啤酒中多酚物质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原花青素低聚物是迄今最引人注目的抗氧化物质,而啤酒酿造用原料酒花是原花青素类物质的一个很好的来源。酒花原花青素对啤酒酿造过程中的非生物稳定性及抗氧化性能及人类保健均产生极大影响。
     本文利用RP-HPLC及UPLC-MS法分析市售葡萄籽原花青素对照品。RP-HPLC采用Zorbax Eclipse XDB-C_(18)(4.6×250 mm,5μm,美国Agilent公司)为色谱柱,以甲醇-水(含0.05%三氟乙酸)为流动相,流速0.4 mL/min,柱温25℃,DAD检测波长280 nm,进样量10μL,梯度洗脱分离后得到8种组份。依据ESI-MS选择性,采用UPLC-MS鉴定各化合物组成。共分析得到(±)-儿茶素、(-)-表儿茶素没食子酸酯3种单体,原花青素B2、B3、B4三种二聚体,原花青素C1和1种原花青素二聚体单酯。
     对酒花中原花青素进行有机溶剂萃取、大孔树脂粗分离和Sephadex LH-20层析分离纯化。以乙醇为萃取剂的有机溶剂萃取最佳条件为:pH为4.0-4.2,萃取剂乙醇浓度为50%,萃取温度85℃(沸腾),萃取时间2h,料液比为1∶20。采用已确立的最佳酒花浸提条件浸提酒花,得到酒花中原花青素粗提液,上以大孔吸附树脂为填料的层析柱进一步分离提纯。从国产ADS-8、ADS-17、ADS-21、AB-8和D101五种不同大孔吸附树脂中选择分离效果最好的AB-8树脂,进行原花青素粗提液的层析柱动态吸附实验,得到最佳大孔树脂吸附分离条件为:柱体积为14.5mL时,酒花粗提液原花青素浓度为1.8 mg/mL,上样量为30 mL,上样流速为20 mL/h,洗脱剂乙醇浓度为100%,洗脱流速为60 mL/h,洗脱剂用量为70 mL。该方法对于提纯酒花中原花青素具有较高普适性。经此三步提纯,最终分离得到包括儿茶素、原翠雀素在内的多种化合物。
     研究中对酒花原花青素进行分级,得到不同平均聚合度的七种原花青素。对这七种原花青素聚合物进行抗氧化实验,同时以(+)-儿茶素和抗坏血酸作对照,实验内容包括还原能力的检测、抑制脂质体过氧化能力测定、在亚油酸体系中的抗氧化能力检测、羟基自由基清除能力测定以及麦汁煮沸过程中对TBA产生的影响。实验结果表明,各物质还原能力由强到弱依次为:mDP为1.5-4的原花青素﹥(+)-儿茶素﹥抗坏血酸﹥mDP=5.55的原花青素;不同聚合度的酒花原花青素对脂质体的氧化过程的抑制作用具有一定的浓度效应且与聚合度关联不大;原花青素低聚物和抗坏血酸抑制亚油酸的自氧化作用随着添加量的增大而增强;随着样品浓度的增加,清除羟基自由基[HO·]效果逐渐加强;麦汁煮沸过程中TBA的产生与原花青素聚合度大小有较大关联性,聚合度为2左右的原花青素抗氧化能力最强,能够抑制老化前驱物质的产生。
Proanthocyanidins oligomers are the most interesting antioxidant around the world, which could easily be found in hops. Hop proanthocyanidins have a great impact non-biological stability and oxidant resistance in beer brewing, and it is good for human health too.
     In this study, the commercial proanthocyanidins from grape seed extracts which were used as reference substance were analyzed by RP-HPLC and UPLC-MS. Target compounds were separated by Zorbax Eclipse XDB-C18(4.6×250 mm,5μm) using methanol-water (including 0.05% TFA) as mobile phase. The flow rate was 0.4 mL min-1, column temperature was 25℃, and injection volume was 10μL. 8 compounds were obtained at OD280, and they were identified using UPLC-MS. There were three monomers, three dimers, one trimer and one dimer-monoester. Afterwards, the proanthocyanidins from hop were purified and analyzed. The hops were processed by organic solvent extraction, macroporous resin adsorption, and sephadex LH-20 chromatography. The optimum organic solvents extraction conditions were established as follows:50% ethanol(v/v) was used as solvent, and the extraction was taken for 2 h at pH4.0-4.2 and 85℃with the ratio of solvent to material at 20:1(v/w). Then the crude proanthocyanidins from hop were purified by using column chromatography (φ10×200 mm). AB-8 resin was chosen in this study from 5 kinds of macroporous resins (ADS-8, ADS-17, ADS-21, AB-8, and D101) for its excellent adsorption and desorption properties. The parameters were set as follows: the column volume, 14.5 mL; sample concentration, 1.8 mg/mL; sample volume, 3 mL; sample flow velocity, 20 mL/h. The adsorbed hop proanthocyanidins could be well eluted by 70 mL 100% ethanol with a elution rate of 60 mL/h. This method also has a good applicability in purification of hop proanthocyanidins. Finally various chemicals were purified including (±)-catechin and prodelphinidin.
     Seven proanthocyanidins with different degree of polymerization were obtained by the classification of average degree of polymerization. At the same time, the antioxidative activities of these polymers were measured using (+)- catechin and Vitamin C(Vc) as control. The tests included reducing capability, ability of inhibiting lipid peroxidation, ability of antioxidant in linoleic acid system, ability of scavenging hydroxyl free radical, and impact on TBA changes during wort boiling. The results of reducing ability were as follows: proanthocyanidins of mDP=1.5-4 > (+)- catechin> Vc > proanthocyanidins of mDP=5.55. Hop proanthocyanidins with any mDPs could inhibit the peroxidation of lipid, and the strength of inhibition effect has nothing to do with mDP. Besides, the inhibition had a certain concentration effect. In the linoleic acid system, the oligomeric procyanidins and Vc had the same effect in terms of inhibiting the oxidation of linoleic acid, and the inhibiting effect enhanced with increased dosage. The ability of scavenging [HO·] gradually strengthened with concentration increased. During wort boiling there was an obvious relationship with TBA changes and the mDP of procyanidins. Proanthocyanidins of mDP=2 had the most powerful antioxidative ability, which could significantly inhibited the forming of precursors.
引文
[1] Demuyakor B, Ohta Y. Characteristics of single and mixed culture fermentation of Pito beer[J]. Journal of the Science of Food and Agriculture, 1993, 62(4): 401-408.
    [2]吴巍,程秀凤,王春辉等.以原花青素B2标定葡萄籽提取物中原花青素含量[J].食品研究与开发. 2011, 32(4): 141-142.
    [3] Esatbeyoglu T, Jaschok-Kentner B, Wray V, et al. Structure Elucidation of Procyanidin Oligomers by Low-Temperature 1H NMR Spectroscopy[J]. Journal of Agricultural and Food Chemistry, 2010, 59(1): 62-69.
    [4] Santos Buelga C, Scalbert A. Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health[J]. Journal of the Science of Food and Agriculture, 2000, 80(7): 1094-1117.
    [5] Prieur C, Rigaud J, Cheynier V, et al. Oligomeric and polymeric procyanidins from grape seeds[J]. Phytochemistry, 1994, 36(3): 781-784.
    [6] Fuleki T, Da Silva J M R. Catechin and procyanidin composition of seeds from grape cultivars grown in Ontario[J]. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1156-1160.
    [7] Mc Murrough. I. High-performance liquid chromatography of flavonoids in barley and hops[J]. Journal of Chromatography A, 1981, 218: 683-693.
    [8] Callemien D, Jerkovic V, Rozenberg R, et al. Hop as an interesting source of resveratrol for brewers: optimization of the extraction and quantitative study by liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2005, 53(2): 424-429.
    [9] Jerumanis J. Quantitative analysis of flavonoids in barley, hops and beer by high-performance liquid chromatography (HPLC)[J]. Journal of the Institute of Brewing, 1985, 91(4): 250.
    [10]Li H J, Deinzer M L. Structural identification and distribution of proanthocyanidins in 13 different hops[J]. Journal of Agricultural and Food Chemistry, 2006, 54(11): 4048-4056.
    [11]Stevens J F, Miranda C L, Wolthers K R, et al. Identification and in vitro biological activities of hop proanthocyanidins: inhibition of nNOS activity and scavenging of reactive nitrogen species[J]. Journal of Agricultural and Food Chemistry, 2002, 50(12): 3435-3443.
    [12]Friedrich W, Galensa R. Identification of a new flavanol glucoside from barley (Hordeum vulgare L.) and malt[J]. European Food Research and Technology, 2002, 214(5): 388-393.
    [13]Zimmermann B F, Galensa R. Proof of authenticity and tracing of foods with flavonoids[J]. European Food Research and Technology, 2007, 224(3): 385-393.
    [14]Achilli G, Piero Cellerino G, Gamache P H, et al. Identification and determination of phenolic constituents in natural beverages and plant extracts by means of a coulometric electrode array system[J]. Journal of Chromatography A, 1993, 632(1-2): 111-117.
    [15]BartoloméB, Pena-Neira A, Gómez-Cordovés C. Phenolics and related substances in alcohol-free beers[J]. European Food Research and Technology, 2000, 210(6): 419-423.
    [16]Gorinstein S, Caspi A, Zemser M, et al. Comparative contents of some phenolics in beer, red and white wines[J]. Nutrition Research, 2000, 20(1): 131-139.
    [17]Hayes P J, Smyth M R, Mcmurrough I. Comparison of electrochemical and ultraviolet detection methods in high-performance liquid chromatography for the determination of phenolic compounds commonly found in beers[J]. Analyst, 1987, 112(9): 1197-1204.
    [18]Callemien D, Collin S. Involvement of flavanoids in beer color instability during storage[J]. Journal of Agricultural and Food Chemistry, 2007, 55(22): 9066-9073.
    [19]Callemien D, Collin S. Use of RP-HPLC-ESI(-)-MS/MS to differentiate various proanthocyanidin isomers in lager beer extracts[J]. Journal of the American Society of Brewing Chemist, 2008, 66(2): 109-115.
    [20]Callemien D, Guyot S, Collin S. Use of thiolysis hyphenated to RP-HPLC-ESI (-)-MS/MS for the analysis of flavanoids in fresh lager beers[J]. Food Chemistry, 2008, 110(4): 1012-1018.
    [21]Kirby W, Wheeler R E. The extraction of beer polyphenols and their assay by HPLC[J]. Journal of the Institute of Brewing, 1980, 86: 15-17.
    [22]Madigan D, Mcmurrough I, Smyth M R. Determination of proanthocyanidins and catechins in beer and barley by high-performance liquid chromatography with dual-electrode electrochemical detection[J]. Analyst, 1994, 119(5): 863-868.
    [23]Mc Murrough I, Madigan D, Smyth M R. Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley[J]. Journal of Agricultural and Food Chemistry, 1996, 44(7): 1731-1735.
    [24]Mulkay P, Touillaux R, Jerumanis J. Proanthocyanidins of Barley-Separation and Identification[J]. Journal of Chromatography A, 1981, 208(2): 419-423.
    [25]Delcour J A, Tuytens G M. Structure elucidation of three dimeric proanthocyanidins isolated from a commercial Belgian pilsner beer[J]. Journal of the Institute of Brewing, 1984, 90(3): 153-161.
    [26]Eastmond R. The separation and identification of a dimer of catechin occurring in beer[J]. Journal of the Institute of Brewing, 1974, 80: 188-192.
    [27]Mcmurrough I, Baert T. Identification of proanthocyanidins in beer and their direct measurement with a dual electrode electrochemical detector[J]. Journal of the Institute of Brewing, 1994, 100(6): 409-416.
    [28]Mcmurrough I, Madigan D, Kelly R J, et al. The role of flavanoid polyphenols in beerstability[J]. American Society of Brewing Chemists, 1996, 54(4): 198-204.
    [29]Buggey L. A review of polyphenolic antioxidants in hops, brewing and beer[J]. Brewer International, 2001, 1(4): 21-25.
    [30]Andersen M L, Outtrup H, Skibsted L H. Potential antioxidants in beer assessed by ESR spin trapping[J]. Journal of Agricultural and Food Chemistry, 2000, 48(8): 3106-3111.
    [31]Andersen M L, Skibsted L H. Modification of the levels of polyphenols in wort and beer by addition of hexamethylenetetramine or sulfite during mashing[J]. Journal of Agricultural and Food Chemistry, 2001, 49(11): 5232-5237.
    [32]Counet C, Collin S. Effect of the number of flavanol units on the antioxidant activity of procyanidin fractions isolated from chocolate[J]. Journal of Agricultural and Food Chemistry, 2003, 51(23): 6816-6822.
    [33]Liégeois C, Lermusieau G, Collin S. Measuring antioxidant efficiency of wort, malt, and hops against the 2, 2'-azobis (2-amidinopropane) dihydrochloride-induced oxidation of an aqueous dispersion of linoleic acid[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4): 1129-1134.
    [34]Lotito S B, Actis-Goretta L, Renart M L, et al. Influence of oligomer chain length on the antioxidant activity of procyanidins[J]. Biochemical and Biophysical Research Communications, 2000, 276(3): 945-951.
    [35]Plumb G W, De Pascual-Teresa S, Santos-Buelga C, et al. Antioxidant properties of catechins and proanthocyanidins: effect of polymerisation, galloylation and glycosylation[J]. Free Radical Research, 1998, 29(4): 351-358.
    [36]Kumazawa S, Taniguchi M, Suzuki Y, et al. Antioxidant activity of polyphenols in carob pods[J]. Journal of Agricultural and Food Chemistry, 2002, 50(2): 373-377.
    [37]Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease[J]. The Lancet, 1992, 339: 1523-1526.
    [38]Frémont L. Biological effects of resveratrol[J]. Life sciences, 2000, 66(8): 663-673.
    [39] Rimm E B, Klatsky A, Grobbee D, et al. Review of moderate alcohol consumption and reduced risk of coronary heart disease: is the effect due to beer, wine, or spirits?[J]. British Medical Journal, 1996, 312: 731-736.
    [40]Ronald L, Lazarus S A, Cao G, et al. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp) using high-performance liquid chromatography/mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2001, 49(3): 1270-1276.
    [41]Schewe T, Kühn H, Sies H. Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase[J]. The Journal of Nutrition, 2002, 132(7): 1825-1829.
    [42]Schramm D D, Wang J F, Holt R R, et al. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells[J]. TheAmerican Journal of Clinical Nutrition, 2001, 73(1): 36.
    [43]Sanbongi C, Suzuki N, Sakane T. Polyphenols in Chocolate, Which Have Antioxidant Activity, Modulate Immune Functions in Humansin Vitro[J]. Cellular Immunology, 1997, 177(2): 129-136.
    [44]Mcmurrough I, Mcdowell J. Chromatographic separation and automated analysis of flavanols[J]. Analytical Biochemistry, 1978, 91(1): 92-100.
    [45]Delcour J, Devarebeke D J. A new colorimetric assay for flavonoids in pilsner beers[J]. Journal of the Institute of Brewing, 1985, 91(1): 37-40.
    [46]Sarkar S K, Howarth R E. Specificity of the vanillin test for flavanols[J]. Journal of Agricultural and Food Chemistry, 1976, 24(2): 317-320.
    [47]Sun B, Ricardo-Da-Silva J M, Spranger I. Critical factors of vanillin assay for catechins and proanthocyanidins[J]. Journal of Agricultural and Food Chemistry, 1998, 46(10): 4267-4274.
    [48]Porter L J, Hrstich L N, Chan B G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin[J]. Phytochemistry, 1985, 25(1): 223-230.
    [49]Mcmurrough I, Madigan D, Kelly R J. Evaluation of rapid colloidal stabilization with polyvinylpolypyrrolidone (PVPP)[J]. Journal of the American Society of Brewing Chemists, 1997, 55(2): 38-43.
    [50]Whittle N, Eldridge H, Bartley J, et al. Identification of the polyphenols in barley and beer by HPLC/MS and HPLC/electrochemical detection[J]. Journal of the Institute of Brewing, 1999, 105(2): 89-99.
    [51]Guyot S, Doco T, Souquet J M, et al. Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. Kermerrien) skin and pulp[J]. Phytochemistry, 1997, 44(2): 351-357.
    [52]Gu L, Kelm M A, Hammerstone J F, et al. Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7513-7521.
    [53]Kelm M A, Johnson J C, Robbins R J, et al. High-performance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase[J]. Journal of Agricultural and Food Chemistry, 2006, 54(5): 1571-1576.
    [54]Gu L, Kelm M, Hammerstone J F, et al. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method[J]. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4852-4860.
    [55]Guyot S, Marnet N, Sanoner P, et al. Direct thiolysis on crude apple materials for high-performance liquid chromatography characterization and quantification ofpolyphenols in cider apple tissues and juices[J]. Methods in Enzymology, 2001, 335: 57-70.
    [56]Kennedy J A, Jones G P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol[J]. Journal of Agricultural and Food Chemistry, 2001, 49(4): 1740-1746.
    [57]Matthews S, Mila I, Scalbert A, et al. Method for estimation of proanthocyanidins based on their acid depolymerization in the presence of nucleophiles[J]. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1195-1201.
    [58]Ohnishi Kameyama M, Yanagida A, Kanda T, et al. Identification of Catechin Oligomers from Apple (Malus pumila cv. Fuji) in Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry and Fast-atom Bombardment Mass Spectrometry[J]. Rapid Communications in Mass Spectrometry, 1997, 11(1): 31-36.
    [59]Ramirez-Coronel M A, Marnet N, Kolli V S K, et al. Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (Coffea arabica) by thiolysis-high-performance liquid chromatography[J]. Journal of Agricultural and Food Chemistry, 2004, 52(5): 1344-1349.
    [60]鲍俊竹,陈月坤,徐桂花.测定葡萄籽提取物中原花青素含量的方法[J].农业科学研究. 2005, 26(1): 43-45.
    [61]李春阳,许时婴,王璋.低浓度香草醛-盐酸法测定葡萄籽,梗中原花青素含量的研究[J].食品工业科技. 2004, 25(006): 128-130.
    [62]魏冠红.高聚原花青素的水解工艺研究[Z].浙江大学, 2006.
    [63]Oyaizu M. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine.[J]. Japanese Journal of Nutrition, 1986, 44(6): 307-315.
    [64]Huang S W, Frankel E N. Antioxidant activity of tea catechins in different lipid systems[J]. Journal of Agricultural and Food Chemistry, 1997, 45(8): 3033-3038.
    [65]Yi O S, Meyer A S, Frankel E N. Antioxidant activity of grape extracts in a lecithin liposome system[J]. Journal of the American Oil Chemists' Society, 1997, 74(10): 1301-1307.
    [66]Larrauri J A, Ruperez P, Calixto F S. Antioxidant activity of wine pomace[J]. American Journal of Enology and Viticulture, 1996, 47(4): 369-372.
    [67]Kikuzaki H, Nakatani N. Antioxidant effects of some ginger constituents[J]. Journal of Food Science, 1993, 58(6): 1407-1410.
    [68]Halliwell B, Gutteridge J, Aruoma O I. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals[J]. Analytical Biochemistry, 1987, 165(1): 215-219.
    [69]李崎.啤酒风味及风味稳定性的研究[D].无锡:无锡轻工大学博士学位论文. 1998.
    [70]Zhao H, Dong J, Lu J, et al. Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L.)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(19): 7277-7286.
    [71]Noel S, Metais N, Bonte S, et al. The use of oxygen 18 in appraising the impact of oxidation process during beer storage[J]. Journal of the Institute of Brewing, 1999, 105(5): 269-274.
    [72]Owades J L, Rubin G, Brenner M W. Food Tannins Measurement, Determination of Food Tannins by Ultraviolet Spectrophotometry[J]. Journal of Agricultural and Food Chemistry, 1958, 6(1): 44-46.
    [73]Jerumanis, J. Separation and identification of flavanoids by high-performance liquid chromatography (HPLC). Proceedings of the Congress - European Brewery Convention 1979, 17th, 309-319.
    [74]Zhu Q Y, Holt R R, Lazarus S A, et al. Stability of the flavan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa[J]. Journal of Agricultural and Food Chemistry, 2002, 50(6): 1700-1705.
    [75]Guyot S, Vercauteren J, Cheynier V. Structural determination of colourless and yellow dimers resulting from (+)-catechin coupling catalysed by grape polyphenoloxidase[J]. Phytochemistry, 1996, 42(5): 1279-1288.
    [76]Guyot S, Doco T, Souquet J M, et al. Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var kermerrien) skin and pulp. Phytochemistry, 1997, 44 (2), 351–357.
    [77]Kelm M A, Johnson J C, Robbins R J, et al. Schmitz H.H. High-performance liquid chromatography separation and purification of cacao (theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase. Journal of Agricultural and Food Chemistry, 2006, 54 (5), 1571–1576.
    [78]杨成对,宋丽晖,汪聪慧.葡萄籽中原花青素的液相色谱质谱分析[J].现代科学仪器. 2005, 4(1): 46-47.
    [79]杜彦山.葡萄籽综合利用研究[D].江南大学, 2006.
    [80]赵平,宋学娟,张月萍等.葡萄籽原花青素提取动力学研究[J].食品科学. 2010(01): 110-112.
    [81]耿艳辉,周站云,郭月玲等.大孔吸附树脂在天然药物研究中的应用[J].河北化工. 2008, 31(5): 18-20.
    [82]陈季武,胡天喜.测定·OH产生与清除的化学发光体系[J].生物化学与生物物理进展. 1992, 19(2): 136-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700