热力系统模拟进化新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对我国目前的能源情况,分析了现有热力控制系统中存在的问题,从提高热力系统的安全可靠性、运行经济性和降低污染的角度考虑,提出将模拟进化理论引入热力系统动态学研究中,解决热力控制系统优化中的问题。
    首先,对模拟进化理论进行深入研究,说明了运用模拟进化理论解决热力控制系统优化问题的可行性,并通过对模拟进化理论的可计算性分析,建立了模拟进化算法通用框架,为建立热力控制系统进化优化体系建立了理论基础。
    采用遗传规划的方法对热力系统实际被控对象进行进化自适应建模。在此基础上,首次提出了热力控制系统进化优化体系,解决了热力控制系统在线优化的问题,并分析了该体系的组成、工作过程、特点和具体实现过程。
    针对现有热力控制系统中常用的控制策略和控制方法,采用模拟进化理论进行优化的仿真研究;并以实际热力系统的工作过程为对象,对热力控制系统进化优化体系进行仿真研究和试验检验,验证了该体系的可行性和适用性。
    在炉膛火焰监测系统的基础上,设计分析了以主蒸汽压力为主调、以炉膛总辐射能为副调参数的燃烧控制系统,并通过仿真研究和试验验证,比较了该方法的优越性。在此基础上,建立了基于辐射能检测的燃烧进化优化系统,通过烟气含氧量与炉膛总辐射能的模糊自寻优控制器和风/煤比进化优化器组成的燃烧优化回路的共同作用,对锅炉进行燃烧经济性调节,达到燃烧优化控制的目的。
    模拟进化理论作为一种新兴的优化理论,在热力系统中的研究刚刚开始。本文的工作丰富了热力系统优化理论和热力系统动态学的范畴。将模拟进化理论应用到热力系统中,对于提高热力系统的运行效率、降低污染、提高设备的投运率都有着非常重要的作用。
Aiming at the energy situation in China, this paper analyzed the problem in thermodynamic control systems, to improve the safety, reliability and economical efficiency of thermodynamic systems, and to reduce pollution, this paper Bring the simulated evolution theory into the research on thermal dynamic to solve the optimization problem in thermodynamic control systems.
    Firstly, this paper deeply studied the simulated evolution theory, demonstrated the feasibility of resolving the optimization problems in the thermodynamic control systems with simulated evolution theory, and through the analysis of the calculability of this theory, created the general frame of the simulated evolution algorithm and created the theoretical base for building the evolution optimizing architecture of thermodynamic control systems.
    Genetic Programming was adopted to carry out the self-adaptive modeling of practical thermodynamic controlled objects. On this base, an evolution optimizing architecture of thermodynamic control systems was firstly proposed, the on-line optimizing problems of thermodynamic control systems were settled and the composing, working process, characteristics and concrete realizing procedure of the architecture were analyzed.
    Aiming at the common control strategies and control methods of the thermodynamic control systems, this paper carried out the optimization emulation research with the simulated evolution theory; this paper also made the emulation research and the experimental study of the evolution optimizing architecture of the thermodynamic control systems with the practical thermodynamic systems as research objects, and finally verified the feasibility and applicability of the architecture.
    Based on the furnace chamber flame monitoring system, this paper designed and analyzed a combustion control system with the main steam pressure as the primary adjusting parameter and the total radiant energy of the furnace chamber as the subsidiary parameter, and compared the advantages of the system with emulation research and the experimental test. Then a combustion evolution optimizing system based on the radiant energy measuring was built, economical boiler combustion adjustment was carried out, under the combined action of a controller based on fuzzy self -optimizing of fume
    
    oxygen content and the total furnace chamber radiant energy and a controller based on the evolution optimizing of the air/coal rate, then the combustion optimizing control was accomplished.
    As a burgeoning optimizing theory, the simulated evolution optimizing theory is just now being studied. The work of this paper greatly enriched the categories of the thermodynamic system optimizing theory and the thermal dynamic theory. Bring the simulated evolution theory into thermodynamic systems has very important meanings for increasing the operation efficiencies of thermodynamic systems and the utilization ratio of equipment and decreasing pollution.
引文
[1] 叶大均. 能源概论. 北京:清华大学出版社,1990
    [2] 王鑫鑫,徐向东. 现场总线控制技术在电厂中的应用研究. 电站系统工程,2001,17(82): 243(246
    [3] 阳宪惠 . 现场总线技术及其应用.北京:清华大学出版社,1999
    [4] 聂秀荣. 能量系统的优化综合与故障诊断:[博士学位论文]. 北京:清华大学,1994
    [5] M. A. Duran, I. E. Grossmann. Simultaneous Optimization and Heat Integration of Chemical Process. AICHE, Vol.32, No.1, 1986
    [6] Y. D. Lang, L. T. Blegeler, I. E. Grossmann. Simultaneous Optimization and Heat Integration with Process Simulators. Comp. Chem. Engi. , 1988. 311~327
    [7] I. E. Grossmann. Applications of Mixed-Integer Linear Programming in Process Synthesis. Comp. Chem. Engi. 1980. 205~214
    [8] Y. D. Lang, L. T. Blegeler. A Unified Algorithm for Flow-sheet Optimization. Comp. Chem. Engi. Vol.11 No.2, 1987.
    [9] H. S. Chen, M. A. Stedther. A Simultaneous-Modular Approach to Process Flow-sheeting and Optimization, Part I: Theory and Implementation, Part II: Performance on Simultaneous Problems. AICHE, Vol.31 No.11, 1985.
    [10] Thomas Seeger, Johannes Verstege. Short term scheduling in cogeneration systems. IEEE Transactions on Power Systems, Vol.4 No.3, August 1991
    [11] Thomas Allen, etc. Energy Management Software for A Combined Cycle Cogeneraion Facility. Turbomachinery International, Jan/Feb, 1992
    [12] K. Ito, R. Yokoyama, Y. Matsumoto. Optimal Operation of Cogeneration Plants With Steam-Injected Gas Turbines. Journal of Engineering for Gas Turbines and Power, 60/Vol.117, Jan. 1995
    [13] Hans B.P(ttgen, R. Paul, MacGregor. Optimum scheduling procedure for cogenerating small power producing facilities. IEEE Transactions on Power Systems, Vol. 4, No.3, August 1989
    [14] Azmi Kaya, A. Marion. Methods of Energy Efficient Control and Optimization for Combined-Cycle Cogeneration. Energy Conversion and Management, Vol. 33, No.4, 1992
    K. Moslehi, M. Khadem, R. Bernal, G. Hernandez. Optimization of Multi-plant
    
    [15] Cogeneration System Operation Including Electric and Steam Networks. IEEE Transactions on Power Systems, Vol. 6, No.2, May 1991
    [16] C. Michael, Wellons, etc. On-line power plant optimization improves Texas refiner's bottom line. Oil & Gas, May 16, 1994
    [17] 王培红. 动态规划及其在电厂经济负荷分配中的应用. 汽轮机技术,No. 4, 1990
    [18] 岳洪. 热电厂热力系统最佳运行参数. 汽轮机技术,No. 10, 1994
    [19] 葛晓霞. 电厂负荷的最优分配. 汽轮机技术,No. 10, 1995
    [20] 张光. 大型汽轮机组动态运行及其优化. 东北电力技术,No. 10, 1995
    [21] J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: Univ. Of Michigan Press, 1975
    [22] L. J. Fogel. Artificial Intelligence Through Simulated Evolution. New York: John Wiley, 1996
    [23] Rechenberg. Cybernetic Solution Path of an Experimental Problem. Roy Aircr, Establ, Libr. Trans. 1222, Hants, U.K. Farnboroungh, 1965
    [24] J. R. Koza. Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, 1992
    [25] 云庆夏.进化算法.北京:冶金工业出版社,2000
    [26] 王小平,曹立明.遗传算法-理论、应用与软件实现 .西安:西安交通大学出版社,2002
    [27] 云庆夏,黄光球,王战权.遗传算法和遗传规划-一种搜索寻优技术.北京:冶金工业出版社,1997
    [28] 王正志, 薄涛.进化计算.长沙:国防科技大学出版社,2000
    [29] Juric Mark. Optimizing Genetic Algorithm Parameters for Multiple Fault Diagnosis Applications. Proceedings of the 10th Conference on Artificial intelligence for Applications, San Antonio, TX, USA, 1994, 434~440.
    [30] Z. Zibo, F. Naghdy. SISO System Identification Using Genetic Algorithms. Proceedings of the Electrical Engineering Congress, Sydney, Australia, 1994. 337~343
    [31] F. Uler, O. A. Mohammed, C. S. Koh. Utilizing Genetic Algorithms for the Optimal Design of Electromagnetic Devices. IEEE Trans. on Magnetics, 1994, 30 (6). 4296~4298
    K. Ohnishi, H. Asida, A. Sano, Separable Estimation of Discrete and Continuous
    
    [32] Spectra Based on Genetic Algorithm. Proceedings of the SICE Annual Conference, Yokohama, Japanese, 1994. 861~866
    [33] Kinnebrock Werner, Accelerating the Standard Backpropagation Method Using a Genetic Approach. Neurocomputing, 1994, 6: 583~588
    [34] 胡朝阳,文福拴. 免疫算法与其它模拟进化优化算法的比较研究. 电力情报,No. 1, 1998. 61~73
    [35] 刑文训,谢金星. 现代优化计算方法. 北京:清华大学出版社,1999
    [36] S. Kirkpatrick, C. D. GelattJr, M. P. Vecchi. Optimization by simulated annealing. Science, 1983, 220. 671~680
    [37] 张纪会,徐心和. 一种新的进化算法—蚁群算法. 系统工程理论与实践,1999,3: 84~87
    [38] 忻斌健,汪镭,吴启迪. 蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现 .同济大学学报(自然科学版),2002,30(1):82~87
    [39] 周怀春,韩才元.锅炉燃烧诊断技术研究进展.电站系统工程,1993,(4):25~31
    [40] 何佩熬,孙继德.燃烧器和炉膛运行中发生的问题及处理措施. 电站系统工程,1993,(4):1~10
    [41] 徐伟勇,罗万金.锅炉燃烧器火焰检测新技术.火电厂热工自动化,1993,(1):7~11
    [42] 王满家.锅炉炉膛及燃烧器火焰检测器应用状况分析. 火电厂热工自动化,1992,(2):37~42
    [43] 何佩熬,赵仲琥,秦裕琨.煤粉燃烧器设计及运行. 北京:机械工业出版社,1987
    [44] 周怀春,韩才元.基于自组织神经网络的燃烧诊断研究.控制理论与应用,1994,11(5):600~603
    [45] Shimoda N,et al. Prediction method of unburnt carbon for utility boiler using image processing technique of combustion flame. IEEE Transaction on Energy Conversion,1990.5(4):640~645
    [46] 潘正君,康立山,陈毓屏.演化计算.北京:清华大学出版社,1998
    [47] 张涛. 热力系统在线进化优化体系研究:[博士学位论文]. 北京:清华大学,2000
    [48] 阎平凡,张长水.人工神经网络与模拟进化计算. 北京: 清华大学出版社,2000
    [49] 张文修,梁怡. 遗传算法的数学基础.西安:西安交通大学出版社,2000
    [50] 刘健勤.人工生命理论及其应用.北京:冶金工业出版社,1997
    [51] 赵达纲,朱迎善.应用随机过程.北京:机械工业出版社,1990
    王鑫鑫, 徐向东. 进化优化算法通用框架模型研究. 电站系统工程,2002,18(86):
    
    [52] 1(4
    [53] 王鑫鑫, 徐向东. 分层协同进化模型在热力系统在线优化中的应用研究. 热能动力工程, 2002,17(4):339(341
    [54] E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Reading, MA: Addison Wesley, 1989
    [55] J. R. Koza. Genetic Programming:A paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems. Report No. STAN-CS-90-1314, Stanford University, 1990
    [56] Yao X, Liu Y. Fast evolutionary strategies[A]. P.J.Angeline, ed. Proceedings of the Sixth Annual Conference on Evolutionary Programming[C] .Berlin: Springer,1997, 151~161
    [57] Y. Yang, P. C. Yang, C. L. Huang. Evolutionary Programming Based Economic Dispatch for Units with Non-smooth Fuel Cost Functions. IEEE PES Winter Power Meeting, USA, 1995
    [58] Y. Fukuyama, H. D. Chiang. A Parallel Genetic Algorithm for Generation Expansion Planning. Proc. of Int. Conf. On Intelligent System Application to Power Systems (ISAP'94), France
    [59] M. Bertoni, Dorigo. Implicit Parallelism in Genetic Algorithms. In Art Intell, 1993
    [60] 王大明,毛宗源.并行遗传算法综述.暨南大学学报(自然科学与医学版),1998,19(1): 20(26
    [61] 郭绚,石晓虹. 并行遗传算法的性能分析. 航空计算技术,1998, 28(3 ): 86(89
    [62] P. Zeigler, J. Kim. Asynchronous Genetic Algorithms on Parallel Computers. In Proc. 5th Int. Conf. Genetic Algorithms, 1993
    [63] F. Li, Y. H. Song, R. Morgan. Genetic Algorithms Based Optimization Approach to Power System Economic Dispatch. Proceedings of the 29th Universities Power Engineering Conference. Part 2. Ireland. l994
    [64] S. N.Singh, A. Chandramouli, P. K. Kalra. Optimal Reactive Power Dispatch Using Genetic Algorithm. Proceedings of Third Symposium on Electricity Distribution and Energy Management (ISEDEM93). Singapore, 1993
    [65] Z. Zibo, F. Naghdy. SISO System Identification Using Genetic Algorithms. Proceedings of the Electrical Engineering Congress. Sydney, Australia, 1994. 337~343
    [66] 曹宏庆,康立山,陈毓屏.动态系统的优化建模.计算机研究与发展,1999,36(8)
    
    
    [67] 陈文伟,张帅.经验公式发现系统FDD.小型微型计算机系统,1999,20(6):410(414
    [68] 傅学芳.基于GP/GA的数据建模方法. 数理统计与管理,2001,20(4):53-57
    [69] A.K.Sen, M.S.Srivastava. Regression analysis: theory, method, and applications. New York: Springer, 1990
    [70] P.Langley, J.M Zytkow. Data-driven approaches to empirical discovery. Artificial Intelligence.1989,40(1-3): 283~312
    [71] 李明. 热力系统控制系统的故障诊断与容错控制研究:[博士学位论文]. 北京:清华大学,2001
    [72] 崔淑妮. 热力系统自主学习模糊控制体系研究:[博士学位论文]. 北京:清华大学,2000
    [73] 杨志远,罗毅,阮大伟,等. 工业控制系统的优化整定及其在火电厂中的应用.中国电机工程学报,1997,17(1): 58(61
    [74] Ziegent J.G. and Nichols N.B, Optimum Settings for Automatic Controllers. Frans. ASME, 65, 433(444
    [75] 金以慧. 过程控制. 北京:清华大学出版社,1993
    [76] 金炜东,陈立,李岗.遗传算法用于控制器参数的满意优化.西南交通大学学 报,1998,33(6): 699(704
    [77] 陈明.基于进化遗传算法的优化计算.软件学报,1998, 9(11): 876(879
    [78] 周凯汀,郑力新.基于遗传算法的PID参数优化设计.华侨大学学报(自然科学版),2000,21(2): 200(204
    [79] 苏小林,阎晓霞.基于遗传算法的PID参数优化技术.电力系统及其自动化学报,1997,9(2): 21(26
    [80] W. B. Langdon. Genetic Programming and Data Structure: [Ph.D.Thesis]. Department of Computer Science, University College London, 1996
    [81] R. B. Nachbar. Genetic Programming. The Mathematica Journal, 1995, 5(3). 44~55
    [82] B. D. Dunay, F. E. Petry, W. P. Buckles. Regular Language Induction with Genetic Programming. Proc. of the 1st IEEE Int'l. Conf. on Evolutionary Computation (ICEC'94), Orlando, Florida, USA,IEEE Press, 1994. 396~400
    [83] 方崇智,肖德云. 过程辨识. 北京:清华大学出版社,1994
    [84] Tugnait J. Stochastic system identification with noisy input using cumulant statistica.IEEE Trans. Automatic Control,1995,40(4) :670-683
    Van den Hof P M J,Schrama R J P. An indirect method for transfer function from
    
    [85] closed-loop data. Automatic,1993,29(9):1523-1527
    [86] Lee B K. Closed-loop system identification using the dual Youla control parametrization. Int. J. Control,1995,62(5) :1175-1195
    [87] Van den Hof P M J,Schrama R J P. Identification normalized coprime plant factors from closed-loop experimental data. European J. Control,1995,1(3) :62-74
    [88] S?derstr?m T,Stoica P. Instrumental Variable Method for System Identification.Berlin, Germany: Springer-Verlag,1983 :145-176
    [89] Zhang Ying,Wen Changyun. Indirect closed-loop identification by optimal instrumental variable method. Automatic,1997,33(12) :2269-2271
    [90] Pintelon R,Guillaume P. Identification of linear systems captured in a feedback loop. IEEE Trans. On Instrumental Measurement ,1992,41(6) :747-754
    [91] Laudau I D. Unbiased recursive identification using model reference adaptive techniques. IEEE Trans. Automatic Control,1976,21(4) :194-202
    [92] Swami A,Mendel J M. Closed-form recursive estimation of MA coefficient using autocorrelations and third-order cumulants. IEEE Trans. Acoustics Speech and Signal Processing,1989,37(7) :1794-1795
    [93] 李白男.伪随机信号及相关辨识.北京:科学出版社,1987
    [94] 李亚非.基于GP算法的知识发现系统.计算机应用,2001,21(2): 50~52
    [95] 王小平,曹立明,顾绍元.遗传程序设计及其在符号回归问题中的应用.同济大学学报,2001,29(10): 1200~1204
    [96] 齐越胜,王宝中,康立山.遗传程序设计中的赋值函数与节点分类.计算机科学,1998,25(3):93-94.
    [97] Koza J R. Introduction to genetic programming. Cambridge: MIT Press,1994
    [98] Koza J R. Genetic programming. Cambridge: MIT Press,1991
    [99] 张亮明,夏桂娟.工业锅炉热工检测与过程控制.天津:天津大学出版社,1992
    [100] 李士勇.模糊控制(神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1996
    [101] 金耀初,蒋静坪.最优模糊控制的两种设计方法.中国电机工程学报,1996, 16(3):201(204
    [102] 王磊,王为民,模糊控制理论及应用,北京,国防工业出版社,1997
    [103] 金晓明,荣冈,王骥程.自适应模糊控制的新进展.信息与控制,,1996.8:217(223
    [104] D. S. Feldman. Fuzzy Network Synthesis with Genetic Algorithms. Proc. of the 5th Int'l. Conf. on Genetic Algorithms, Morgan Kaufmann, San Mateo, 1993. 311~317
    
    
    [105] Hsu Chin-Chih, Yamada Shin-ichi, Fujikawn Hideji, Shida Koichiro. Advanced Genetic Algorithms Applied in MRFACS for Fuzzy Rules Set Optimization. Proceedings of the 20th International Conference on Industrial.E1ectronics, Control and Instrumentation, Bologna, Italy, 1994, Part 2. 1407~1412
    [106] 郑力新,周凯汀,王永初.基于遗传算法的串级系统优化设计.厦门大学学报(自然科学版), 2001, 40(1): 90~93
    [107] 王晶,李玉兰,蔡自兴,等.基于遗传算法的模糊系统优化设计方法.控制理论与应用,1999, 16(5): 699~705
    [108] 金耀初,蒋静坪.基于进化计算的模糊控制规则优化.控制与决策,1996,11(6):672~676
    [109] 张毅,李人厚.基于基因算法的多变量模糊控制器的设计.控制理论与应用,1996,13(4):409~416
    [110] 童树鸿,沈毅,刘志言.遗传算法在模糊系统优化设计中的应用研究.系统工程与电子技术,2001, 23(1): 73~76
    [111] 胡汉平,吴晓刚,李德华,等.基于遗传算法的模糊控制系统.电子学报,2000, 28(7):123~125
    [112] 周怀春,娄新生,肖教芳,等. 炉膛火焰温度场图像处理试验研究. 中国电机工程学报. 1995,15(5):295~300
    [113] 曾庭华. 锅炉炉膛温度场测量技术. 广东电力, 1999,12(1):48~50
    [114] 王式民,吕震中,麻庭光,等. 图像处理技术在全炉膛火焰监测中的应用. 动力工程,1996,16(6):68~72
    [115] 黄勇理,瞿坦,周怀春,等. 电站锅炉炉膛火焰自动化监测中的图像处理技术. 仪表技术与传感器,2000,8:23~26
    [116] 常太华,李国光,田沛,等. 煤粉锅炉火焰检测及燃烧诊断. 华北电力大学学报,1999,26(1):57~62
    [117] 王飞,薛飞,马增益,等. 运用彩色 CCD测量火焰温度场的试验研究及误差分析. 热能动力工程,1998,13(2):81~84
    [118] 王飞,马增益,薛飞,等.运用彩色CCD测量火焰温度场的校正算法.中国电机工程学报,2000,20(1): 70~73
    [119] 王永初,任秀珍.工业过程控制系统设计范例.北京:科学出版社,1986
    [120] 张师帅,周怀春,黄勇理,等.采用辐射能反馈信号的火电单元机组负荷控制系统仿真研究. 中国电机工程学报,2001,21(2): 85~88
    周怀春,娄新生,尹鹤龄,等.采用辐射能信号的电站锅炉燃料调节对象建模及控
    
    [121] 制仿真研究. 中国电机工程学报,1996,16(4): 226~229
    [122] 李阳春,卫成业,罗志浩,等.以炉膛辐射信号为中间被调量的串级模糊调节策略研究. 中国电机工程学报 ,2001,25(6):80~83
    [123] 冯俊凯,沈幼庭 .锅炉原理及计算.北京: 科学出版社, 1992
    [124] 陈学俊 .锅炉原理.北京 : 机械工业出版社, 1981
    [125] 李琦,卢立东,陆叔军. 重视锅炉燃烧调整提高锅炉热效率. 江西电力, 1998, 22(2): 29~31
    [126] 徐春晖. 中小煤粉炉燃烧控制的新方法—主导因素法研究:[博士学位论文]. 北京:清华大学,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700