交流输电线路单相接地潜供电弧自熄特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着输电系统电压等级的提高和特高压输电工程的建设,交流输电线路单相接地潜供电弧自熄特性问题日渐突显,对确保系统单相重合闸成功率具有重要意义。现有研究对潜供电弧这种处于开放环境中的长间隙小电流空气电弧的物理特性涉及甚少,本文在大量电弧试验基础上,建立了输电线路潜供电弧仿真模型,计算潜供电弧自熄特性,为确定系统单相重合闸整定时间提供指导。
     从模拟试验角度出发,设计了10kV试验回路,进行了长间隙小电流燃弧试验,结合国家电网公司特高压交流输电工程关键技术研究潜供电流自熄特性的项目,进行了特高压输电线路潜供电弧自熄的模拟试验。测量了电弧试验波形,拍摄了电弧的动态图像,阐明了电弧电压和电流波形的发展轨迹,给出了电弧的弧道电阻和动态伏安曲线,揭示了电弧自熄的弧阻特征。对燃弧时间与电流、恢复电压梯度和风的关系进行了统计分析,结果表明风对电弧自熄的影响显著。
     根据空气电弧等离子体辐射的光谱诊断原理,结合彩色CCD的光谱响应特性,由经光学预处理的彩色CCD高速图像采集系统拍摄长间隙空气电弧图像,采用数字图像处理技术分析电弧彩色位图文件,通过阿贝尔变换得到电弧径向光强分布,用比色方法计算电弧温度。设计并研制了长间隙空气电弧温度测量系统,对小电流电弧温度特性进行了测量和分析,为研究潜供电弧自熄特性提供了参考和依据。
     基于传统电弧理论和试验研究结果,采用非线性时变电阻描述弧道特性,区别短路电弧与潜供电弧的特性差异,建立弧道电阻动态方程,分析潜供电弧的运动特性,获得电弧实时长度以迭代计算弧阻,结合潜供电流零休时间较长的特点,根据能量守恒原则提出了判断电弧是否熄灭的弧阻判据,给出了计算潜供电弧特性的等效电路和仿真流程,建立了潜供电弧仿真模型。编制了实用程序,对10kV试验回路产生的小电流电弧和特高压输电线路潜供电弧模拟试验的电弧电流、电压、弧阻和燃弧时间等特性进行了仿真计算,与试验结果基本一致。本文研究电弧长度的实时变化和电弧自熄的弧阻特性,提出了一种计算输电线路潜供电弧自熄特性的仿真模型。
     结合我国特高压交流试验示范工程,运用本文建立的潜供电弧仿真模型,对电弧的运动特性、电流波形等进行了仿真计算,得到了潜供电弧自熄时间。在特高压交流试验示范工程进行的人工单相短路接地试验表明,仿真结果与现场的实测结果基本吻合,验证了输电线路潜供电弧仿真模型的正确性和有效性。
     上述研究成果表明,本文提出的潜供电弧模拟试验方法合理、结论可信,潜供电弧温度测量系统可有效获得电弧等离子体温度特性,试验结果对分析电弧自熄特性和建立潜供电弧仿真模型具有参考价值,文中建立的潜供电弧仿真模型用于分析潜供电弧自熄特性是可行的,可直接计算潜供电弧自熄时间,具有工程实用价值。
With the increase of the voltage degree and the construction of UHV transmission project, it is important to investigate the self-extinction behavior of secondary arc in AC transmission line for guaranteeing the successful working of sing-phase re-closure device in power system. As will be readily seen, the physical characters of secondary arc have been little involved in the common research. On the basis of arcing tests, the simulation model of secondary arc in transmission line was established in this paper to compute the self-extinction behavior of secondary arc, providing the theoretical foundation for setting time of sing-phase re-closure.
     From the simulated test point of view, the test circuit of lOkV for arc at low current was designed, and experimental works associated with arc were operated. As the project was founded to study the secondary current in the UHVAC transmission line by State Grid Corporation of China (SGCC), a great amount of simulated tests on the self-extinction behavior of secondary arc were conducted at Shahe Laboratory of NorthChina Electric Power Research Institute (NCEPRI)) combined with China Electric Power Research Institute (CEPRI). The arc waveforms of voltage and current were recorded and arcs'developing films were taken by the high-speed imaging system. Arcs'physical characteristics were presented to get their time-varying characters. The transitional traces of arc waveforms were discussed with the physics doctrine. Arc resistance curve and its dynamic u-i characteristics were interpreted through the energy balance principle at the time of arc self-extinction. Finally the relations of the duration times of arc to current, voltage gradient and wind speed were studied statically to exhibit that wind is one of the key factors for arc self-extinction. All works have set the basis for arcing tests of secondary arc.
     According to the spectrum diagnosis principle for plasma radiation of air arc, combined with the spectrum response characteristics, the arc films in long gap were taken by the corrected high-speed image sampling system with the color CCD camera added the interference filters, with the numerical image process technology, the pixels at character wavelengths were reverted to the radiation strength. And then the radial distribution of arc radiation was gotten by Abel transform. The temperatures of arc plasma were calculated by the colorimetric method of the relative radiation strength. The temperature measurement system was developed for air arc in long gap in the paper for the first time, and the temperature distributions of arc were measured in the gross and discussed primarily. The measured results on the temperature characteristics have provided the reference for analyzing the self-extinction behavior of secondary arc.
     Based on Mayr arc theory, one of the classical arc theories, a non-linear time-varying resistance was used to descript the arc channel condition, with the influence on the self-extinction behavior of secondary arc by the short-circuit current, taking account of the movement characters of secondary arc in transmission line, so the real-time arc length of secondary arc was gotten to compute arc resistance in iteration. The criterion associated with arc resistance was proposed to judge arc self-extinction on the energy balance principle. The equivalent circuit connected with the applied system was also put forward to calculate arc characteristics, and the simulation flow for arc self-extinction behavior was further expressed in detail. The simulation model of secondary arc was established. The relevant program was edited for simulation. The waveforms of arc voltage, current, resistance and the duration times of arc were calculated for the test circuit of lOkV and the simulated tests of secondary arc in UHV transmission line, conforming to the corresponding test results. The simulation model for secondary arc in transmission line keeps one-up advantage over the world on simulating secondary arc to get its self-extinction behavior, where the elongation of arc length and the characteristics of arc resistance at arc self-extinction were taken into account for the application of sing-phase re-closure.
     The UHVAC demonstration project in China was set as an example, arc movement, arc current and voltage waveforms, and the duration times of secondary arc were computed by the simulation model proposed in the paper. Compared with the results from the artificial single-phase grounding tests in the demonstration project, the simulation results conform to the measured data, which proves the accuracy and the effectiveness of the simulation model.
     All the achievements have shown that, the test methods and conclusions are reliable, and the temperature measurement method for arc plasma is valid, providing the important reference to further investigate and simulate secondary arc. And the simulation model proposed in the paper is available and feasible for secondary arc in AC transmission line, which can be used to compute arc characteristics and attain the duration times of secondary arc directly, being of great engineering application.
引文
[1]曾昭华.500kV输电线单相重合闸过程中的潜供电流和恢复电压.电网技术,1988,12(11):53-55。
    [2]梅忠恕.超高压电网潜供电流与单相重合闸.云南电力技术,1999,27(2):9-11。
    [3]梅忠恕.超高压电网潜供电流与单相重合闸(Π).云南电力技术,1999,27(2):15-18。
    [4]谷定燮,周沛洪.特高压输电系统过电压、潜供电流和无功补偿.高电压技术,2005,31(11):21-25。
    [5]J.Esztergalyos, J.Andrichak, D.H.Colwell, D.C.Dawson etc. Single Phase Tripping and Auto Reclosure of Transmission Lines -IEEE Committee Report. IEEE Transaction on Power Delivery,1992, Vol.7, No.1, pp.182-192.
    [6]Goldberg S, Horton W F, Obispo S L, et al. A computer model of the secondary arc in single phase operation of transmission lines. IEEE Transaction on Power Delivery,1989,4(1): 583-594.
    [7]牛晓明,王晓彤,施围等.超高压串联补偿输电线路的潜供电流和恢复电压.电网技术,1998,22(9):9-12,16。
    [8]李斌,李永丽,盛鹃等.带并联电抗器的超高压输电线单相自适应重合闸的研究.中国电机工程学报,2004,24(5):52-56。
    [9]刘洪顺,李庆民,邹亮,娄杰.安装故障限流器的输电线路潜供电弧特性与单相重合闸策略.中国电机工程学报,2008,28(31):62-67。
    [10]刘振亚.特高压电网.北京:中国经济出版社,2005。
    [11]王其平.电器电弧理论.北京:机械工业出版社,1982。
    [12]张冠生.电器理论基础.北京:机械工业出版社,1989。
    [13]N. I. Elkalashy, M. Lehtonen, H. A. Darwish et al. Modeling and Experimental Verification of a High Impedance Arcing Fault in MV Networks. PSCE 2006, pp.1950-1956.
    [14]N. I. Elkalashy, M. Lehtonen et al. Modeling Experimental Verification of High Impedance Arcing Fault in Medium Voltage Networks. IEEE Transactions on Dielectrics and Electrical Insulation,2007, Vol.14, No.2, pp.375-383.
    [15JJ.R. Eaton, J.K. Peck and J.M. Dunham. Experimental Studies of Arcing Faults on a 75kV Transmission System. Transaction AIEE, December 1931.
    [16]E.T.B. Gross. Free Burning Long Power Arcs at High Voltage. Schweizer Arkiv fu rAngewandte Wissenschaft und Technik,1941, Vol.7.
    [17]V.V. Terzija and H.-J. Koglin. Laboratory Testing and Dynamic Modeling of Long Arc in Free Air. IEEE Transaction on Power Delivery,2000, Vol.15, No.3, pp.897-902.
    [18]V. V. Terzija and H.-J. Koglin. Long Arc in Still Air:Testing, Modeling, Simulation and Model Parameters Estimation, IEEE Transaction on Power Delivery,2000, Vol.15, No.1, pp. 36-45.
    [19]V.V. Terzija and H.-J. Koglin. Testing, Modeling and Simulation of Long Arc in Still Air. IEEE Transaction on Power Delivery,2001, Vol.16, No.3, pp.1140-1145.
    [20]V. V. Terzija and H.-J. Koglin. Long Arc in Free Air:Laboratory Testing, Modeling, Simulation and Model-parameters Estimation. IEE Proc.-Gener. Transmission Distribution, 2002, Vol.149, No.3, pp.319-325.
    [21]Y. Goda, S. Matsuda, T. Inaba, Y. Ozaki. Behavior of Post-arc Gas after Arc Interruption on UHV (1000kV class) Transmission Lines. IEEE Transactions on Power Delivery,1993, Vol. 8,No.4,pp.1907-1913.
    [22]Y Goda, S. Matsuda, T. Inaba and Y. Ozaki. Behavior of Post Arc Gas after Arc Interruption on UHV (1000kV class) Transmission Lines. IEEE Transactions on Power Delivery,1994, Vol.9, No.2, pp.887-893.
    [23]Y.Goda, S.Matsuda, T.Inaba and Y.Ozaki. Insulation Recovery Time after Fault Arc Interruption for Rapid Auto Re-closing on UHV (1000kV class) Transmission Lines. IEEE Transactions on Power Delivery,1995, Vol.10, No.2, pp.1060-1065.
    [24]曹荣江,朱拱照,崔景春.关于超高压线路上潜供电弧持续现象的研究.高电压技术,1976(3):35-38。
    [25]陈天祥,曹荣江.330kV线路潜供电弧自灭特性的研究.电网技术,1988,12(2):1-10。
    [26]赵鹏.500kV潜供电弧自灭特性的现场测试研究综述.北京电机工程学会学报,1998,pp.1-3。
    [27]中国电力科学研究院,华北电力科学研究院,东北电力设计院.电力系统潜供电弧自灭特性的模拟研究.中国电力科学研究院,1994。
    [28]曹荣江,顾霓鸿,盛勇.电力系统潜供电弧自灭特性的模拟研究.中国电机工程学报,1996,16(2):73-78。
    [29]中国电力科学研究院,华北电网有限公司廊坊供电公司.10kV配电网单相接地故障电弧自熄特性研究.北京:中国电力科学研究院,2007。
    [30]宋杲,林集明等.1000kV特高压交流同塔双回输电线路潜供电弧及其控制研究.北京:中国电力科学研究院,2008。
    [31]赵子玉,武建文,邹积岩等.利用CCD摄像系统研究真空电弧演变过程.中国电机工程学报,1999,19(11):10-13,58。
    [32]武建文,王毅,王季梅.利用动态图像高速微机采集系统对真空电弧电子密度分布的测试.电工技术学报,1997,12(3):37-41。
    [33]过增元,赵文华.电弧和热等离子体.北京:科学出版社,1986。
    [34]ThermaCAM P65红外热像仪说明书,Flir公司,2007。
    [35]张淳民,赵葆常.偏振干涉成像光谱仪中偏振化方向对调制度的影响.光学学报,2000,20(8):1077-1083。
    [36]苏丽娟,相里斌,袁艳.高光谱分辨率横向剪切静态干涉光谱仪.光子学报,2006,35(5):684-687。
    [37]项志遴.高温等离子体诊断技术.北京:中国计量出版社,1984。
    [38]崔志尚.温度计量与测试.北京:中国计量出版社,1998。
    [39]姜忠良.温度的测量与控制.北京:清华大学出版社,2005。
    [40]V.V. Terzija and H.-J. Koglin. New Approach to Arc Resistance Calculation. IEEE Transaction on Power Delivery,2001, Vol.16, No.3, pp.781-787.
    [41]V.V. Terzija and H.-J. Koglin. On the Modeling of Long Arc in Still Air and Arc Resistance Calculation. IEEE Transaction on Power Delivery,2004, Vol.19, No.3, pp.1012-1017.
    [42]Johns A T, Aggarwal R K and Song Y H. Improved Techniques for Modeling Fault Arcs on Faulted EHV Transmission System. IEE Proc.-Generation Transmission Distribution,1994, Vol.141, No.2, pp.148-154.
    [43]S. P. Websper, A.T.Johns, R.K.Aggarwal and R.W.Dunn. An Investigation into Breaker Re-closure Strategy for Adaptive Single Pole Auto Re-closing. IEE Proc.-Gener. Transm. Distribution,1995, Vol.142, No.6, pp.601-607.
    [44]Darwish H A and Elkalashy N I. Universal Arc Representation Using EMTP. IEEE Transaction on Power Delivery,2005, Vol.20, No.2, pp.772-779.
    [45]Dudurych I M, Gallagher T. J. and Rosolowski E. Arc Effect on Single-phase Reclosing Time of a UHV Power Transmission Line. IEEE Transaction on Power Delivery,2004, Vol.19, No.2, pp.854-860.
    [46]Dmitriev M V, Evdokunin G A, Gamilko V A. EMTP Simulation of the Secondary Arc Extinction at Overhead Transmisission Lines under Single Phase Automatic Reclosing.2006 International Conference on UHV Transmission Technology, Beijing, China,2006.
    [47]柴旭峥,梁曦东,曾嵘,何金良.串联补偿的远距离输电线路潜供电弧参数特性.电力系统自动化,2007,31(5):7-12,56。
    [48]舒亮,贾磊,郑士谱,等.超高压线路潜供电弧电压的频率特性分析[J].西安交通大学学报,2007,41(6):712-716.
    [49]商立群,施围.计算同杆双回输电线路潜供电流与恢复电压的二次模方法.西安交通大学学报,2005,39(2):193-199。
    [50]林莘,何柏娜,徐建源.超高压线路上潜供电弧熄灭特性的分析.高电压技术,2006,32(3):7-9。
    [51]谷山强,何金良,陈维江等.架空输电线路并联间隙防雷装置电弧磁场力计算研究.中国电机工程学报,2006,26(7):140-145。
    [52]谷山强.架空线路长间隙交流电弧运动特性及其应用研究(博士学位论文).北京:清华大学,2007。
    [53]姚尧,阮羚,沈煜.超高压可控电抗器抑制潜供电流研究.高压电器,2009,45(2):22-26。
    [54]韩彦华,范越,施围.快速接地开关熄灭潜供电弧的研究.西安交通大学学报,2000,34(8):14-17。
    [55]王皓,李永丽,李斌.750kV及特高压输电线路抑制潜供电弧的方法.中国电力,2005,38(12):29-32。
    [56]王仁甫.电弧现象模型的发展.高压电器,(4):39-45,1991。
    [57]M. Kizilcay, G. Ban, L. Prikler and P. Handl. Interaction of the Secondary Arc with the Transmission System during Single-phase Autoreclosure.2003 IEEE Bologna PowerTech Conference,2003, pp.41-47.
    [58]F. A.T. Silva, J.A. Jardini. Viability of Performanent Single-phase Opening of Lines in Extra High Voltage Systems PART I-Secondary Arc Extinction. IEEE 2000,2000, pp.2673-2680.
    [59]刘继.送电线路自动重合闸装置.上海:科技卫生出版社,1958。
    [60]颜湘莲,陈维江,贺子鸣等.10kV配电网单相接地故障电弧自熄特性的试验研究.电网技术,2008,32(8):25-28,34。
    [61]颜湘莲,李志兵.输电线路潜供电弧模型研究.北京:中国电力科学研究院,2009。
    [62]Sweeny D W, Attwood D T, Coleman L W. Interferometric Probing of Laser Produced Plasmas. Applied Optics,1976,15, pp.1123-1128.
    [63]邵其均等.直流等离子体电弧温度测量与模拟计算结果的比较.物理学报,1999,48(9):1691-1700。
    [64]Samuel William Hasinoff. Three Dimensional Reconstruction of Fire from Images. PHD thesis for degree of Computer Science. University of Toronto,2002, pp.41-44.
    [65]李汉舟,潘泉,张洪才等.基于数字图像处理的温度检测算法研究.中国电机工程学报,2003,23(6):195-199。
    [66]彭小奇,周海叶,宋海鹰.CCD三色测温的插值修正方法.中国电机工程学报,2004,24(8):163-169。
    [67]Bockasten K. Transformation of Observed Radiances into Radial Distribution of the Emission of Plasma. J Opt Soc Amer.,1961,51(9):943-947.
    [68]绍华,朱丹平,吴毅雄.电弧等离子体温度场中Abel逆变换的数值算法分析.计算物理,1995,22(5):431-436。
    [69]Stanley R Deans. Radon and Abel transforms. The Transforms and Applications Handbook. A D Poularikas. ed, CRC Press Inc., Boca Raton, FL,1996.
    [70]张新育.气吹断路器开断电弧零区现象及其数学模型的探讨(硕士学位论文).北京:水利电力部电力科学研究院,1985。
    [71]赵卫中、朱拱照、周燕仪、曹荣江.开关电弧黑盒模型计算方法新探.中国电机工程学报,1988,8(15):1-11.
    [72]古金国,徐国政,钱家骊.故障电弧特性.高压电器,1999,(6):41-44。
    [73]David Fransco Peelo. Current Interruption Using High Voltage Air-break Disconnectors. Cip-data Library Technische Universiteit Eindhoven,2004.
    [74]李庆杨等.数值分析(第4版).北京:清华大学出版社,2001.
    [75]Guile A E and Sloot J G J. Magnetically Driven Arcs with Combined Column and Electrode Interactions. Proc. IEE,1975, Vol.122, No.6, pp.669-671.
    [76]Essiptchouk A M, Sharakhovsky L I and Marotta A. A New Formula for the Rotational Velocity of Magnetically Driven Arcs. J. Phys. D:Appl. Phys.,2000, No.33, pp.2591-2597.
    [77]张晋,陈德桂,付军.低压断路器灭弧室中磁驱电弧的数学模型.中国电机工程学报,1999,19(10):22-27.
    [78]颜湘莲,陈维江,王承玉等.计及风影响的潜供电弧自熄特性计算研究,中国电机工程学报,2009,29(10):1-6.
    [79]王泽忠,全玉生,卢斌先.工程电磁场.北京:清华大学出版社,2004。
    [80]周希朗.电磁场.北京:电子工业出版社,2008.
    [81]Meunier G and Abri A. A Model for the Current Interruption of an Electric Arc. IEEE Trans. Magn.,1984, Vol.20, No.5, pp.1956-1958.
    [82]龙立宏,胡毅,李景禄.输电线路风偏放电的影响因素研究.高电压技术,2006,32(4):19-21.
    [83]曹荣江,顾霓鸿.高压交流断路器的运行条件.北京:北京工业大学出版社,1999。
    [84]邱关源.电路(第三版).北京:高等教育出版社,2003。
    [85]Justus C G, Hargraves W R, Mikhail A et al. Methods for Estimating Wind Speed Frequency Distributions. Journal of Applied Meteorology,1978, Vol.17, No.3, pp.350-353.
    [86]Feijoo A E, Cidras J, Dornelas J L G. Wind Speed Simulation in Wind Farms for Steady-state Security Assessment of Electrical Power Systems. IEEE Transactions on Energy Conversion,1999, Vol.14, No.4, pp.1582-1588.
    [87]李光琦.电力系统暂态分析(第三版).北京:中国电力出版社,2007。
    [88]许颖,徐士珩.交流电力系统过电压防护及绝缘配合.北京:中国电力出版社,2006。
    [89]蒋卫平,朱艺颖,吴雅妮等,750kV输变电示范工程单相人工接地故障试验现场实测和计算分析,电网技术,30(19):42-47,52。
    [90]张晓莉,周泽昕,王玉玲等.1000kV交流输电系统动态模拟研究.电网技术,2006,30(7):1-4。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700