膀胱癌分子分型和分子网络的系统生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在手术前对非浸润性和浸润性膀胱尿路上皮癌进行准确的区分对于制定正确的治疗方案至关重要;然而,目前临床尚缺乏有效的鉴别诊断方法。本研究利用微阵列比较基因组杂交(array comparative genome hybridization, array CGH)技术研究膀胱癌的基因组DNA拷贝数变化,旨在获得膀胱癌特征性DNA拷贝数变异谱型,通过构建分子模型来对非浸润性和浸润性膀胱癌进行分子分型。在获得膀胱癌的基因组DNA拷贝数变异谱型的基础上,对同一组膀胱癌组织样品进行mRNA表达谱和miRNA表达谱的并行分析,从这三组分析数据中挖掘三种分子层面的相关性改变,构建分子网络并初步探讨其在膀胱癌发生发展中的意义。
     本课题第一部分工作是应用Agilent公司的4x44K array CGH芯片分析了45例膀胱癌组织基因组DNA。结果显示,染色体变化主要发生在1p、1q、2q、4q、5q、6q、8p、8q、9p、9q、10q、11p、11q、13q、14q、17p、20q等染色体臂。将这批数据与本实验室前期工作中的膀胱癌1x44K array CGH芯片数据整合,运用R Project分析软件,从共计65例膀胱癌(非浸润性膀胱癌29例,浸润性膀胱癌36例)的array CGH数据中鉴定出一组在膀胱癌基因组中有较高频率拷贝数变异的染色体区域,并且得到29个在Ta-T3期膀胱癌组间有显著差异的DNA拷贝数变异片段(p<0.05)。采用回归分割决策树的方法,构建了一个由5个DNA片段(分别定位于染色体lp36.13、lq32.1、5q11.2、9q21.31-q21.33和9q33.2)组成的树状模型,该模型对非浸润性膀胱癌和浸润性膀胱癌的分型准确率达90.8%。随后用leave one out算法对上述29个差异片段进行交叉验证。用real-timePCR的方法分别在array CGH分析所用起始膀胱癌样本(57例)和独立样本组织(49例)中验证了分子分型模型中包含的9个基因(A_l4_P 103301、FAM131C CH1T1 CDC20B、RASEF、RMI1、DAPK1、TRAF1和C5)的拷贝数变异情况,从而明确了array CGH结果的可靠性,以及分型模型的可行性。
     本课题第二部分工作应用Agilent公司mRNA表达谱芯片和niRNA表达谱芯片分别对35例和32例膀胱癌组织进行了分析。结果显示,非浸润性和浸润性膀胱癌的mRNA表达谱之间存在772个差异表达基因,GO注释发现这些差异表达基因均与细胞外基质有关;非浸润性和浸润性膀胱癌的miRNA表达谱之间存在146个差异表达的miRNA,对差异最显著的5个miRNA进行靶基因预测,并对这些靶基因进行GO分析,发现靶基因主要与代谢相关。本研究中有30例膀胱癌样品并行完成了array CGH芯片、mRNA表达谱和miRNA表达谱芯片分析。通过WGCNA (Weighted correlation network analysis)算法鉴定出11个与肿瘤浸润程度相关的“基因模块’'(module),基于GSEA (Gene Set Enrichment Analysis)方法得到信息以及eQTL (expression Quantitative Trait Locus)分析方法研究膀胱癌基因组DNA拷贝数变异与转录组改变之间的关系,针对每个module构建整合有DNA、mRNA、miRNA三个层面信息的分子网络,并初步探讨其内在的生物学意义。
     本研究结果表明,非浸润性和浸润性膀胱癌基因组DNA拷贝数的改变确实存在差异,据此通过生物信息学方法构建的分子模型能够比较准确地区分两型膀胱癌,并且在独立样本中得到了证实。而运用系统生物学方法构建的与膀胱癌浸润程度相关的分子网络,则为深入研究膀胱癌的发生发展机制提供了大量信息和宝贵的线索。
The biological characteristics of the two subtypes of bladder urothelial carcinoma, non-invasive superficial tumor and invasive tumor, are closely associated with the clinical performance, the therapeutical plan. However there is a lack of effective approaches to the preoperative discrimination for the two subtypes of bladder cancer. In this study, array comparative genome hybridization (array CGH) analysis was performed first, to obtain the genome DNA copy number alteration profiles that specifically related to the non-invasive or invasive bladder cancer, respectively. From these, a set of gain or loss genes/regions could be identified to generate a mathematical model for molecular classification of the two subtypes of tumor.
     The tumor tissue samples derived from 45 patients of bladder cancer were analyzed by array CGH on the Agilent human genome 4×44K microarrays. The genome-wide patterns of copy number alteration were obtained after analyzing by the Agilent software CGH Analytics 4.0. In euchromosomes, the alterations were mainly occurred in 1p, 1q, 2q,4q,5q,6q,8p,8q,9p,9q, 10q,11p, 11q,13q,14q, 17p and 20q. Combining the data with that of 20 bladder cancer samples previously analyzed by Agilent human genome 1×44K microarrays, a genomic profile was identified for the 65 cases of bladder cancer (29 non-invasive and 36 invasive). Besides,29 significantly variable fragments among the stage Ta, T1, T2 and T3 tumors were detected. Using them, a recursive partitioning decision tree model was constructed with 5 fragments located in 1p36.13, 1q32.1,5q11.2,9q21.31-q21.33 and 9q33.2, respectively. The accuracy of the model was 90.8%(59/65) for discriminating non-invasive and invasive bladder cancer. The reliability of the tree model was demonstrated by cross validation with the 'leave-one-out' algorithm. The 9 genes involved in the tree model (A_14_P103301, FAM131C, CHIT1, CDC20B, RASEF, RMI1, DAPK1, TRAF1 and C5) were then validated by real time polymerase chain reaction (RT-PCR) in both the tumor tissue samples used for the array CGH analysis (n=57) and that derived from an independent group of bladder cancers (n=49). There was a considerable correlation between the results of the array CGH and real time PCR. profile and a microRNA (miRNA) expression profile were obtained from 35 and 32 tissue samples of bladder cancer, respectively, using the Agilent microarrays. There were 772 differentially expressed genes between non-invasive and invasive bladder cancer; and all these genes were associated with extracellular matrix by Gene Ontology (GO) searching. There were 146 differentially expressed miRNAs between the two types of bladder cancer. The target genes of the 5 most significantly different miRNAs were predicted, and subsequently analyzed by the GO.
     In this study,30 of the 65 cases were parallelly screened by array CGH. mRNA microarrays and miRNA microarrays; and the data mining was performed with bioinformatic approaches. Grounded on the mRNA expression profile,11 gene-modules correlated with tumor invasion were identified, using weighted correlation network analysis (WGCNA). Based on the data derived from GSEA (gene set enrichment analysis) and eQTL (expression Quantitative Trait Locus), the networks for each module were built up. which integrated the information from the molecular levels of DNA, mRNA and miRNA, and the biological significance of the molecular networks was discussed.
     In conclusion, data obtained from the present study indicated that there were differences in the genomic profiles between the non-invasive and invasive bladder cancers. The two types of bladder urothelial carcinomas could be classified with the decision tree model with 5 fragments, which was certified in an independent sample set. This integrative study on molecular classification and molecular networks provided considerable information for better understanding bladder urothelial carcinoma.
引文
Abdel Wahab. A.H.. Abo-Zeid. H.I.. El-Husseini. M.I.. Ismail, M.. and El-Khor, A.M. (2005). Role of loss of heterozygosity on chromosomes 8 and 9 in the development and progression of cancer bladder. J Egypt Natl Cane Inst 17,260-269.
    Adams, J., Williams. S.V.. Aveyard. J.S.. and Knowles. M.A. (2005). Loss of heterozygosity analysis and DNA copy number measurement on 8p in bladder cancer reveals two mechanisms of allelic loss. Cancer Res 65,66-75.
    Aitken, K.J.. and Bagli. D.J. (2009). The bladder extracellular matrix. Part I:architecture, development and disease. Nat Rev Urol 6.596-611.
    Al-Sukhun, S.. and Hussain, M. (2003). Molecular biology of transitional cell carcinoma. Crit Rev Oncol Hemato147,181-193.
    Aleman, A., Adrien, L., Lopez-Serra. L.. Cordon-Cardo. C. Esteller, M.. Belbin. T.J., and Sanchez-Carbayo. M. (2008). Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br J Cancer 98,466-473.
    Aveyard, J.S., Skilleter. A., Habuchi, T., and Knowles. M.A. (1999). Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 80.904-908.
    Bergamaschi. A.. Kim. Y.H., Wang. P.. Sorlie. T. Hernandez-Boussard. T., Lonning. P.E.. Tibshirani, R.. Borresen-Dale. A.L.. and Pollack. J.R. (2006). Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45.1033-1040.
    Bernardini, M.. Lee. C.H.. Beheshti, B.. Prasad. M.. Albert. M.. Mariano, P.. Begley, H.. Shaw. P., Covens. A., Murphy, J.. Rosen. B.. Minkin. S., Squire. J.A.. and Macgregor. P.F. (2005). High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia 7.603-613.
    Bidosee. M.. Karry. R., Weiss-Messer. E.. and Barkcy. RJ. (2011). Growth hormone affects gene expression and proliferation in human prostate cancer cells, Int J Androl 34.124-137.
    Blais, A., and Dynlacht. B.D. (2005). Constructing transcriptional regulatory networks. Genes Dev 19, 1499-1511.
    Blaveri, E., Brewer, J.L., Roydasgupta, R.. Fridlyand, J.. DeVries, S., Koppie, T., Pejavar, S., Mehta, K., Carroll, P., Simko, J.P., and Waldman, F.M. (2005). Bladder cancer stage and outcome by array-based comparative genomic hybridization. Clin Cancer Res 11,7012-7022.
    Broberg, K., Huynh, E., Schlawicke Engstrom. K., Bjork, J., Albin, M., Ingvar, C, Olsson, H., and Hoglund, M. (2009). Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study. BMC Cancer 9,140.
    Broet, P., Camilleri-Broet, S., Zhang, S., Alifano, M., Bangarusamy, D., Battistella, M., Wu, Y., Tuefferd, M., Regnard, J.F., Lim, E., Tan, P., and Miller, L.D. (2009). Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics:implications for chemotherapy selection. Cancer Res 69, 1055-1062.
    Cairns, P., Shaw, M.E., and Knowles, M.A. (1993). Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene 8,1083-1085.
    Calin, G.A.. and Croce, C.M. (2006). MicroRNA-cancer connection:the beginning of a new tale. Cancer Res 66,7390-7394.
    Cao, G., Lu, H., Feng, J., Shu, J., Zheng, D., and Hou, Y. (2008). Lung cancer risk associated with Thr495Pro polymorphism of GHR in Chinese population. Jpn J Clin Oncol 38,308-316.
    Chan, M.W., Hui, A.B., Yip, S.K., Ng, C.F., Lo, K.W., Tong, J.H., Chan, A.W., Cheung, H.Y., Wong, W.S., Chan, P.S., Lai, F.M., and To, K.F. (2009). Progressive increase of genetic alteration in urinary bladder cancer by combined allelotyping analysis and comparative genomic hybridization, Int J Oncol 34, 963-970.
    Chaturvedi, V., Li. L., Hodges, S., Johnston. D., Ro, J.Y.. Logothetis, C. von Eschenbach. A.C.. Batsakis. J.G., and Czerniak, B. (1997). Superimposed histologic and genetic mapping of chromosome 17 alterations in human urinary bladder neoplasia. Oncogene 14,2059-2070.
    Chen, C.C., Shieh, B., Jin, Y.T., Liau, Y.E., Huang, C.H., Liou, J.T., Wu, L.W., Huang, W.. Young, K..C, Lai, M.D., Liu, H.S., and Li. C. (2001). Microarray profiling of gene expression patterns in bladder tumor cells treated with genistein. J Biomed Sci 8.214-222.
    Chitale, D., Gong, Y., Taylor, B.S., Broderick, S., Brennan, C. Somwar. R., Golas, B., Wang, L., Motoi, N., Szoke. J., Reinersman, J.M., Major, J., Sander. C, Seshan, V.E., Zakowski, M.F., Rusch, V.. Pao, W., Gerald, W., and Ladanyi, M. (2009). An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors. Oncogene.
    Cordon-Cardo, C. (1998). Molecular alterations in bladder cancer. Cancer Surv 32,115-131.
    Cowell, J.K.. and Hawthorn, L. (2007). The application of microarray technology to the analysis of the cancer genome. Curr Mol Med 7,103-120.
    Davies, J.J., Wilson, I.M., and Lam, W.L. (2005). Array CGH technologies and their applications to cancer genomes. Chromosome Res 13,237-248.
    Dong, H., Luo, L., Hong, S., Siu, H., Xiao, Y, Jin, L., Chen. R., and Xiong, M. (2010). Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma. BMC Syst Biol 4,163.
    Dudoit, S., and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol 3, RESEARCH0036.
    Duggan. B.. and Williamson. K.. (2004). Molecular markers for predicting recurrence, progression and outcomes of bladder cancer (do the poster boys need new posters?). Curr Opin Urol 14.277-286.
    Dyrskjot. L. (2003). Classification of bladder cancer by microarray expression profiling:towards a general clinical use of microarrays in cancer diagnostics. Expert Rev Mol Diagn 3,635-647.
    Dyrskjot. L.. Thykjaer. T., Kruhoffer, M.. Jensen. J.L.. Marcussen, N., Hamilton-Dutoit. S., Wolf, H.. and Orntoft. T.F. (2003). Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 33. 90-96.
    Edwards, J.. Duncan, P., Going, J.J.. Grigor, K.M., Watters. A.D.. and Bartlett, J.M. (2001). Loss of heterozygosity on chromosomes Ⅱ and 17 are markers of recurrence in TCC of the bladder. Br J Cancer 85,1894-1899.
    Elsamman, E., Fukumori, T., Ewis, A.A., Ali,N., Kajimoto, K.., Shinohara, Y, Ishikawa, M., Takahashi, M., Nishitani, M.A., Baba, Y., and Kanayama, H.O. (2006). Differences in gene expression between noninvasive and invasive transitional cell carcinoma of the human bladder using complementary deoxyribonucleic acid microarray:preliminary results. Urol Oncol 24,109-115.
    Fadl-Elmula, I., Kytola, S., Pan, Y, Lui, W.O., Derienzo, G., Forsberg, L., Mandahl, N., Gorunova, L. Bergerheim, U.S., Heim, S., and Larsson, C. (2001). Characterization of chromosomal abnormalities in uroepithelial carcinomas by G-banding, spectral karyotyping and FISH analysis. Int J Cancer 92, 824-831.
    Farber, C.R. (2010). Identification of a gene module associated with BMD through the integration of network analysis and genome-wide association data. J Bone Miner Res 25,2359-2367.
    Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates ISBN 0-87893-177-5.
    Franekova, M., Halasova, E., Bukovska, E., Luptak, J., and Dobrota, D. (2008). Gene polymorphisms in bladder cancer. Urol Oncol 26,1-8.
    Fridlyand, J., and Dimitrov, P. (2009). aCGH:Classes and functions for Array Comparative Genomic Hybridization data. R package version 1181.
    Garraway, L.A., Widlund, H.R., Rubin, M.A., Getz, G., Berger, A.J., Ramaswamy, S., Beroukhim, R., Milner, D.A., Granter, S.R., Du, J., Lee, C, Wagner, S.N., Li, C, Golub, T.R., Rimm, D.L., Meyerson, M.L., Fisher, D.E.. and Sellers, W.R. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436,117-122.
    Glas. A.M.. Floore. A.. Delahaye. L.J., Witteveen. AT., Pover. R.C.. Bakx. N.. Lahti-Domenici. J.S.. Bruinsma, T.J.. Warmoes. M.O.. Bernards, R.. Wessels. L.F.. and Van't Veer. L.J. (2006). Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7.278.
    Goebell, P.J., and Knowles. M.A. (2010). Bladder cancer or bladder cancers? Genetically distinct malignant conditions of the urothelium. Urol Oncol 28.409-428.
    Greco, M.. D'Alo, F., Scardocci, A., Criscuolo, M.. Fabiani. E... Guidi, F., Di Ruscio. A.. Migliara, G., Pagano, L., Fianchi, L., Chiusolo, P.. Hohaus, S., Leone, G., and Voso, M.T. (2010). Promoter methylation of DAPK.1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Blood Cells Mol Dis 45,181-185.
    Guevara-Aguirre, J., Balasubramanian, P., Guevara-Aguirre, M., Wei. M., Madia. F.. Cheng. C.W., Hwang. D.. Martin-Montalvo, A., Saavedra, J., Ingles, S.. de Cabo, R., Cohen, P., and Longo. V.D. (2011). Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 3.70ra13.
    Gupta, S., Iljin, K.. Sara, H., Mpindi, J.P., Mirtti, T., Vainio, P., Rantala. J., Alanen. K., Nees, M., and Kallioniemi, O. (2010). FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res 70.6735-6745.
    Han, W., Han, M.R.. Kang, J.J., Bae, J.Y., Lee. J.H., Bae, Y.J., Lee, J.E.. Shin. H.J.. Hwang, K.T.. Hwang. S.E.. Kim. S.W.. and Noh. D.Y. (2006). Genomic alterations identified by array comparative genomic hybridization as prognostic markers in tamoxifen-treated estrogen receptor-positive breast cancer. BMC Cancer 6.92.
    Hanahan. D., and Weinberg, R.A. (2011). Hallmarks of cancer:the next generation. Cell 144.646-674.
    Hidalgo-Curtis. C. Chase, A., Drachenberg, M.. Roberts. M.W.. Finkelstein,J.Z.. Mould. S.. Oscier. D.. Cross, N.C.. and Grand. F.H. (2008). The t(1;9)(p34;q34) and t(8:12)(p11;q15) fuse pre-mRNA processing proteins SFPQ (PSF) and CPSF6 to ABL and FGFR1. Genes Chromosomes Cancer 47. 379-385.
    Hong, S.M., Cho, H.. Moskaluk, C.A., and Yu, E. (2007). Measurement of the invasion depth of extrahepatic bile duct carcinoma:An alternative method overcoming the current T classification problems of the AJCC staging system. Am J Surg Pathol 31,199-206.
    Hood, L. (2003). Systems biology:integrating technology, biology, and computation. Mech Ageing Dev 124.9-16.
    Hopman, A.H., Kamps, M.A., Speel, E.J., Schapers. R.F., Sauter, G., and Ramaekers, F.C. (2002). Identification of chromosome 9 alterations and p53 accumulation in isolated carcinoma in situ of the urinary bladder versus carcinoma in situ associated with carcinoma. Am J Pathol 161,1119-1125.
    Hu, S.L., Kong, X.Y., Cheng, Z.D., Sun, Y.B.. Shen, G., Xu, W.P., Wu, L., Xu, X.C., Jiang, X.D.. and Huang, D.B. (2010). Promoter methylation of p 16, Runx3, DAPK and CHFR genes is frequent in gastric carcinoma. Tumori 96,726-733.
    Hurst, CD., Fiegler, H., Carr, P., Williams, S., Carter, N.P., and Knowles, M.A. (2004). High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene 23,2250-2263.
    Jansen, R.C., and Nap, J.P. (2001). Genetical genomics:the added value from segregation. Trends Genet 17, 388-391.
    Jin, Y., Xu, H., Zhang, C, Kong, Y., Hou, Y, Xu, Y, and Xue, S. (2010). Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer:a hospital-based case-control study in China. BMC Cancer 10,422.
    Jonkers, Y.M., Claessen, S.M., Feuth, T., van Kessel, A.G., Ramaekers, F.C, Veltman, J.A., and Speel, E.J. (2006). Novel candidate tumour suppressor gene loci on chromosomes 11q23-24 and 22q13 involved in human insulinoma tumourigenesis. J Pathol 210,450-458.
    Kallioniemi, A. (2008). CGH microarrays and cancer. Curr Opin Biotechnol 19,36-40.
    Kanarek, N., Fitzek, B., Su, S.C., Brower, M., and Jia, H. (2008). County lung cancer mortality:a decision tree model for control and prevention. J Public Health Manag Pract 14, E1-9.
    Kent, J., Barber, G, Clawson, H., and Cline, M. UCSC Genome Browser. http://genomeucscedu/cgi-bin/hgGene?hgg gene=uc003feg2&hgg prot=&hgg chrom=chr3&hgg sta rt= 162442526&hgg end= 162949934&hgg type=knownGene&db=hg 19&hgsid= 180264165.
    Kiemeney, L.A., Thorlacius, S., Sulem. P., Geller.F., Aben, K.K.. Stacey. S.N.. Gudmundsson, J., Jakobsdottir, M, Bergthorsson, J.T., Sigurdsson. A.. Blondal. T., Witjes. J.A., Vermeulen, S.H., Hulsbergen-van de Kaa, C.A., Swinkels, D.W., Ploeg, M., Cornel, E.B., Vergunst. H.. Thorgeirsson, T.E., Gudbjartsson, D., Gudjonsson, S.A., Thorleifsson, G., Kristinsson. K.T., Mouy. M., Snorradottir, S., Placidi, D., Campagna, M., Arici, C, Koppova, K., Gurzau, E., Rudnai. P.. Kellen, E.. Polidoro, S.. Guarrera, S.. Sacerdote, C, Sanchez, M., Saez, B., Valdivia, G., Ryk, C, de Verdier, P.. Lindblom, A.. Golka, K., Bishop, D.T., Knowles, M.A.. Nikulasson, S., Petursdottir, V.. Jonsson. E.. Geirsson. G., Kristjansson, B., Mayordomo, J.I., Steineck, G., Porru, S., Buntinx, F., Zeegers, M.P., Fletcher, T., Kumar, R., Matullo, G., Vineis, P., Kiltie, A.E., Gulcher. J.R., Thorsteinsdottir. U., Kong. A.. Rafnar, T., and Stefansson, K. (2008). Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40.1307-1312.
    Kim, S.Y., Kang, H.T., Choi, H.R., and Park, S.C. (2010). Reduction of Nup107 attenuates the growth factor signaling in the senescent cells. Biochem Biophys Res Commun 401.131-136.
    Kirkali, Z., Chan, T., Manoharan, M., Algaba, F., Busch, C, Cheng, L.. Kiemeney, L., Kriegmair, M.. Montironi, R., Murphy, W.M., Sesterhenn, I.A., Tachibana. M., and Weider. J. (2005). Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66,4-34.
    Kitano, H. (2002). Systems biology:a brief overview. Science 295.1662-1664.
    Klostergaard, A., Steffensen. R., Moller, J.K.. Peterslund, N., Juhl-Christensen. C, and Molle, I. (2010). Sepsis in acute myeloid leukaemia patients receiving high-dose chemotherapy:no impact of chitotriosidase and mannose-binding lectin polymorphisms. Eur J Haematol 85.58-64.
    Knowles. M.A. (2001). What we could do now:molecular pathology of bladder cancer. Mol Pathol 54. 215-221.
    Knowles, M.A. (2006). Molecular subtypes of bladder cancer:Jekyll and Hyde or chalk and cheese? Carcinogenesis 27.361-373.
    Kompass, K.S., and Witte, J.S. (2011). Co-regulatory expression quantitative trait loci mapping:method and application to endometrial cancer. BMC Med Genomics 4,6.
    Kovalenko, D., Yang, X., Nadeau, R.J., Harkins, L.K., and Friesel, R. (2003). Sef inhibits fibroblast growth factor signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent ERK activation. J Biol Chem278,14087-14091.
    Kurreeman, F.A., Goulielmos, G.N., Alizadeh, B.Z., Rueda, B., Houwing-Duistermaat, J., Sanchez, E., Bevova, M., Radstake, T.R., Vonk, M.C., Galanakis, E., Ortego, N., Verduyn, W., Zervou, M.I., Roep, B.O., Dema, B., Espino, L., Urcelay, E., Boumpas, D.T., van den Berg, L.H., Wijmenga, C, Koeleman, B.P., Huizinga, T.W., Toes, R.E., and Martin, J. (2010). The TRAFI-C5 region on chromosome 9q33 is associated with multiple autoimmune diseases. Ann Rheum Dis 69,696-699.
    Langfelder, P., and Horvath, S. (2008). WGCNA:an R package for weighted correlation network analysis. BMC Bioinformatics 9,559.
    Larre, S., Camparo, P., Comperat, E., Medina, S.G., Traxer, O., Roupret, M., Sebe, P., Cancel-Tassin, G., Sighar, K., Lozach, F., and Cussenot, O. (2010). Diagnostic, Staging, and Grading of Urothelial Carcinomas from Urine:Performance of BCA-1, a Mini-Array Comparative Genomic Hybridisation-Based Test. Eur Urol.
    Larriba, M.J., Casado-Vela, J., Pendas-Franco, N., Pena, R., Garcia de Herreros, A., Berciano, M.T., Lafarga, M., Casal, J.I., and Munoz, A. (2010). Novel snaill target proteins in human colon cancer identified by proteomic analysis. PLoS One 5, e10221.
    Lee, H., Kong, S.W., and Park, P.J. (2008). Integrative analysis reveals the direct and indirect interactions between DNA copy number aberrations and gene expression changes. Bioinformatics 24,889-896.
    Lee. K... Ambrose. Z.. Martin. T.D., Oztop. I.. Mulky. A.. Julias. J.G., VandegraaiT. N.. Baumann, J.G.. Wang, R.. Yuen.W.. Takemura. T, Shelton, K.. Taniuchi. I.. Li. Y.. Sodroski. J.. Littman. D.R.. Coffin. J.M., Hughes. S.H.. Unutmaz. D.. Engelman. A., and KewalRamani. V.N. (2010). Flexible use of nuclear import pathways by HIV-I. Cell Host Microbe 7.221-233.
    Ley. T.J.. Mardis. E.R.. Ding, L.. Fulton. B., McLellan. M.D.. Chen. K... Dooling. D.. Dunford-Shore, B.H.. McGrath. S.. Hickenbotham. M., Cook. L.. Abbott. R.. Larson. D.E.. Koboldt. D.C.. Pohl. C, Smith. S.. Hawkins. A.. Abbott. S.. Locke. D.. Hillier. L.W.. Miner. T.. Fulton. L.. Magrini. V.. Wylie. T.. Glasscock. J.. Conyers, J.. Sander, N.. Shi. X.. Osborne. J.R.. Minx. P.. Gordon. D., Chinwalla, A.. Zhao. Y.. Ries, R.E.. Payton, J.E., Westervelt. P.. Tomasson. M.H.. Watson. M.. Baty. J.. Ivanovich. J.. Heath, S.. Shannon. W.D.. Nagarajan. R.. Walter, M.J.. Link, D.C.. Graubert. T.A.. DiPersio. J.F.. and Wilson, R.K. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456,66-72.
    Lin, T., Dong. W.. Huang, J.. (?), Q.. Fan, X.. Zhang. C. and Huang. L. (2009). MicroRNA-143 as a tumor suppressor for bladder cancer. J Urol 181,1372-1380.
    Lindgren. D., Frigyesi. A., Gudjonsson. S.. Sjodahl. G., Hallden, C, Chebil. G., Veerla, S.. Ryden, T., Mansson, W., Liedberg. F., and Hoglund. M. (2010). Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res 70,3463-3472.
    Lindgren, D.. Gudjonsson. S.. Jee. K.J.. Liedberg. F.. Aits. S.. Andersson, A.. Chebil, G.. Borg. A., Knuutila, S., Fioretos, T,, Mansson. W., and Hoglund. M. (2008). Recurrent and multiple bladder tumors show conserved expression profiles. BMC Cancer 8.183.
    Lionetti. M.. Agnelli. L.. Mosca. L., Fabris. S.. Andronache, A.. Todoerti. K.. Ronchetti. D.. Deliliers, G.L. and Neri. A. (2009). Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosomes Cancer 48.521-531.
    Lu, J.. Getz. G.. Miska. E.A.. Alvarez-Saavedra. E.. Lamb. J.. Peck. D., Sweet-Cordero. A.. Ebert, B.L. Mak. R.H.. Ferrando, A.A.. Downing, J.R.. Jacks. T.. Horvitz. H.R.. and Golub. T.R. (2005). MicroRNA expression profiles classify human cancers. Nature 435.834-838.
    Maat, W., Beiboer, S.H.. Jager. M.J., Luyten. G.P., Gruis. N.A., and van der Velden. P.A. (2008). Epigenetic regulation identifies RASEF as a tumor-suppressor gene in uveal melanoma. Invest Ophthalmol Vis Sci 49,1291-1298.
    Markiewski, M.M., and Lambris. J.D. (2009). Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends lmmunol 30.286-292.
    Matsuda, R., Enokida, H., Chiyomaru, T., Kikkawa,N., Sugimoto, T., Kawakami, K., Tatarano, S., Yoshino, H., Toki, K., Uchida, Y., Kawahara, K., Nishiyama. K., Seki. N., and Nakagawa, M. (2011). LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling. Br J Cancer 104. 376-386.
    Maxwell, S.A., and Davis. G.E. (2000). Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci U S A 97.13009-13014.
    Modlich, O., Prisack, H.B., Pitschke, G., Ramp, U., Ackermann, R., Bojar, H., Vogeli, T.A., and Grimm, M.O. (2004). Identifying superficial, muscle-invasive, and metastasizing transitional cell carcinoma of the bladder:use of cDNA array analysis of gene expression profiles. Clin Cancer Res 10,3410-3421.
    Nephew, K.P., and Huang, T.H. (2003). Epigenetic gene silencing in cancer initiation and progression. Cancer Lett 190,125-133.
    Osterberg, L., Levan, K., Partheen, K., Delle, U., Olsson, B., Sundfeldt, K... and Horvath, G. (2009). Potential predictive markers of chemotherapy resistance in stage Ⅲ ovarian serous carcinomas. BMC Cancer 9,368.
    Oxford, G., and Theodorescu, D. (2003). The role of Ras superfamily proteins in bladder cancer progression. J Urol 170,1987-1993.
    Pinkel, D., and Albertson, D.G. (2005). Array comparative genomic hybridization and its applications in cancer. Nat Genet 37 Suppl, S11-17.
    Plaisier, C.L., Horvath, S.. Huertas-Vazquez, A.. Cruz-Bautista, I., Herrera. M.F., Tusie-Luna, T., Aguilar-Salinas. C, and Pajukanta, P. (2009). A systems genetics approach implicates USF1, FADS3. and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 5, el000642.
    Prat, E., Del Rey. J., Camps, J., Ponsa, I., Lloreta, J., Egozcue, J., Gelabert, A., Campillo, M., and Miro, R. (2008). Genomic imbalances in urothelial cancer:intratumor heterogeneity versus multifocality. Diagn Mol Pathol 17,134-140.
    Qin. S.L., Chen. X.J.. Xu, X., Shou, J.Z., Bi, X.G.. Ji, L., Han, Y.L., Cai, Y., Wei, F., Ma, J.H., Wu. M., Zhan. Q.M., and Wang, M.R. (2006). Detection of chromosomal alterations in bladder transitional cell carcinomas from Northern China by comparative genomic hybridization. Cancer Lett 238,230-239.
    Ransohoff. D.F. (2004). Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer 4,309-314.
    Renard, I., Joniau. S.. van Cleynenbreugel, B., Collette, C, Naome, C., Vlassenbroeck, I., Nicolas, H., de Leval, J., Straub, J., Van Criekinge, W., Hamida, W., Hellel. M., Thomas, A., de Leval, L., Bierau, K.. and Waltregny. D. (2009). Identification and Validation of the Methylated (?) and NID2 Genes through Real-Time Methylation-Specific Polymerase Chain Reaction Assays for the Noninvasive Detection of Primary Bladder Cancer in Urine Samples. Eur Urol.
    Ryschich, E.. Khamidjanov, A., Kerkadze, V., Buchler, M.W., Zoller, M, and Schmidt, J. (2009). Promotion of tumor cell migration by extracellular matrix proteins in human pancreatic cancer. Pancreas 38.804-810.
    Sartini. B.L.. Wang. H.. Wang, W.. Millette, C.F.. and Kilpatrick, D.L, (2008). Pre-messenger RNA cleavage factor 1 (CFlm):potential role in alternative polyadenylation during spermatogenesis. Biol Reprod 78.472-482.
    Schulz. W.A. (2006). Understanding urothelial carcinoma through cancer pathways, lnt J Cancer 119. 1513-1518.
    Segura, S., Salgado. R.. Toll, A., Martin-Ezquerra, G., Yebenes, M., Saez, A., Sole, F.. Barranco, C. Umbert. P.. Espinet. B., and Pujol, R.M. (2011). Identification of t(17;22)(q22:q13) (COL1AI/PDGFB) in dermatofibrosarcoma protuberans by fluorescence in situ hybridization in paraffin-embedded tissue microarrays. Hum Pathol 42,176-184.
    Spruck. C.H..3rd, Ohneseit, P.F., Gonzalez-Zulueta, M., Esrig, D., Miyao, N., Tsai, Y.C., Lerner. S.P., Schmutte, C, Yang, A.S., Cote, R., and et al. (1994). Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res 54,784-788.
    Stoehr, R., Zietz, S., Burger, M., Filbeck, T., Denzinger, S., Obermann, E.C., Hammerschmied, C, Wieland, W.F., Knuechel, R., and Hartmann, A. (2005). Deletions of chromosomes 9 and 8p in histologically normal urothelium of patients with bladder cancer. Eur Urol 47,58-63.
    Stransky, N., Vallot, C., Reyal, F., Bernard-Pierrot, I., de Medina, S.G., Segraves, R., de Rycke, Y,, Elvin, P., Cassidy, A., Spraggon, C., Graham, A., Southgate, J., Asselain, B., Allory, Y., Abbou, C.C., Albertson, D.G., Thiery, J.P., Chopin, D.K., Pinkel, D., and Radvanyi, F. (2006). Regional copy number-independent deregulation of transcription in cancer. Nat Genet 38,1386-1396.
    Sughra, K., Birbach, A., de Martin, R., and Schmid, J.A. (2010). Interaction of the TNFR-receptor associated factor TRAFI with l-kappa B kinase-2 and TRAF2 indicates a regulatory function for NF-kappa B signaling. PLoS One 5, e12683.
    Takeuchi, I., Tagawa, H., Tsujikawa, A., Nakagawa, M., Katayama-Suguro, M., Guo, Y., and Seto, M. (2009). The potential of copy number gains and losses, detected by array-based comparative genomic hybridization, for computational differential diagnosis of B-cell lymphomas and genetic regions involved in lymphomagenesis. Haematologica 94,61-69.
    Tatarano, S., Chiyomaru, T., Kawakami, K.., Enokida, H., Yoshino, H., Hidaka, H., Yamasaki, T., Kawahara, K., Nishiyama, K., Seki, N., and Nakagawa, M. (2011). miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. Int J Oncol.
    Team, R.D.C. (2009). R:A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Austria ISBN 3-900051-07-0, URL http://www.R-project.org.
    Thean. L.F.. Loi. C. Ho, K.S.. Koh. P.K., Eu, K.W., and Cheah. P.Y. (2009). Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in A PC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer 49,99-106.
    Ueno. T.. Tangoku. A.. Yoshino. S., Abe. T., Hayashi, H.. Toshimitsu, H., Hashimoto. K.. Satoh. T.. Oga. A.. Furuya. T.. Oka. M.. and Sasaki, K. (2003). Prediction of nodal metastasis by comparative genomic hybridization in biopsy specimens from patients with superficial esophageal squamous cell carcinoma. Clin Cancer Res 9.5137-5141.
    van de Vijver. M.J.. He. Y.D.. van't Veer. L.J., Dai. H., Hart, A.A., Voskuil, D.W., Schreiber, G.J.. Peterse, J.L., Roberts, C. Marton, M.J.. Parrish. M., Atsma, D., Witteveen, A.. Glas. A.. Delahaye, L., van der Velde. T.. Bartelink, H., Rodenhuis, S., Rutgers, E.T., Friend. S.H.. and Bernards, R. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347,1999-2009.
    Veerakumarasivam, A., Scott, H.E.. Chin. S.F.. Warren, A.. Wallard, M.J.. Grimmer, D.. Ichimura. K.., Caldas. C, Collins, V.P.. Neal, D.E.. and Kelly, J.D. (2008). High-resolution array-based comparative genomic hybridization of bladder cancers identifies mouse double minute 4 (MDM4) as an amplification target exclusive of MDM2 and TP53. Clin Cancer Res 14,2527-2534.
    Veltman, J.A., Fridlyand. J., Pejavar, S., Olshen, A.B., Korkola, J.E., DeVries, S.. Carroll, P., Kuo, W.L. Pinkel, D.. Albertson, D., Cordon-Cardo. C, Jain, A.N., and Waldman, F.M. (2003). Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res 63.2872-2880.
    von Knobloch, R., Bugert, P., Jauch. A.. Kalble. T., and Kovacs, G. (2000). Allelic changes at multiple regions of chromosome 5 are associated with progression of urinary bladder cancer. J Pathol 190. 163-168.
    Vrooman. O.P., and Witjes. J.A. (2008). Urinary markers in bladder cancer. Eur Urol 53,909-916.
    Wagner. U.. Bubendorf. L.. Gasser, T.C.. Moch, H.. Gorog, J.P.. Richter, J.. Mihatsch, M.J., Waldman, F.M.. and Sauter. G. (1997). Chromosome 8p deletions are associated with invasive tumor growth in urinary bladder cancer. Am J Pathol 151,753-759.
    Wang. A.M.. Ren, C.H.. and Xiang, Y. (2008). [Growth factors may enhance c-fos and c-jun gene expressions of hepatic stellate cells]. Zhonghua Gan Zang Bing Za Zhi 16.902-904.
    Wang, Y.. Hayakawa, J., Long. F., Yu, Q.. Clio, A.H.. Rondeau. G., Welsh. J., Mittal. S., De Belle,1., Adamson, E.. McClelland, M., and Mercola, D. (2005). "Promoter array" studies identify cohorts of genes directly regulated by methylation, copy number change, or transcription factor binding in human cancer cells. Ann N Y Acad Sci 1058,162-185.
    Willenbrock, H., and Fridlyand, J. (2005). A comparison study:applying segmentation to array CGH data for downstream analyses. Bioinformatics 21,4084-4091.
    Wu, X.R. (2005). Urothelial tumorigenesis:a tale of divergent pathways. Nat Rev Cancer 5,713-725.
    Xiong, G.F., Zhang, Y.S., Han, B.C., Chen, W., Yang, Y., and Peng, J.P. (2011). Estradiol-regulated proline-rich acid protein 1 is repressed by class I histone deacetylase and functions in peri-implantation mouse uterus. Mol Cell Endocrinol 331,23-33.
    Yamamoto, Y., Chochi, Y., Matsuyama, H., Eguchi, S., Kawauchi, S., Furuya, T., Oga, A., Kang, J.J., Naito, K., and Sasaki, K. (2007). Gain of 5p 15.33 is associated with progression of bladder cancer. Oncology 72,132-138.
    Yao, J., Weremowicz, S., Feng, B., Gentleman, R.C., Marks, J.R., Gelman, R., Brennan, C, and Polyak, K. (2006). Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 66,4065-4078.
    Zhang, J., Wong, H., Ramanan, S., Cheong, D., Leong, A., and Hooi, S.C. (2003). The proline-rich acidic protein is epigenetically regulated and inhibits growth of cancer cell lines. Cancer Res 63,6658-6665.
    Zhang. L., Volinia, S., Bonome, T., Calin, G.A., Greshock, J., Yang, N., Liu, C.G., Giannakakis, A., Alexiou, P., Hasegawa, K., Johnstone, C.N., Megraw, M.S., Adams, S., Lassus, H., Huang, J., Kaur, S., Liang, S., Sethupathy, P., Leminen, A., Simossis, V.A., Sandaltzopoulos, R., Naomoto, Y., Katsaros, D.. Gimotty. P.A., DeMichele, A., Huang, Q., Butzow, R.. Rustgi, A.K.. Weber, B.L., Birrer, M.J., Hatzigeorgiou, A.G., Croce, C.M., and Coukos. G. (2008). Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 105. 7004-7009.
    Zhang, W., Dahlberg, J.E., and Tam, W. (2007). MicroRNAs in tumorigenesis:a primer. Am J Pathol 171. 728-738.
    Zieglgansberger, W., and Tolle, T.R. (1993). The pharmacology of pain signalling. Curr Opin Neurobiol 3. 611-618.
    Zisman-Rozen, S., Fink, D., Ben-lzhak, O., Fuchs. Y.. Brodski, A., Kraus, M.H., Bejar, J., and Ron. D. (2007). Downregulation of Sef, an inhibitor of receptor tyrosine kinase signaling, is common to a variety of human carcinomas. Oncoaene 26,6093-6098.
    蔡雄伟(2007).中国协和医科大学博士研究生学位论文.
    叶定伟(2010).浸润性膀胱癌.人民卫生出版社68-73.
    资治科,孙之荣(2005).系统生物学:面向系统的生物学研究.系统工程理论与实践.
    连冬生,赵树金(2008).基因芯片技术及其在医药领域的应用.中国药事22,1097-1104.
    马建辉,and寿建忠(2007).膀胱癌.王金万主编 北京:北京大学医学出版社81-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700