assay for 2,4-D:a non-separation pseudo-immunoassay. Chemical Communications,2006:1754-1756
    [234]Huang Y, Zhao S, Chen Z-F, et al. Amplified fluorescence polarization aptasensors based on structure-switching-triggered nanoparticles enhancement for bioassays. Chemical Communications,2012,48(60):7480-7482
    [235]Lakowicz J. Principles of fluorescence spectroscopy (3rd edit.) Springer. New York, NY,2006
    [236]Wang J, Wang L, Liu X, et al. A gold nanoparticle-based aptamer target binding readout for ATP assay. Advanced Materials,2007,19(22):3943-3946
    [237]Stojanovic M N, Kolpashchikov D M. Modular aptameric sensors. Journal of the American Chemical Society,2004,126(30):9266-9270
    [238]Li N, Ho C M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. Journal of the American Chemical Society,2008,130(8):2380-2381
    [239]Tang Z, Mallikaratchy P, Yang R, et al. Aptamer switch probe based on intramolecular displacement. Journal of the American Chemical Society,2008, 130(34):11268-11269
    [240]Zhang J, Wang L, Zhang H, et al. Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small,2010,6(2): 201-204
    [241]Zuo X, Song S, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society,2007,129(5):1042-1043
    [242]Lu Y, Li X, Zhang L, et al. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Analytical Chemistry, 2008,80(6):1883-1890
    [243]Huizenga D E, Szostak J W. A DNA aptamer that binds adenosine and ATP. Biochemistry,1995,34(2):656-665

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700