纳米金比色法测定大分子分子量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在分析科学领域中,纳米金比色检测法因其简便性和多样性吸引了相当多研究者的关注。纳米金比色法主要依赖于被检测物引起的纳米金粒子聚集,而这种聚集又导致了纳米金溶液剧烈的颜色变化。本文利用纳米金比色法在水溶液中测定了三种大分子的分子量,并且探讨了其测定的机理。主要内容和结果如下:
     1.纳米金比色法被用于测定聚酰胺-胺型(PAMAM)树状大分子分子量。这种方法是通过测定一定质量浓度下的溶液中PAMAM树状大分子的分子数量而得到其所对应的分子量。在一个确定质量浓度的树状大分子溶液中,其分子数量由分子量所决定。当PAMAM树状大分子浓度为32.4μg/ml时,纳米金溶液的颜色及吸光度随着第0代到第5代PAMAM树状大分子的分子量(从517至28826Da)变化而发生规律性改变。因此,纳米金比色法将不同的PAMAM树状大分子分子量转化为光学及颜色的信号。精确测定PAMAM树状大分子分子量只需要观测纳米金溶液的颜色变化即可。这种纳米金比色法使得PAMAM树状大分子分子量的测定变得更简单、方便和灵敏。纳米金比色法在数分钟内即可完成PAMAM树状大分子分子量的测定,无需精密仪器和特殊培训。
     2.纳米金比色法被用于测定支链型聚乙烯亚胺(BPEI)的分子量。这种方法是建立在BPEI引起的纳米金粒子聚集基础上。本研究发现,不同分子量的BPEI (1.25μg/ml)导致了纳米金粒子不同的团聚程度以及其溶液颜色的相应变化。因此,BPEI的不同分子量(从523至275300Da)就可以通过纳米金比色法直接用肉眼观测区别,用分光光度法测定其分子量。这种测定BPEI分子量的纳米金比色法简单(仅需在室温中共混溶液),快捷(仅需15min)和灵敏(仅与分子量有关)。
     3.纳米金比色法被用来测定聚乙二醇(PEG)的分子量。通常,PEG能吸附到纳米金粒子表面,稳定纳米金粒子。这种比色方法就是建立在不同分子量(从521至13646Da)的PEG对纳米金的不同稳定能力基础上。PEG对纳米金的稳定能力大小依赖于其分子的大小(均方根末端距

05)和纳米金的粒径。在一个确定的粒径和纳米金粒子之间静电斥力被屏蔽掉的条件下,不同大小的PEG分子导致了不同的纳米金聚集度以及其溶液的不同颜色。因此,不同大小的PEG分子就可以通过纳米金比色法直接用肉眼观测区别,用分光光度法测定其具体的数值。然后,利用PEG分子的大小与其分子量之间的关系式计算得出PEG的分子量。这种比色法为PEG分子量的测定提供了一种全新的替代性分析方法。
Gold nanoparticle (AuNP) colorimetric methods have attracted considerable attentions in analytical science, due to their simplicity and versatility. This colorimetric method typically depends on a quantitative coupling between analyte and the aggregation of AuNPs, which leads to a dramatic color change of the AuNPs solution. In this thesis, AuNP-based colorimetric methods were used to determine the molecular weight (MW) of three kinds macromolecules straightforwardly in solution and then were investigated the mechanisms. The main contents are as follows:
     1. A AuNP-based colorimetric method was developed for the MW determination of Poly(amido amine)(PAMAM) dendrimers. In particular, we used the method to identify the number of the dendrimer in solution, which corresponds to a specific MW at a certain mass concentration. At32.4μg/ml of PAMAM dendrimer solutions, the optical properties of the AuNPs were observed to change regularly from the Generation0to5dendrimer (from517to28826Da). Thus, the AuNPs based colorimetric method transformed the MW of PAMAM dendrimers into color signals. Determining the exact MW of PAMAM dendrimers simply required observing the color changes of the AuNPs. The determination methodology based on the AuNPs offers simplicity, convenience, and sensitivity. It can be accomplished in minutes without sophisticated instruments or specialized training.
     2. A AuNP-based colorimetric method was invented for the MW determination of branched polyethylenimine (BPEI), relied on the aggregation of AuNPs. We found that the different MW of BPEI (1.25μg/ml) leads to the different aggregation degrees of AuNPs and the color changes of the solutions. Thus, the MW (from523to275300Da) can be distinguished straightforwardly by visual inspection and determined by spectrophotometry. This novel approach is simple (mixing solutions at room temperature), rapid (within15min) and sensitive (only depending on the MW).
     3. A AuNP-based colorimetric method was established for the MW determination of poly(ethylene glycol)(PEG), relied on the different stabilizing ability of PEG (from521to13646Da), which is used to adsorb onto AuNPs. The stabilizing ability of PEG is dependent on its molecular size (the root-mean-square end to end length (h2)0.5) and the gold nanoparticle size. After screening the electrostatic repulsion between AuNPs, the different sizes of PEG molecules lead to the different aggregation degrees of AuNPs and the color changes of the solutions. Thus, the sizes of PEG molecules can be distinguished straightforwardly by visual inspection and determined by spectrophotometry. And then, we can use the relation equation between the size and the MW of PEG to figure out PEG MW. This colorimetric method provides an alternative analytical technique to the MW determination of PEG

引文
[1]Daniel M-C, Astruc D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology.[J]. Chem. Rev.,2004,104(1):293-346.
    [2]Faraday M. The Bakerian Lecture:Experimental Relations of Gold (and Other Metals) to Light[J]. Philos. Trans. R. Soc. London,1857,147:145-181.
    [3]Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment:a microscopic overview.[J]. Langmuir,2005,21(23):10644-10654.
    [4]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics.[J]. Chem. Rev.,2005, 105(4):1547-1562.
    [5]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature,1973,241:20-22.
    [6]Dimitratos N, Porta F, Prati L, et al. Synergetic effect of platinum or palladium on gold catalyst in the selective oxidation of D-sorbitol[J]. Catal. Lett.,2005, 99(3-4):181-185.
    [7]Sau T K, Murphy C J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution[J]. J. Am. Chem. Soc., 2004,126(28):8648-8649.
    [8]Patolsky F, Weizmann Y, Willner I. Actin-based metallic nanowires as bio-nanotransporters[J]. Nat. Mater.,2004,3(10):692-695.
    [9]Zhou Y, Chen W, Itoh H, et al. Preparation of a novel core-shell nanostructured gold colloid-silk fibroin bioconjugate by the protein in situ redox technique at room temperature.[J]. Chem. Commun.,2001:2518-2519.
    [10]Kumar S, Aaron J, Sokolov K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties.[J]. Nat. Protoc.,2008,3(2):314-320.
    [11]Niemeyer C M, Mirkin C A. Nanobiotechnology:Concepts, Applications and Perspectives[M]. C.M. Niemeyer, C.A. Mirkin. Weinheim, FRG: WILEY-VCH Verlag,2004.
    [12]Gribnau T C, Leuvering J H, van Hell H. Particle-labelled immunoassays:a review.[J]. J. Chromatogr.,1986,376(0):175-89.
    [13]蒋治良,梁爱惠,温桂清,et al.环境纳米分析[M].广西师范大学出版社,2012.
    [14]康熙雄.免疫胶体金技术临床应用[M].军事医学科学出版社,2010.
    [15]De la Rica R, Stevens M M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye.[J]. Nat. Nanotechnol.,2012,7(12): 821-824.
    [16]Lin L-R, Fu Z-G, Dan B, et al. Development of a colloidal gold-immunochromatography assay to detect immunoglobulin G antibodies to Treponema pallidum with TPN17 and TPN47[J]. Diagn. Microbiol. Infect. Dis., 2010,68(3):193-200.
    [17]Guo Y-R, Liu S-Y, Gui W-J, et al. Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples[J]. Anal. Biochem.,2009,389(1):32-39.
    [18]Xiulan S, Xiaolian Z, Jian T, et al. Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1 [J]. Int. J. Food Microbiol.,2005,99(2):185-194.
    [19]Shyu R-H, Shyu H-F, Liu H-W, et al. Colloidal gold-based immunochromatographic assay for detection of ricin[J]. Toxicon,2002,40(3): 255-258.
    [20]Zambre A, Chanda N, Prayaga S, et al. Design and development of a field applicable gold nanosensor for the detection of luteinizing hormone.[J]. Anal. Chem.,2012,84(21):9478-9484.
    [21]吴崔晨,邹远,王春明,et al.核酸适配体生物传感器[A].见:樊春海,刘冬生.DNA纳米技术:分子传感、计算与机器[M].科学出版社,2011:489.
    [22]Cell SELEX[EB/OL]. http://www.cd-genomics.com/Aptamers/services.htm#Aptamer_synthesis.
    [23]Tasset D M, Kubik M F, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes[J]. J. Mol. Biol.,1997,272(5):688-698.
    [24]Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials.[J]. Nature, 1996,382(6592):607-9.
    [25]Huang C-C, Huang Y-F, Cao Z, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors.[J]. Anal. Chem.,2005,77(17):5735-41.
    [26]Chen S-J, Huang Y-F, Huang C-C, et al. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles.[J]. Biosens. Bioelectron., 2008,23(11):1749-53.
    [27]Li H, Rothberg L J. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction.[J]. J. Am. Chem. Soc.,2004,126(35):10958-10961.
    [28]Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles.[J]. Proc. Natl. Acad. Sci. USA,2004,101(39):14036-14039.
    [29]Wang L, Liu X, Hu X, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers.[J]. Chem. Commun.,2006,3(36): 3780-3782.
    [30]Thaxton C S, Mirkin C A. DNA-gold-nanoparticle conjugates [A]. 见:C.M. Niemeyer, C.A. Mirkin. Nanobiotechnology:Concepts, Applications and Perspectives[M]. Wiley-VCH Verlag GmbH & Co. KGaA,2004:288-307.
    [31]Zhao W, Brook M A, Li Y. Design of gold nanoparticle-based colorimetric biosensing assays.[J]. ChemBioChem,2008,9(15):2363-2371.
    [32]Lee J-S, Han M S, Mirkin C a. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. [J]. Angew. Chem., Int. Ed.,2007,46(22):4093-4096.
    [33]Cordray M S, Amdahl M, Richards-Kortum R R. Gold nanoparticle aggregation for quantification of oligonucleotides:Optimization and increased dynamic range.[J]. Anal. Biochem.,2012,431(2):99-105.
    [34]Xia F, Zuo X, Yang R, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes.[J]. Proc. Natl. Acad. Sci. USA,2010,107(24):10837-10841.
    [35]Cao R, Li B. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes.[J]. Chem. Commun,2011,47(10):2865-2867.
    [36]Stuart A C. Lecture Notes Colloid Science[M]. Wageningen University,2007.
    [37]Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications [J]. Drug Discovery Today,2001,6(8):427-436.
    [38]何曼君,张红东,陈维孝.高分子物理[M].第3版.复旦大学出版社,2008.
    [39]Heath D E, Cooper S L. Polymers:Basic Principles [A]. 见:B.D. Ratner, A.S. Hoffman, L. Jack. 第3版. Biomaterials science:an introduction to materials in medicine[M]. Academic Press,2013:64-79.
    [40]Rinaudo M. Chitin and chitosan:Properties and applications[J]. Prog. Polym. Sci.,2006,31(7):603-632.
    [41]Ravi Kumar M N V. A review of chitin and chitosan applications [J]. React. Funct. Polym.,2000,46(1):1-27.
    [42]Knaul J Z, Kasaai M R, Bui V T, et al. Characterization of deacetylated chitosan and chitosan molecular weight review[J]. Can. J. Chem.,1998,76(11): 1699-1706.
    [43]Schartl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions[M]. New York:Springer,2007.
    [44]Wyatt P J. Light scattering and the absolute characterization of macromolecules[J]. Anal. Chim. Acta,1993,272(1):1-40.
    [45]Wang X, Wu C. Light-Scattering Study of Coil-to-Globule Transition of a Poly(N -isopropylacrylamide) Chain in Deuterated Water [J]. Macromolecules, 1999,32(13):4299-4301.
    [46]Lavertu M, Methot S, Tran-Khanh N, et al. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation[J]. Biomaterials,2006,27(27):4815-4824.
    [47]赵玉芬.生物有机质谱[M].郑州大学出版社,2005.
    [48]Muller R, Laschober C, Szymanski W W, et al. Determination of Molecular Weight, Particle Size, and Density of High Number Generation PAMAM Dendrimers Using MALDI-TOF-MS and nES-GEMMA[J]. Macromolecules, 2007,40(15):5599-5605.
    [49]沈钟,赵振国,康万利.胶体与表面化学[M].第4版.化学工业出版社,2012.
    [50]Thomas M, Klibanov A M. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells.[J]. Proc. Natl. Acad. Sci. USA,2003,100(16):9138-9143.
    [1]Esfand R, Tomalia D A. Poly(amidoamine) (PAMAM) dendrimers:from biomimicry to drug delivery and biomedical applications[J]. Drug Discovery Today,2001,6(8):427-436.
    [2]Svenson S, Tomalia D A. Dendrimers in biomedical applications--reflections on the field.[J]. Adv. Drug Delivery Rev.,2005,57(15):2106-29.
    [3]Navarro G, Tros de Ilarduya C. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo.[J]. Nanomedicine,2009,5(3): 287-97.
    [4]Menjoge A R, Kannan R M, Tomalia D A. Dendrimer-based drug and imaging conjugates:design considerations for nanomedical applications[J]. Drug Discovery Today,2010,15(5-6):171-185.
    [5]Jain K, Kesharwani P, Gupta U, et al. Dendrimer toxicity:Let's meet the challenge.[J]. Int. J. Pharm.,2010,394(1-2):122-42.
    [6]Miiller R, Laschober C, Szymanski W W, et al. Determination of Molecular Weight, Particle Size, and Density of High Number Generation PAMAM Dendrimers Using MALDI-TOF-MS and nES-GEMMA[J]. Macromolecules, 2007,40(15):5599-5605.
    [7]Islam M T, Shi X, Balogh L, et al. HPLC separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. [J]. Anal. Chem.,2005,77(7):2063-70.
    [8]Shi X, Banyai I, Rodriguez K, et al. Electrophoretic mobility and molecular distribution studies of poly(amidoamine) dendrimers of defined charges.[J]. Electrophoresis,2006,27(9):1758-67.
    [9]Taton T A. Preparation of gold nanoparticle-DNA conjugates. [J]. Curr. Protocol. Nucl. Acids Chem., John Wiley & Sons,2002,9:12.2.1-12.2.12.
    [10]Kim T, Lee K, Gong M, et al. Control of gold nanoparticle aggregates by manipulation of interparticle interaction.[J]. Langmuir,2005,21(21):9524-8.
    [11]Popescu M-C, Filip D, Vasile C, et al. Characterization by fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer.[J]. J. Phys. Chem. B,2006,110(29):14198-211.
    [12]Grabchev I, Petkov C, Bojinov V. Infrared spectral characterization of poly (amidoamine) dendrimers peripherally modified with 1,8-naphthalimides[J]. Dyes Pigm.,2004,62(3):229-234.
    [13]Cordray M S, Amdahl M, Richards-Kortum R R. Gold nanoparticle aggregation for quantification of oligonucleotides:Optimization and increased dynamic range.[J]. Anal. Biochem.,2012,431(2):99-105.
    [14]Li J, Piehler L T, Qin D, et al. Visualization and Characterization of Poly(amidoamine) Dendrimers by Atomic Force Microscopy[J]. Langmuir, 2000,16(13):5613-5616.
    [15]Betley T A, Banaszak Holl M M, Orr B G, et al. Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Dendrimers:Effects of Substrate and pH on Dendrimer Deformation[J]. Langmuir,2001,17(9): 2768-2773.
    [16]Uppuluri S, Keinath S E, Tomalia D A, et al. Rheology of Dendrimers. I. Newtonian Flow Behavior of Medium and Highly Concentrated Solutions of Polyamidoamine (PAMAM) Dendrimers in Ethylenediamine (EDA) Solvent[J]. Macromolecules,1998,31(14):4498-4510.
    [17]Tomalia D A, Naylor A M, Goddard W A. Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter[J]. Angew. Chem., Int. Ed., 1990,29(2):138-175.
    [18]Lin M Y, Lindsay H M, Weitz D A, et al. Universality in colloid aggregation[J]. Nature,1989,339(6223):360-362.
    [1]Patnaik S, Gupta K C. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery.[J]. Expert Opin. Drug Deliv.,2013,10(2):215-228.
    [2]Godbey W T, Wu K K, Mikos a G. Poly(ethylenimine) and its role in gene delivery. [J]. J. Controlled Release,1999,60(2-3):149-160.
    [3]Ong B C, Leong Y K, Chen S B. Interparticle forces in spherical monodispersed silica dispersions:effects of branched poly ethyl enimine and molecular weight.[J]. J. Colloid Interface Sci.,2009,337(1):24-31.
    [4]Boussif O, Lezoualc'h F, Zanta M a, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine.[J]. Proc. Natl. Acad. Sci. USA,1995,92(16):7297-7301.
    [5]Yue Y, Jin F, Deng R, et al. Revisit complexation between DNA and polyethylenimine-Effect of uncomplexed chains free in the solution mixture on gene transfection.[J]. J. Controlled Release,2011,155(1):67-76.
    [6]Hsu C Y M, Uludag H. A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine.[J]. Nat. Protoc., 2012,7(5):935-945.
    [7]Parhamifar L, Larsen A K, Hunter a. C, et al. Polycation cytotoxicity:a delicate matter for nucleic acid therapy-focus on polyethylenimine[J]. Soft Matter, 2010,6(17):4001-4009.
    [8]Jiang X, van der Horst A, van Steenbergen M J, et al. Molar-mass characterization of cationic polymers for gene delivery by aqueous size-exclusion chromatography.[J]. Pharm. Res.,2006,23(3):595-603.
    [9]Forster S, Schmidt M. Polyelectrolytes in Solution[J]. Adv. Polym. Sci.,1995, 120:51-133.
    [10]Jiang X, Chu Y, Liu J, et al. Aqueous sec analysis of cationic polymers as gene carriers[J]. Chin. J. Polym. Sci,2011,29(4):421-426.
    [11]Herbert D, Burkart P. Polyelectrolytes:formation, characterization and application.[M]. Hanser Gardner Publications, New York,1994.
    [12]Taton T A. Preparation of gold nanoparticle-DNA conjugates.[J]. Curr. Protocol. Nucl. Acids Chem., John Wiley & Sons,2002,9:12.2.1-12.2.12.
    [13]Kim T, Lee K, Gong M, et al. Control of gold nanoparticle aggregates by manipulation of interparticle interaction.[J]. Langmuir,2005,21(21):9524-8.
    [14]Gaborieau M, Castignolles P. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides.[J]. Anal. Bioanal. Chem.,2011, 399(4):1413-1423.
    [15]Buchholz B A, Barron A E. The use of light scattering for precise characterization of polymers for DNA sequencing by capillary electrophoresis.[J]. Electrophoresis,2001,22(19):4118-4128.
    [16]Cordray M S, Amdahl M, Richards-Kortum R R. Gold nanoparticle aggregation for quantification of oligonucleotides:Optimization and increased dynamic range.[J]. Anal. Biochem.,2012,431(2):99-105.
    [17]Pollock J F, Ashton R S, Rode N a, et al. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography with multiangle laser light scattering.[J]. Bioconjugate Chem.,2012,23(9):1794-1801.
    [18]Lindquist G M, Stratton R A. The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine[J]. J. Colloid Interface Sci.,1976,55(1):45-59.
    [19]Dietrich A, Neubrand A. Effects of Particle Size and Molecular Weight of Polyethylenimine on Properties of Nanoparticulate Silicon Dispersions [J]. J. Am. Ceram. Soc.,2001,84(4):806-812.
    [20]Storhoff J J, Lazarides A A, Mucic R C, et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies?[J]. J. Am. Chem. Soc., 2000,122(19):4640-4650.
    [21]Zhou G, Liu Y, Luo M, et al. Controlled Assembly of Gold Nanoparticles through Antibody Recognition:Study and Utilizing the Effect of Particle Size on Interparticle Distance.[J]. Langmuir,2013,29(15):4697-4702.
    [22]http://baike.baidu.com/view/6581193.htm[EB/OL]..
    [23]Dimon P, Sinha S, Weitz D, et al. Structure of Aggregated Gold Colloids[J]. Phys. Rev. Lett.,1986,57(9):595-8.
    [24]Lin M Y, Lindsay H M, Weitz D A, et al. Universality in colloid aggregation[J]. Nature,1989,339(6223):360-362.
    [1]薛大权,王振军,肖厚平,et al.聚乙二醇在医药学领域的应用与技术[M].华中科技大学出版社,2011:170.
    [2]Polyethylene glycol[EB/OL]. http://en.wikipedia.org/wiki/Polyethylene_glycol.
    [3]Davidson R L, O'Malley K a, Wheeler T B. Polyethylene glycol-induced mammalian cell hybridization:effect of polyethylene glycol molecular weight and concentration.[J]. Somatic Cell Genet.,1976,2(3):271-80.
    [4]Link S, El-Sayed M A. Optical properties and ultrafast dynamics of metallic nanocrystals.[J]. Annu. Rev. Phys. Chem., Annual Reviews,2003,54(1): 331-66.
    [5]Teichroeb J H, Forrest J A, Ngai V, et al. Anomalous thermal denaturing of proteins adsorbed to nanoparticles[J]. Eur. Phys. J. E:Soft Matter Biol. Phys., 2006,21(1):19-24.
    [6]Stuart A C. Lecture Notes Colloid Science[M]. Wageningen University,2007.
    [7]Napper D H. Polymeric stabilization of colloidal dispersions [M]. Academic Press,1983.
    [8]Taton T A. Preparation of gold nanoparticle-DNA conjugates.[J]. Curr. Protocol. Nucl. Acids Chem., John Wiley & Sons,2002,9:12.2.1-12.2.12.
    [9]Liu X, Atwater M, Wang J, et al. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.[J]. Colloids Surf., B,2007, 58(1):3-7.
    [10]Schartl W. Light Scattering from Polymer Solutions and Nanoparticle Dispersions[M]. New York:Springer,2007.
    [11]Lee H, Venable R M, Mackerell A D, et al. Molecular dynamics studies of polyethylene oxide and polyethylene glycol:hydrodynamic radius and shape anisotropy.[J]. Biophys. J., Elsevier,2008,95(4):1590-1599.
    [12]Berg J C. An Introduction to Interfaces and Colloids:The Bridge to Nanoscience[M]. World Scientific,2010.
    [13]Lim J K, Majetich S a, Tilton R D. Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media.[J]. Langmuir, 2009,25(23):13384-13393.
    [14]Robinson R A, Stokes R H. Electrolyte Solutions [M]. Dover Publications, 2002.
    [15]Jiang X, van der Horst A, van Steenbergen M J, et al. Molar-mass characterization of cationic polymers for gene delivery by aqueous size-exclusion chromatography.[J]. Pharm. Res.,2006,23(3):595-603.
    [16]Genz U, D'Aguanno B, Mewis J, et al. Structure of Sterically Stabilized Colloids[J]. Langmuir,1994,10(7):2206-2212.
    [17]Roucoux A, Schulz J, Patin H. Reduced transition metal colloids:a novel family of reusable catalysts?[J]. Chem. Rev.,2002,102(10):3757-3778.
    [18]Ratner B D, Hoffman A S. Non-Fouling Surfaces[A]. 见:B.D. Ratner, A.S. Hoffman, F.J. Schoen, et al第3版Biomaterials Science:An Introduction to Materials in Medicine[M]. Academic Press,2013:241-247.
    [19]Hayat A. Colloidal gold:principles, methods, and applications[M]. Academic Press,1989(第1卷).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700