基于多光谱分析的火焰温度及烟黑浓度分布检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源危机的日益严重和人们对环境问题的逐渐重视,化石燃料的燃烧效率的提高和燃烧污染物排放的减少成为各国学者研究的热点,而温度作为确定物质状态和反映燃烧反应过程的重要状态参数之一,其准确测量对于完善燃烧理论和了解燃烧过程都具有重大指导意义。火焰温度和辐射特性参数如黑度、吸收系数、散射系数和烟黑浓度等是耦合在一起的,因此实现温度和辐射特性参数的同时准确测量反演成为一种十分有效的方式,但同时也增加了问题解决的难度。通过对火焰的多光谱测量能够提供大量的包含了火焰温度和辐射特性信息的光谱强度,研究人员不但可以采用对多光谱数据进行直接处理分析来计算火焰边界的温度和辐射特性参数,而且可以采用基于辐射逆问题的计算方法从光谱强度信息中计算反演出火焰内部的温度和辐射特性参数分布。本文在这两个方面进行了模拟和试验研究,主要的研究内容如下:
     在基于火焰的多光谱辐射信息的直接处理方面提出了一种简单的基于介质边界光谱强度信息的温度和黑度分布检测方法,并在此基础上以一维灰性平行平板和二维灰性轴对称系统为研究对象,结合DRESOR法分析了多种工况下介质内不同温度和吸收、散射系数分布对边界温度和黑度随波长变化分布的影响,结果表明:即使对于内部为灰性介质的系统来说,边界辐射仍然有可能为非灰体特性,检测的温度也可能随波长变化,因此目前很多基于灰体假设的温度测量方法的有效性需要进一步的验证,特别是利用较大波长范围内多波长能量信息的多波长法。
     利用经过黑体炉标定的200~11 00nm波长范围的可见光光谱仪检测火焰的边界辐射强度分布,然后采用本文提出的方法计算火焰边界的温度和黑度随波长分布,并根据黑度随波长分布确定介质符合灰体条件的波长范围。针对凝固汽油火焰、赤磷火焰、和420t/h的电站锅炉煤粉火焰开展试验研究,结果表明:凝固汽油的火焰辐射在波长550到900nm范围内可以看作是灰体辐射;煤粉火焰则在500到1000nm范围的辐射强度分布符合灰体条件;而赤磷火焰在本文采用的光谱仪的测量范围(200-1100nm)内不能看作是灰体辐射。
     在基于辐射逆问题从火焰多光谱强度信息中重建火焰内部温度和辐射参数方面,针对吸收、发射、无散射轴对称含烟黑火焰,采用SPSO算法对温度和烟黑浓度的同时重建进行了模拟研究,其中考虑了烟黑的自吸收项。研究中对影响重建的方法自身参数如温度和烟黑浓度的搜索范围、温度和烟黑浓度的进化速度、微粒群的规模以及测量选用的波长、测量误差和光学厚度等对重建结果的影响进行了分析,同时与文献中广泛采用的Abel逆变换和Tikhonov正则化算法进行了对比。结果表明即使仅采用几个波长的辐射强度信息,SPSO算法在重建火焰温度和烟黑浓度分布时具有很高的精度和鲁棒性,特别是在较大光学厚度,如在10倍光学厚度下时SPSO算法的重建误差要远远小于Abel逆变换算法和Tikhonov正则化算法。
     利用SPSO算法开展了从可见光光谱仪检测的实验室层流轴对称扩散火焰的辐射强度分布中重建火焰不同高度温度和烟黑浓度分布的试验研究,而且分析了光纤进光孔径对检测强度分布的影响,结果表明:选用较小的光纤进光孔径能提高检测强度分布的空间分辨率,本文选用0.5mm的光纤进光孔径。利用可见光波长范围的辐射强度分布重建结果来看,温度沿火焰径向方向从火焰中心到边缘呈逐渐增大的趋势;烟黑浓度分布沿火焰径向方向呈波峰分布,而且随着高度增大,峰值逐渐向火焰中心靠近。与文献重建结果的对比表明在火焰高度与文献中存在一定差异的前提下,火焰整体的温度和烟黑浓度分布趋势与文献中是一致的,而且最大的烟黑浓度水平也很接近。
With the growing global energy crisis and increasing emphasis on environment issues, the combustion efficiency improvement and combustion emission reduction of fossil fuel become an important research content. While flame temperature is one of the important parameters to determine physical status and reflect the process of combustion, its accurate measurement is of great significance for developing combustion theory and understanding combustion process. The flame temperature is coupled with radiation parameters such as emissivity, absorption coefficient, scattering coefficient and soot volume fraction, so the reconstruction of temperature and radiation parameters become an effective method, but also increase the difficulty. The multispectral measurement of flame can provide plenty of radiation intensity with flame temperature and radiation information. The researchers not only can calculate temperature and radiation parameters directly from spectral intensity information, but also reconstruct the distributions of temperature and radiation parameters based on the calculation method for radiation inversion problem. In this paper, the simulation and experimental researches about the two problems were carried on. The detailed description is as below.
     A simple method to determine the distribution of temperature and emissivity with wavelength and judge the gray property based on the media boundary multi-spectral radiation intensity has been demonstrated. For the gray, one-dimensional plane-parallel medium and two-dimensional axisymmetric medium, the effects of different distribution of temperature, absorption and scattering coefficients in the medium to distribution of boundary temperature and emissivity with wavelength were analyzed using the proposal method and DRESOR method. The results showed that:the boundary radiation may still display non-gray body property and the temperature may change with wavelength even for gray medium, so the validity of temperature measurement methods based on the gray body assumption should be further validated, especially for multi-wavelength temperature measurement method based on spectral intensity in a large wavelength range.
     A calibrated spectrometer system was used for the data acquisition of the radiation intensity profile of a flame over a range of wavelengths (200~1100 nm). The wavelength range that meets the gray body assumption, in which the emissivity can be assumed as a constant, can be determined from the emissivity profile obtained by the proposal method. Then the temperature and emissivity of the flame and their relative mean square deviations were calculated within that range. Experiments were conducted on solidified gasoline, red phosphorus flames, ethylene diffusion flame and pulverized coal-fired flames in a commercial 420 t/h boiler furnace. The results show that the radiation of the gasoline flame can be assumed as a gray body in the range between 550 and 900 nm, for the coal-fired flame the range is between 500 and 1000 nm; while the radiation of the red phosphorus flame and ethylene diffusion flame cannot be assumed as a gray body within the measurement wavelength range. The temperature and emissivity calculation results of coal-fired flames are found to be in reasonable agreement with results using other methods from the literature.
     A simulation investigation for simultaneous reconstruction of distributions of temperature and soot volume fraction from multi-wavelength emission in an axisymmetric sooting flame using the stochastic particle swarm optimizer (SPSO) algorithm is presented. The self-absorption of the flame is considered. The selection of parameters of the SPSO algorithm and detection wavelengths is analyzed. The effects of measurement errors and optical thickness of the flame on the accuracy of the reconstruction are investigated. A comparison between SPSO algorithm and the other literatures mentioned methods, such as Abel inversion algorithm and Tikhonov regularization method, has been made. It proved that the SPSO algorithm is robust and can obtain accurate distributions of temperature and soot volume fraction from line-of-sight intensities in only several wavelengths, especially in the flame with large optical thickness, while other methods, such as Abel inversion and Tikhonov regularization method, neglecting self-attenuation of the flame will take more errors than the SPSO algorithm.
     Experimental study of simultaneous reconstruction of distribution of temperature and soot volume fraction at different height of the flame from emission intensity spectra using SPSO algorithm is presented. Measurements are carried out on an axisymmetric, laboratory grate, ethylene/air diffusion flame using the visible spectroscopy. The influence of fiber aperture to the detection intensity distribution is also analyzed. The results show that:the usage of smaller optical fiber aperture can improve the spatial resolution of detection intensity distribution, and the aperture of 0.5 mm is selected. For the visible emission intensity the temperature gradually increases from the center to the edge of the flame along the radial direction, the soot volume fraction shows peak distribution along the radial direction and the peak gradually close to the flame center with the height increases. Comparison of reconstruction results with the literature shows that under the premise of the certain difference of the flame height with that of literatures, the overall distributions of flame temperature and soot volume fraction are consistent with those of the literatures and the maximum of soot volume fraction is very close.
引文
[1]Bp Corporation. BP Statistical review of world energy 2010.2010.
    [2]中华人民共和国统计局能源统计司.2010中国能源统计年鉴.北京:中国统计出版社.2010.
    [3]戴景民,金钊.火焰温度测量技术研究.计量学报,2003(04):297-302.
    [4]袁镇福,李彬彬,浦兴国等.应用组合热电偶测量火焰温度的研究.计量学报,2004(01):31-34+53.
    [5]卢晶,熊倩,周怀春.TPD法测量高速空气流乙烯非预混火焰适用性研究.工程热物理学报,2009,30(07):1229-1232.
    [6]Yokomori T, Mochida S, Araake T, et al. Electrostatic probe measurement in an industrial furnace for high-temperature air conditions. Combustion and Flame,2007, 150(4):369-379.
    [7]Zhou D P, Wei L, Liu W K, et al. Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers. Applied Optics,2008, 47(10):1668-1672.
    [8]Lu J, Wakai K, Takahashi S, et al. Acoustic computer tomographic pyrometry for two-dimensional measurement of gases taking into account the effect of refraction of sound wave paths. Measurement Science and Technology,2000,11:692.
    [9]Giraud J H, Gee K L, Ellsworth J E. Acoustic temperature measurement in a rocket noise field. Journal Of The Acoustical Society Of America,2010, 127(5):EL179-EL184.
    [10]Asseban A, Lallemand M, Saulnier J B, et al. Digital speckle photography and speckle tomography in heat transfer studies. Optics & Laser Technology,2000, 32(7-8):583-592.
    [11]Kobayashi H. Experimental study of high-pressure turbulent premixed flames. Experimental Thermal and Fluid Science,2002,26(2-4):375-387.
    [12]Xiao X, Choi C W, Puri I K. Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography. Combustion and Flame,2000,120(3):318-332.
    [13]Zhang D-Y, Zhou H-C. Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships. Fuel,2007, 86(10-11):1552-1559.
    [14]吕伟,周怀春,艾育华.乙烯火焰的径向剪切干涉测温模拟研究.工程热物理学报,2008(04):707-710.
    [15]吕伟,周怀春,朱进容.大剪切实时干涉系统的火焰条纹分析.工程热物理学报,2010,31(04):717-719.
    [16]Sutton G, Levick A, Edwards G, et al. A combustion temperature and species standard for the calibration of laser diagnostic techniques. Combustion and Flame,2006, 147(1-2):39-48.
    [17]刘建胜,刘晶儒,张振荣等.利用拉曼散射测量燃烧场的组分浓度及温度.光学学报,2000(09):1263-1267.
    [18]Yoshida M, Tanabe T, Ohno N, et al. High temperature irradiation damage of carbon materials studies by laser Raman spectroscopy. Journal Of Nuclear Materials,2009, 386-388:841-843.
    [19]Vestin F, Bengtsson P-E. Rotational CARS for simultaneous measurements of temperature and concentrations of N2,O2, CO, and CO2 demonstrated in a CO/air diffusion flame. Proceedings of the Combustion Institute,2009,32(1):847-854.
    [20]Weikl M C, Seeger T, Wendler M, et al. Validation experiments for spatially resolved one-dimensional emission spectroscopy temperature measurements by dual-pump CARS in a sooting flame. Proceedings of the Combustion Institute,2009, 32(1):745-752.
    [21]Ono R, Oda T. Measurement of OH density and gas temperature in incipient spark-ignited hydrogen-air flame. Combustion and Flame,2008,152(1-2):69-79.
    [22]Tea G, Bruneaux G, Kashdan J T, et al. Unburned gas temperature measurements in a surrogate Diesel jet via two-color toluene-LIF imaging. Proceedings of the Combustion Institute,2011,33(1):783-790.
    [23]Zhou X, Jeffries J B, Hanson R K. Development of a fast temperature sensor for combustion gases using a single tunable diode laser. Applied Physics B-lasers and Optics,2005,81(5):711-722.
    [24]李宁,严建华,王飞等.利用可调谐激光吸收光谱技术对光路上气体温度分布的测量.光谱学与光谱分析,2008(08):1708-1712.
    [25]Shakher C, Nirala A K. A review on refractive index and temperature profile measurements using laser-based interferometric techniques. Optics and Lasers In Engineering,1999,31(6):455-491.
    [26]Docquier N, Candel S. Combustion control and sensors:a review. Progress in Energy and Combustion Science,2002,28(2):107-150.
    [27]Sandrowitz A K, Cooke J M, Glumac N G. Flame emission spectroscopy for equivalence ratio monitoring. Applied Spectroscopy,1998,52(5):658-662.
    [28]Romero C, Li X, Keyvan S, et al. Spectrometer-based combustion monitoring for flame stoichiometry and temperature control. Applied Thermal Engineering,2005, 25(5-6):659-676.
    [29]Arias L, Torres S, Sbarbaro D, et al. Photodiode-based sensor for flame sensing and combustion-process monitoring. Applied Optics,2008,47(29):5541-5549.
    [30]Obertacke R, Wintrich H, Wintrich F, et al. A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography. Combustion Science and Technology,1996,121(1-6):133-151.
    [31]Von Drasek W, Charon O, Marsais O. Industrial combustion monitoring using optical sensors. In:Proceedings of the Society of Photo-Optical Instrumentation Engineers. 1999:215-225.
    [32]许厚谦,耿继辉,王俊德等.7.62mm枪膛内火药气体燃烧温度的光谱法测量.弹道学报,1999(01):89-92+96.
    [33]杨栋,王俊德,赵宝昌等.原子发射光谱双谱线法测量固体火箭发动机内燃气温度.光谱学与光谱分析,2002(02):307-310.
    [34]程智海,蔡小舒,岳俊等.火焰特征辐射谱线测温方法实验研究.工程热物理学报,2007(S2):221-224.
    [35]Chen X B, Cai X S, Fan X L, et al. Experimental Study on Flame Temperature Measurement by Double Line of Atomic Emission Spectroscopy. Spectroscopy and Spectral Analysis,2009,29(12):3177-3180.
    [36]Yan J, Borman G L. Analysis and In-Cylinder Measurement of Particulate Radiant Emissions and Temperature in a Direct Injection Diesel Engine. SAE Paper,1988.
    [37]陈硕,刘明安,潘克煜等.多参数对柴油机缸内局部瞬态火焰温度及碳粒浓度的影响.内燃机学报,2001(02):128-132.
    [38]Huang Y, Yan Y, Lu G, et al. CCD-based multi-functional flame monitoring system. In:Proceedings of IOP Applied Optics Conference. Brighton, UK,1998:151-156.
    [39]Huang Y, Yan Y, Riley G. Vision-based measurement of temperature distribution in a 500-kW model furnace using the two-colour method. Measurement,2000, 28(3):175-183.
    [40]Jiang F, Liu S, Lu G, et al. Experimental study on measurement of flame temperature distribution using the two-color method. Journal of Thermal Science,2002, 11(4):378-382.
    [41]Jiang F, Liu S, Liang S, et al. Visual flame monitoring system based on two-color method. Journal of Thermal Science,2009,18(3):284-288.
    [42]周怀春,娄新生,肖教芳等.炉膛火焰温度场图象处理试验研究.中国电机工程学报,1995(05):295-300.
    [43]周怀春,娄新生,尹鹤龄等.单色火焰图象处理技术在锅炉燃烧监控中的应用研究.电力系统自动化,1996(10):20-24.
    [44]程晓舫,周洲.彩色三基色温度测量原理的研究.中国科学E辑:技术科学,1997(04):342-345.
    [45]王飞,薛飞,马增益等.运用彩色CCD测量火焰温度场的试验研究及误差分析.热能动力工程,1998(02):2-5+77.
    [46]卫成业,李晓东,马增益等.高温火焰图像处理比色测温法的数值方法研究.燃烧科学与技术,1998(03):88-92.
    [47]薛飞,李晓东,倪明江等.基于面阵ccd的火焰温度场测量方法研究.中国电机工程学报,1999(01):42-44.
    [48]卫成业,王飞,马增益等.运用彩色CCD测量火焰温度场的校正算法.中国电 机工程学报,2000(01):71-73+77.
    [49]Wang F, Wang X J, Ma Z Y, et al. The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique. Fuel,2002,81(16):2113-2120.
    [50]林彬,马增益,王飞等.对火焰图像双色测温法的改进.电站系统工程,2004(02):25-26+28.
    [51]周怀春,韩曙东,郑楚光.两种辐射温度图象监测方法的模拟比较分析及其适用性评价.中国电机工程学报,2002(06):110-115.
    [52]姜志伟,周怀春,娄春等.基于图像处理的火焰温度及辐射率图像检测法.华中科技大学学报(自然科学版),2004(09):49-51.
    [53]Jiang Z W, Luo Z X, Zhou H C. A simple measurement method of temperature and emissivity of coal-fired flames from visible radiation image and its application in a CFB boiler furnace. Fuel,2009,88(6):980-987.
    [54]孙亦鹏,娄春,姜志伟等.彩色CCD摄像机三基色代表波长的试验研究.华中科技大学学报(自然科学版),2009,37(02):108-111.
    [55]周国义,孙亦鹏,娄春等.增压锅炉燃烧监测试验研究.热能动力工程,2009,24(06):766-769+819.
    [56]Han Y T, Lee K H, Min K D. A study on the measurement of temperature and soot in a constant-volume chamber and a visualized diesel engine using the two-color method. Journal of Mechanical Science and Technology,2009,23(11):3114-3123.
    [57]田辛,何邦全,王建听等.用双色法研究进气道喷射乙醇柴油引燃时的燃烧过程.内燃机学报,2004(01):39-44.
    [58]王丽雯,何旭,王建听等.用双色法研究汽油机燃烧火焰的温度分布.燃烧科学与技术,2007(04):293-298.
    [59]何旭,马骁,齐运亮等.乙醇柴油混合燃料碳烟特性可视化研究.工程热物理学报,2010(12):2141-2144.
    [60]Miller L, Swanson-Green T, Moses J, et al. The measurement of open propane flame temperature using infrared technique. Journal of Quantitative Spectroscopy and Radiative Transfer,1996,56(1):133-144.
    [61]Parker T E, Miller M F, Mcmanus K R, et al. Infrared emission from high-temperature H2O(V2):A diagnostic for concentration and temperature Aerodynamic measurement technology. AIAA Journal,1996,34(3):500-507.
    [62]李疏芬,张雪松.红外辐射吸收法测量火焰温度.火炸药,1997(04):32-34.
    [63]王应强,蔡小舒,沈嘉祺等.基于H_20分子辐射吸收的高温测量.工程热物理学报,2008(03):527-530.
    [64]李径定,周静伟,沈红峰等.用掺入灵敏元素的辐射吸收法测量燃气的瞬态温度.内燃机工程,1991(03):47-52.
    [65]Reynolds P M. A review of multicolour pyrometry for temperatures below 1500℃. British Journal of Applied Physics,1964,15(5):579-588.
    [66]Ruffino G, Chu Z X, Kang S G, et al. Multi-wavelength pyrometer with photodiode array. Temperature its Measurement and Control In Science and Industry,1993, 6(2):807-810.
    [67]戴景民.多光谱辐射测温技术研究:博十学位论文.哈尔滨工业大学,1995.
    [68]孙晓刚,戴景民,卢小冬.多波长辐射测温理论及其拟合误差的估计.哈尔滨师范大学自然科学学报,1997(04):42-45.
    [69]Sun X G, Dai J M. Multispectral thermometry based on neural network. Journal of Harbin Institute of Technology,2003(01):108-112.
    [70]孙晓刚,原桂彬,戴景民.基于遗传神经网络的多光谱辐射测温法.光谱学与光谱分析,2007(02):213-216.
    [71]符泰然,程晓舫,陆少松等.三波长温度测量方法.计量学报,2004(02):123-126.
    [72]符泰然,程晓舫,范学良等.三波长测温中波长选取原则的理论分析.光谱学与光谱分析,2005(02):166-170.
    [73]Wen C D, Mudawar I. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal Of Heat and Mass Transfer,2004, 47(17-18):3591-3605.
    [74]Wen C D, Mudawar I. Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal Of Heat and Mass Transfer,2005,48(7):1316-1329.
    [75]Wen C D. Investigation of steel emissivity behaviors:Examination of Multispectral Radiation Thermometry (MRT) emissivity models. International Journal Of Heat and Mass Transfer,2010,53(9-10):2035-2043.
    [76]Wen C D, Mudawar I. Modeling the effects of surface roughness on the emissivity of aluminum alloys. International Journal Of Heat and Mass Transfer,2006, 49(23-24):4279-4289.
    [77]Weismiller M R, Lee J G, Yetter R A. Temperature measurements of Al containing nano-thermite reactions using multi-wavelength pyrometry. Proceedings of the Combustion Institute,2011,33(2):1933-1940.
    [78]萧鹏,孙晓刚,戴景民.金属防热瓦温度及发射率的测量.清华大学学报(自然科学版),2007(07):1249-1252.
    [79]Panagiotou T, Levendis Y, Delichatsios M. Measurements of Particle Flame Temperatures Using Three-Color Optical Pyrometry. Combustion and Flame,1996, 104(3):272-287.
    [80]孙晓刚,戴景民,丛大成等.基于多光谱法的固体火箭发动机羽焰温度测量.清华大学学报(自然科学版),2003(07):916-918+922.
    [81]余岳峰,赵铁成,徐伟勇.煤粉燃烧火焰的三色法温度测量.上海交通大学学报,2000(09):1257-1260.
    [82]李占英,席兰霞,陈军等.多光谱辐射测温技术测量火工烟火药剂燃烧温度.光谱学与光谱分析,2010(08):2062-2064.
    [83]王瑞芳,程晓舫,符泰然.多谱段温度测量方法.计量学报,2002(04):283-286.
    [84]程晓舫,符泰然,王安全.具有单调发射率表现的三波段温度测量方法.光谱学与光谱分析,2003(04):641-646.
    [85]符泰然,程晓舫,范学良等.基于波段带宽的谱段测温的优化测量分析.光谱学与光谱分析,2005(10):14-17.
    [86]符泰然,程晓舫,钟茂华等.基于波段带宽的谱段测温法的测温范围分析.光谱学与光谱分析,2008(09):1994-1997.
    [87]程晓舫,符泰然,范学良.谱色测温原理.中国科学G辑:物理学、力学、天文学, 2004(06):639-647.
    [88]符泰然,程晓舫,钟茂华等.谱色测温法的温度场分区讨论.光谱学与光谱分析,2006(12):2166-2168.
    [89]符泰然,程晓舫,钟茂华.谱色测温法相关应用问题的理论预测分析.中国科学(G辑:物理学力学天文学),2008(02):194-205.
    [90]符泰然,程晓舫,钟茂华等.辐射测温中光谱发射率的表征描述.光谱学与光谱分析,2008(01):1-5.
    [91]Keyvan S, Rossow R, Romero C, et al. Comparison between visible and near-IR flame spectra from natural gas-fired furnace for blackbody temperature measurements. Fuel,2004,83(9):1175-1181.
    [92]Keyvan S, Rossow R, Romero C. Blackbody-based calibration for temperature calculations in the visible and near-IR spectral ranges using a spectrometer. Fuel, 2006,85(5-6):796-802.
    [93]周洁.采用优化算法分析燃烧火焰辐射光谱求取火焰温度.热能动力工程,2000(03):223-225+324.
    [94]Cai X, Cheng Z, Wang S. Flame Measurement and Combustion Diagnoses with Spectrum Analysis. AIP Conference Proceedings,2007,914(1):60-66.
    [95]田丰,藤村贞夫.采用辐射型CT算法的燃烧火焰温度分布测量.沈阳航空工业学院学报,2000(03):26-28.
    [96]方卓毅.基于辐射吸收的火焰温度计算机断层扫描摄影测量研究:博士学位论文.浙江大学,2001.
    [97]杨振中,周重光,方卓毅等.平面预混非发光火焰温度分布的红外CT法测量研究.红外与毫米波学报,2002(06):413-417.
    [98]刘林华,满广龙,李炳熙.非轴对称层流自由火焰温度场的辐射反演.动力工程,2003(05):2670-2675.
    [99]万雄,高益庆,何兴道.多光谱辐射层析重建三维火焰温度场.光学学报,2003(09):1099-1104.
    [100]宋一中,魏本征,赵志敏.光谱法分析代数迭代重建算法及改进.光谱学与光谱分析,2008(10):2365-2369.
    [101]王俊德,黄梅,殷惠.气体温度的红外光谱测量.光谱学与光谱分析,1995(04):49-57.
    [102]Solomon P R, Carangelo R M, Best P E, et al. Analysis of particle emittance, composition, size and temperature by FTIR. emission/transmission spectroscopy. Fuel,1987,66(7):897-908.
    [103]Solomon P R, Best P E, Carangelo R M, et al. FT-IR emission/transmission spectroscopy for in situ combustion diagnostics. Symposium (International) on Combustion,1988,21(1):1763-1771.
    [104]于娟,章明川,赵国锋等.FTIR发射/透射光谱对含颗粒气流的温度测量.燃烧科学与技术,2003(05):434-438.
    [105]Solomon P R, Carangelo R M, Best P E, et al. The spectral emittance of pulverized coal and char. Symposium (International) on Combustion,1988,21(1):437-446.
    [106]施伯红,于娟,赵国锋等.利用FTIRE/T光谱确定煤粉/炭颗粒温度和黑度的理论分析.燃烧科学与技术,2002(05):407-410.
    [107]Best P E, Chien P L, Carangelo R M, et al. Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame:Species concentrations and temperatures. Combustion and Flame,1991,85(3-4):309-314.
    [108]赵国锋,于娟,章明川.FTIR发射-透射光谱法测量炭粒和CO2的温度锅炉技术,2003(02):5-8.
    [109]Bourayou R, Vaillon R, Sacadura J F. FTIR low resolution emission spectrometry of a laboratory-scale diffusion flame:experimental set-up. Experimental Thermal and Fluid Science,2002,26(2-4):181-187.
    [110]Hilton M, Et Al. Quantitative analysis of remote gas temperatures and concentrations from their infrared emission spectra Measurement Science and Technology,1995, 6(9):1236.
    [111]Yousefian F, Sakami M, Lallemand M. Recovery of temperature and species concentration profiles in flames using low-resolution infrared spectroscopy. Journal of Heat Transfer-Transactions of the Asme,1999,121(2):268-279.
    [112]Soufiani A, Martin J P, Rolon J C, et al. Sensitivity of temperature and concentration measurements in hot gases from FTIR emission spectroscopy. Journal of Quantitative Spectroscopy & Radiative Transfer,2002,73(2-5):317-327.
    [113]Zheng Y, Gore J P. Measurements and inverse calculations of spectral radiation intensities of a turbulent ethylene/air jet flame. Proceedings of the Combustion Institute,2005,30(1):727-734.
    [114]Ayranci I, Vaillon R, Selcuk N. Near-infrared emission spectrometry measurements for nonintrusive soot diagnostics in flames. Journal of Quantitative Spectroscopy & Radiative Transfer,2008,109(2):349-361.
    [115]孙晓刚,何瑾,戴景民等.基于神经网络模型的多波长辐射测温的研究.哈尔滨工业大学学报,1998(06):1-3.
    [116]丛大成,戴景民,孙晓刚等.RBF网络在多光谱测温中的应用研究.红外与毫米波学报,2001(02):97-101.
    [117]蔡小舒,罗武德.光谱法测量煤粉火焰温度和黑度的研究.工程热物理学报,2000(06):779-782.
    [118]齐宏.弥散颗粒辐射反问题的理论与实验研究:博士学位论文.哈尔滨工业大学,2008.
    [119]谈和平,刘林华,易红亮等.计算热辐射学的进展.科学通报,2009(18):2627-2637.
    [120]Daun K J, Howell J R. Inverse design methods for radiative transfer systems. Journal of Quantitative Spectroscopy& Radiative Transfer,2005,93(1-3):43-60.
    [121]Rukolaine S A. Regularization of inverse boundary design radiative heat transfer problems. Journal of Quantitative Spectroscopy & Radiative Transfer,2007, 104(1):171-195.
    [122]Rukolaine S A. The shape gradient of the least-squares objective functional in optimal shape design problems of radiative heat transfer. Journal of Quantitative Spectroscopy and Radiative Transfer,2010, 111(16):2390-2404.
    [123]Li H Y. A two-dimensional cylindrical inverse source problem in radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer,2001,69(4):403-414.
    [124]Li H Y. Solution of inverse blackbody radiation problem with conjugate gradient method. Ieee Transactions on Antennas and Propagation,2005,53(5):1840-1842.
    [125]Liu L H, Jiang J. Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames. Journal of Quantitative Spectroscopy & Radiative Transfer,2001,70(2):207-215.
    [126]Liu L H, Tan H P. Inverse radiation problem in three-dimensional complicated geometric systems with opaque boundaries. Journal of Quantitative Spectroscopy & Radiative Transfer,2001,68(5):559-573.
    [127]Lu G, Yan Y. Temperature profiling of pulverized coal flames using multicolor pyrometric and digital imaging techniques. IEEE Transactions On Instrumentation and Measurement,2006,55(4):1303-1308.
    [128]Gilabert G, Lu G, Yan Y. Three-dimensional tomographic reconstruction of the luminosity distribution of a combustion flame. IEEE Transactions On Instrumentation and Measurement,2007,56(4):1300-1306.
    [129]Lou C, Zhou H C. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation. Combustion and Flame,2005,143(1-2):97-105.
    [130]Zhou H C, Lou C, Cheng Q, et al. Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace. Proceedings of the Combustion Institute,2005,30(1):1699-1706.
    [131]Zhang X, Cheng Q, Lou C, et al. An improved colorimetric method for visualization of 2-D, inhomogeneous temperature distribution in a gas fired industrial furnace by radiation image processing. Proceedings of the Combustion Institute,2011, 33(2):2755-2762.
    [132]Lou C, Zhou H C. Assessment of regularized reconstruction of three-dimensional temperature distributions in large-scale furnaces. Numerical Heat Transfer Part B: Fundamentals,2008,53(6):555-567.
    [133]Liu D, Wang F, Yan J H, et al. Inverse radiation problem of temperature field in three-dimensional rectangular enclosure containing inhomogeneous, anisotropically scattering media International Journal Of Heat and Mass Transfer,2008, 51(13-14):3434-3441.
    [134]Wang F, Liu D, Cen K-F, et al. Efficient inverse radiation analysis of temperature distribution in participating medium based on backward Monte Carlo method. Journal of Quantitative Spectroscopy and Radiative Transfer,2008, 109(12-13):2171-2181.
    [135]Liu D, Yan J, Cen K. On the treatment of scattering for three-dimensional temperature distribution reconstruction accuracy in participating medium. International Journal Of Heat and Mass Transfer,2011,54(7-8):1684-1687.
    [136]Yan Z, Liang Q, Guo Q, et al. Experimental investigations on temperature distributions of flame sections in a bench-scale opposed multi-burner gasifier. Applied Energy,2009,86(7-8):1359-1364.
    [137]Yu G S, Yan Z Y, Liang Q F, et al. The investigations of temperature distributions in an opposed multi-burner gasifier. Energy Conversion and Management,2011, 52(5):2235-2240.
    [138]王式民,赵延军,汪风林.光学分层热成像法重建火焰三维温度场分布的研究.工程热物理学报,2002(S1):233-236.
    [139]周宾,郝英立,王式民.基于光学分层层析成像原理的火焰测温法.化工学报,2010,61(03):612-622.
    [140]Lu X, Hsu P F. Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,93(1-3):349-367.
    [141]Boulanger J, Charette A. Numerical developments for short-pulsed near infra-red laser spectroscopy. Part II:Inverse treatment Journal of Quantitative Spectroscopy& Radiative Transfer,2005,91(3):297-318.
    [142]An W, Ruan L M, Qi H. Inverse radiation problem in one-dimensional slab by time-resolved reflected and transmitted signals. Journal of Quantitative Spectroscopy & Radiative Transfer,2007,107(1):47-60.
    [143]An W, Ruan L M, Tan H P, et al. Finite Element Simulation for Short Pulse Light Radiative Transfer in Homogeneous and Nonhomogeneous Media Journal of heat transfer,2007,129(3):353-362.
    [144]Ou N R, Y W C. Simultaneous estimation of extinction coefficient distribution, scattering albedo and phase function of a two-dimensional medium. International Journal Of Heat and Mass Transfer,2002,45(23):4663-4674.
    [145]Park H M, Yoon T Y. Solution of the inverse radiation problem using a conjugate gradient method. International Journal Of Heat and Mass Transfer,2000, 43(10):1767-1776.
    [146]Park H M, Lee W J. An inverse radiation problem of estimating heat-transfer coefficient in participating media Chemical Engineering Science,2002, 57(11):2007-2014.
    [147]Grissa H, Askri F, Albouchi F, et al. Solution of the inverse radiation problem for anisotropically scattering medium using the control volume finite element method. Thermal Science,2010,14(2):373-382.
    [148]Cui M, Gao X, Chen H. A new inverse approach for the equivalent gray radiative property of a non-gray medium using a modified zonal method and the complex-variable-differentiation method. Journal of Quantitative Spectroscopy and Radiative Transfer,2011, In Press, Corrected Proof.
    [149]Bokar J. The estimation of spatially varying albedo and optical thickness in a radiating slab using artificial neural networks. International Communications in Heat and Mass Transfer,1999,26(3):359-367.
    [150]Li H, Yang C. A genetic algorithm for inverse radiation problems. International Journal Of Heat and Mass Transfer,1997,40(7):1545-1549.
    [151]Kim K W, Baek S W S W, Kim M Y, et al. Estimation of emissivities in a two-dimensional irregular geometry by inverse radiation analysis using hybrid genetic algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer,2004, 87(1):1-14.
    [152]Kim K W, Baek S W. Inverse radiation design problem in a two-dimensional radiatively active cylindrical medium using automatic differentiation and broyden combined update. Numerical Heat Transfer Part a-Applications,2006, 50(6):525-543.
    [153]Kim K W, Baek S W. Efficient inverse radiation analysis in a cylindrical geometry using a combined method of hybrid genetic algorithm and finite-difference Newton method. Journal of Quantitative Spectroscopy & Radiative Transfer,2007, 108(3):423-439.
    [154]Verma S, Balaji C. Multi-parameter estimation in combined conduction-radiation from a plane parallel participating medium using genetic algorithms. International Journal Of Heat and Mass Transfer,2007,50(9-10):1706-1714.
    [155]Gosselin L, Tye-Gingras M, Mathieu-Potvin F. Review of utilization of genetic algorithms in heat transfer problems. International Journal Of Heat and Mass Transfer,2009,52(9-10):2169-2188.
    [156]Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In:The Sixth International Symposium on Micro Machine and Human Science 1995:39-43.
    [157]Qi H, Ruan L M, Wang S, et al. Application of multi-phase particle swarm optimization technique to retrieve the particle size distribution. Chinese Optics Letters,2008,6(5):346-349.
    [158]Berdnik V V, Gilev K, Shvalov A, et al. Characterization of spherical particles using high-order neural networks and scanning flow cytometry. Journal of Quantitative Spectroscopy and Radiative Transfer,2006,102(1):62-72.
    [159]Ruan L M, Qi H, An W, et al. Inverse radiation problem for determination of optical constants of fly-ash particles. International Journal of Thermophysics,2007, 28(4):1322-1341.
    [160]齐宏,阮立明,王希影等.反演高温均一粒子系光学常数理论建模.工程热物理学报,2009(01):105-107.
    [161]齐宏,王希影,刘兵等.反演非球形粒子光学常数的理论建模.工程热物理学报,2009(05):837-840.
    [162]Liu L H. Simultaneous identification of temperature profile and absorption coefficient in one-dimensional semitransparent medium by inverse radiation analysis. International Communication of Heat and Mass Transfer,2000,27(5):635-643.
    [163]Liu L H, Tan H P, Yu Q Z. Inverse radiation problem of sources and emissivities in one-dimensional semitransparent media International Journal Of Heat and Mass Transfer,2001,44(1):63-72.
    [164]Liu L, Man G. Reconstruction of time-averaged temperature of non-axisymmetric turbulent unconfined sooting flame by inverse radiation analysis. Journal of Quantitative Spectroscopy and Radiative Transfer,2003,78(2):139-149.
    [165]Lu G, Yan Y, Riley G, et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames. IEEE Transactions On Instrumentation and Measurement,2002,51(5):990-995.
    [166]Liu D, Yan J H, Wang F, et al. Inverse radiation analysis of simultaneous estimation of temperature field and radiative properties in a two-dimensional participating medium. International Journal Of Heat and Mass Transfer,2010, 53(21-22):4474-4481.
    [167]Wang F, Yan J H, Cen K F, et al. Simultaneous measurements of two-dimensional temperature and particle concentration distribution from the image of the pulverized-coal flame. Fuel,2010,89(1):202-211.
    [168]Zhou H C, Yuan P, Sheng F, et al. Simultaneous estimation of the profiles of the temperature and the scattering albedo in an absorbing, emitting, and isotropically scattering medium by inverse analysis. International Journal Of Heat and Mass Transfer,2000,43(23):4361-4364.
    [169]Zhou H C, Hou Y B, Chen D L, et al. An inverse radiative transfer problem of simultaneously estimating profiles of temperature and radiative parameters from boundary intensity and temperature measurements. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,74(5):605-620.
    [170]Zhou H C, Han S D, Sheng F, et al. Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images:numerical studies. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,72(4):361-383.
    [171]Zhou H C, Han S D. Simultaneous reconstruction of temperature distribution, absorptivity of wall surface and absorption coefficient of medium in a 2-D furnace system. International Journal Of Heat and Mass Transfer,2003,46(14):2645-2653.
    [172]Lou C, Zhou H C, Yu P F, et al. Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation. Proceedings of the Combustion Institute,2007, 31(2):2771-2778.
    [173]Lou C, Zhou H C. Decoupled reconstruction method for simultaneous estimation of temperatures and radiative properties in a one-dimensional, gray, participating medium. Numerical Heat Transfer Part B-Fundamentals,2007,51(3):275-292.
    [174]Lou C, Li W H, Zhou H C, et al. Experimental investigation on simultaneous measurement of temperature distributions and radiative properties in an oil-fired tunnel furnace by radiation analysis. International Journal Of Heat and Mass Transfer, 2011,54(1-3):1-8.
    [175]De Iuliis S, Barbini M, Benecchi S, et al. Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation. Combustion and Flame,1998,115:253-261.
    [176]Snelling D R, Thomson K A, Smallwood G J, et al. Two-dimensional imaging of soot volume fraction in laminar diffusion flames. Applied Optics,1999,38:2478-2485.
    [177]Snelling D R, Thomson K A, Smallwood G J, et al. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA Journal, 2002,40(9):1789-1795.
    [178]Ayranc I, Vaillon R, Selcuk N, et al. Determination of soot temperature, volume fraction and refractive index from flame emission spectrometry. Journal of Quantitative Spectroscopy and Radiative Transfer,2007,104:266-276.
    [179]Ayranc I, Vaillon R, Selcuk N, et al. Near-Infrared emission spectrometry measurements for nonintrusive soot diagnostics in flames. Journal of Quantitative Spectroscopy and Radiative Transfer,2008,109:349-361.
    [180]Thomson K A, Gulder O L, Weckman E J, et al. Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa. Combustion and Flame,2005,140(3):222-232.
    [181]Bento D S, Thomson K A, Gulder O L. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures. Combustion and Flame,2006,145(4):765-778.
    [182]Weikl M C, Seeger T, Wendler M, et al. Validation experiments for spatially resolved one-dimensional emission spectroscopy temperature measurements by dual-pump CARS in a sooting flame. Proceedings of the Combustion Institute,2009, 32:745-752.
    [183]周怀春,江波,卢晶等.多波长光谱法检测乙烯火焰中温度和碳黑生成.华中科技大学学报(自然科学版),2007,289(12):107-110.
    [184]卢晶.轴对称层流扩散火焰温度和烟黑体积浓度检测方法研究:博士学位论文.华中科技大学,2009.
    [185]Alvarez R, Rodero A, Quintero M. An Abel inversion method for radially resolved measurements in the axial injection torch. Spectrochimica Acta Part B:Atomic Spectroscopy,2002,57(11):1665-1680.
    [186]Dasch C J. One-dimensional tomography:a comparison of Abel, onion-peeling, and filtered backprojection methods. Applied Optics,1992,31(8):1146-1152.
    [187]Daun K J, Thomson K A, Liu F, et al. Deconvolution of axisymmetric flame properties using Tikhonov regularization. Applied Optics,2006,45:4638-4646.
    [188]kesson E O, Daun K J. Parameter selection methods for axisymmetric flame tomography through Tikhonov regularization. Applied Optics,2008,47(3):407-416.
    [189]李芳,周怀春,卢晶等.测量层流扩散火焰温度与烟黑浓度分布的实验研究.工程热物理学报,2007,28(5):894-896.
    [190]黄群星,刘冬,王飞等.非对称碳氢扩散火焰内烟黑浓度与温度联合重建模型研究.物理学报,2008,57(12):7928-7936.
    [191]Huang Q X, Wang F, Liu D, et al. Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography. Combustion and Flame,2009,156:565-573.
    [192]Liu D, Huang Q X, Wang F, et al. Simultaneous Measurement of Three-Dimensional Soot Temperature and Volume Fraction Fields in Axisymmetric or Asymmetric Small Unconfined Flames With CCD Cameras. Journal of Heat Transfer-Transactions of the Asme,2010,132(6):061202-7.
    [193]Ai Y H, Zhou H C. Simulation on simultaneous estimation of non-uniform temperature and soot volume fraction distributions in axisymmetric sooting flames. Journal of Quantitative Spectroscopy and Radiative Transfer,2005,91(1):11-26.
    [194]艾育华,周怀春,卢晶等.发射CT法测量层流乙烯扩散火焰中温度与烟黑浓度分布的实验研究.工程热物理学报,2006(04):717-719.
    [195]Lou C, Zhou H C. Simultaneous determination of distributions of temperature and soot volume fraction in sooting Flames using decoupled reconstruction method Numerical Heat Transfer, Part A:Application,2009,56:153-169.
    [196]娄春,孙亦鹏,周怀春.基于图像处理测量扩散火焰温度和碳黑浓度.工程热物理学报,2010,31(09):1595-1598.
    [197]周怀春.炉内火焰可视化检测原理与技术.北京:科学出版社.2005.
    [198]Zhou H C, Chen D L, Cheng Q. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy and Radiative Transfer,2004,83(3-4):459-481.
    [199]黄志锋,周怀春,程强等.DRESOR法对含有边界的一维各向异性散射介质辐射传递方程的求解.热科学与技术,2006(04):313-319.
    [200]周怀春,何诚,程强.平行板间各向异性散射介质辐射传递方程求解.华中科技大学学报(自然科学版),2006(01):17-20.
    [201]Zhou H C, Cheng Q, Huang Z F, et al. The influence of anisotropic scattering on the radiative intensity in a gray, plane-parallel medium calculated by the DRESOR method. Journal of Quantitative Spectroscopy and Radiative Transfer,2007, 104(1):99-115.
    [202]程强,周怀春.DRESOR法对平行入射辐射问题的研究.工程热物理学报,2005(06):1004-1006.
    [203]Cheng Q, Zhou H C. The DRESOR method for a collimated irradiation on an isotropically scattering layer. Journal of Heat Transfer-Transactions of the Asme, 2007,129(5):634-645.
    [204]Cheng Q, Zhou H C, Huang Z F, et al. The solution of transient radiative transfer with collimated incident serial pulse in a plane-parallel medium by the DRESOR method. Journal of Heat Transfer-Transactions of the Asme,2008,130(10): 102701-1-15.
    [205]程强,周怀春,黄志锋.DRESOR法对瞬态辐射传递问题的研究.工程热物理学报,2006(03):472-474.
    [206]程强,周怀春,黄志峰.任意入射辐射条件下介质特性对瞬态辐射传递的影响.工程热物理学报,2007(S2):25-28.
    [207]黄志锋,程强,周怀春等.DRESOR法求解超短脉冲在一维非均匀介质中的瞬态 辐射传输.工程热物理学报,2008(06):1005-1008.
    [208]Huang Z F, Cheng Q, Zhou H C. The Iterative-DRESOR method to solve radiative transfer in a plane-parallel, anisotropic scattering medium with specular-diffuse boundaries. Journal of Quantitative Spectroscopy and Radiative Transfer,2009, 110(13):1072-1084.
    [209]Cheng Q, Zhou H C, Yu Y L, et al. Highly-directional radiative intensity in a 2-D rectangular enclosure calculated by the DRESOR method. Numerical Heat Transfer Part B-Fundamentals,2008,54(4):354-367.
    [210]程强,周怀春,黄志锋等.DRESOR法对二维辐射传递问题研究.工程热物理学报,2008(10):1735-1738.
    [211]Cheng Q, Luo Z X, Zhou H C. Numerical Simulation on Radiative Heat Transfer through a Two-dimensional Rectangular Domain with Inhomogeneous, Absorbing and Isotropic/Anisotropic Scattering Media Exposed to Collimated Irradiation. International Journal of Nonlinear Sciences and Numerical Simulation,2010, 11(11):927-945.
    [212]Brisley P M, Lu G, Yan Y, et al. Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera IEEE Transactions On Instrumentation and Measurement,2005,54(4):1417-1421.
    [213]Zhang H, Pan J, Liao B. Real-time measurement of temperature field with ICCD as sensor (Ⅱ)-Principle and method for optimum design of wavelength. Science in China Series E:Technological Sciences,1998,41(5):496-501.
    [214]Liu F, Snelling D, Thomson K, et al. Sensitivity and relative error analyses of soot temperature and volume fraction determined by two-color LII. Applied Physics B: Lasers and Optics,2009,96(4):623-636.
    [215]Kennedy J, Eberhart R C. Particle swarm optimization. In:International Conference of Neural Networks. Proceedings of IEEE,1995:1942-1948.
    [216]Shi Y, Eberhart R. A modified particle swarm optimizer. In:Proceedings of the IEEE International Conference on Evolutionary Computation.1998:69-73.
    [217]Clerc M. The swarm and the queen:towards a deterministic and adaptive particle swarm optimization. In:Proceedings of the 1999 Congress on Evolutionary Computation.1999:1951-1957.
    [218]谭伟,李向.微粒群优化算法的研究计算机技术与发展,2009(03):87-90.
    [219]刘波,王凌,金以慧等.微粒群优化算法研究进展.化工自动化及仪表,2005(03):1-7.
    [220]Becceneri J C, Stephany S, Velho H F D C, et al., Solution of the Inverse Problem of Radiative Properties Estimation with Particle Swarm Optimization Techniques, in Inverse Problems in Engineering Seminar (IPES).2006.
    [221]Lee K H, Baek S W, Kim K W. Inverse radiation analysis using repulsive particle swarm optimization algorithm. International Journal Of Heat and Mass Transfer, 2008,51(11-12):2772-2783.
    [222]Qi H, Ruan L M, Zhang H C, et al. Inverse radiation analysis of a one-dimensional participating slab by stochastic particle swarm optimizer algorithm. International Journal of Thermal Sciences,2007,46(7):649-661.
    [223]Qi H, Ruan L M, Shi M, et al. Application of multi-phase particle swarm optimization technique to inverse radiation problem. Journal of Quantitative Spectroscopy & Radiative Transfer,2008,109(3):476-493.
    [224]戴维葆,邹平华.基于改进微粒群算法重建炉膛截面温度场.中国电机工程学报,2007(14):13-17.
    [225]菅立川.辐射反问题的微粒群优化算法:硕士学位论文.哈尔滨工业大学,2007.
    [226]曾建潮.微粒群算法.北京:科学出版社.2004.
    [227]Lee S C, Tien C L. Optical constants of soot in hydrocarbon flames. Symposium (International) on Combustion,1981,18(1):1159-1166.
    [228]Mullins J, Williams A. The optical properties of soot:a comparison between experimental and theoretical values. Fuel,1987,66(2):277-280.
    [229]Chang H, Charalampopoulos T T. Determination of the Wavelength Dependence of Refractive Indices of Flame Soot Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences,1990,430(1880):577-591.
    [230]Smyth K C, Shaddix C R. The Elusive History of m=1.57-0.56i for the refractive index of soot Combustion and Flame,1996,107:314-320.
    [231]Zhu J, Choi M Y, Mulholland G W, et al. Measurement of visible and near-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute,2002,29(2):2367-2374.
    [232]Williams T C, Shaddix C, Jensen K, et al. Measurement of the dimensionless extinction coefficient of soot within laminar diffusion flames. International Journal Of Heat and Mass Transfer,2007,50(7-8):1616-1630.
    [233]Ayranci Kihnc I. A nonintrusive diagnostics technique for flame soot based on near-infrared emission spectrometry:PhD Thesis. Middle East Technical University, Ankara, Turkey and INSA-Lyon, Villeurbanne, France,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700