B型烟粉虱诱导的烟草防御信号途径及B型烟粉虱和烟蚜对烟草防御反应的生理适应性差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B型烟粉虱是世界性的入侵害虫,该虫自侵入我国以来,迅速扩展蔓延,已成为多种作物上的害虫的优势种。我们在前期研究中已发现,B型烟粉虱取食诱导的烟草对烟蚜有明显的不利影响,B型烟粉虱在与烟蚜的种间竞争中存在明显的竞争优势。本研究以B型烟粉虱—烟草—烟蚜作为研究体系,研究了B型烟粉虱诱导的植物防御反应对烟蚜和B型烟粉虱生长发育和繁殖的影响;研究了B型烟粉虱取食诱导的烟草防御信号途径,探讨其在对烟蚜防御反应中的作用;通过研究B型烟粉虱和烟蚜取食B型烟粉虱前侵染的烟草植株其生理适应性的差异,明确其生理适应性在B型烟粉虱对烟蚜竞争优势中的作用。本研究对于揭示B型烟粉虱对烟蚜的竞争取代机制,进一步深入探讨外来入侵害虫B型烟粉虱的入侵机制具有重要的意义。本研究主要结果如下:
     1、B型烟粉虱前侵染的烟草植株对后取食的烟蚜生长发育和繁殖有显著的不利影响,但对后取食的B型烟粉虱却没有明显的不利影响。烟蚜1龄若蚜在B型烟粉虱前侵染的烟草植株系统白脉叶片上取食72h和96h后,存活率仅为35.4%和29.9%,而取食对照叶片的却为94.3%和91.5%,差异极显著;成蚜取食系统白脉叶片12d后,存活率为42.9%,累积单雌产仔量为25.6头/雌,而取食对照叶片的存活率为61.4%,单雌产仔量为32.5头/雌。B型烟粉虱前侵染的烟草植株的局部带虫叶片对烟蚜存活率影响很小,与对照相比略有差异。而B型烟粉虱前侵染的烟草系统白脉叶片和局部带虫叶片对随后取食的B型烟粉虱在存活率、繁殖力和生长发育等方面均没有明显的不利影响。
     2、B型烟粉虱若虫为害烟草植株后诱导了水杨酸信号途径的强烈表达,对茉莉酸信号途径没有明显的诱导作用。
     (1)利用生化分析方法,测定了水杨酸和茉莉酸信号途径中关键酶的活性。B型烟粉虱为害烟草植株后水杨酸信号途径关键酶苯丙氨酸解氨酶(PAL)和β-1,3葡聚糖酶活性明显升高。在处理植株的系统白脉叶片中,PAL和β-1,3葡聚糖酶活性分别在B型烟粉虱若虫为害后10和15d升高最明显,分别是对照叶片的1.65倍和2.23倍;在处理植株的带虫叶片中,PAL活性在为害10d时升高最明显,是对照的2.25倍;而β-1,3葡聚糖酶活性与对照相比没有显著变化。茉莉酸合成关键酶脂氧合酶(LOX)活性在诱导的烟草植株的白脉叶片中变化不明显,而在带虫叶片中则明显受到抑制。
     (2)采用RT-PCR技术测定了水杨酸和茉莉酸信号途径关键基因表达量,结果表明:水杨酸信号途径关键基因PAL、PR1和PR5在B型烟粉虱若虫为害的烟草植株的系统白脉叶片和局部带虫叶片上基因表达量均表现出明显的上调。茉莉酸信号途径基因AOS基因表达量在系统白脉叶片和局部带虫叶片上微弱上调,而LOX和COI基因表达量却没有显著的变化。
     (3)B型烟粉虱若虫为害烟草后植株内源水杨酸含量较对照显著升高,而茉莉酸含量变化微弱,与对照没有明显差异。在处理植株的系统白脉叶片上,水杨酸含量在B型烟粉虱若虫为害10d时急剧上升,是对照叶片的29.71倍,为害至第15d时较对照也有明显差异,至20d时与对照相似。在处理植株的带虫叶片上,只有在B型烟粉虱若虫为害第10d时,水杨酸含量显著升高,是对照的20.94倍,其余时间段则无与对照没有明显差异。
     3、外源水杨酸诱导了烟草植株对烟蚜的防御反应,且下部处理叶片的影响均大于上部系统叶片,外源茉莉酸诱导的烟草对烟蚜无不利影响。推测水杨酸防御信号途径在烟草介导的B型烟粉虱对烟蚜的防御反应中起到重要作用。
     (1)外源水杨酸不同浓度诱导烟草后对烟蚜存活率和发育速率均有显著的不利影响,且1mM>2mM>0.5mM,而对B型烟粉虱若虫的存活率和发育历期几乎没有不良影响。外源茉莉酸诱导烟草,一定程度上加快烟蚜的生长速率,且1mM>2mM>0.5mM;而不同处理浓度对B型烟粉虱若虫发育速率影响不同,0.5mM略为抑制,2mM使发育加快,1mM影响不大。外源茉莉酸诱导烟草植株后对B型烟粉虱和烟蚜存活率均没有显著影响。外源水杨酸和茉莉酸诱导烟草后,下部处理叶片对两种试虫的影响均大于上部系统叶片。
     (2)分别选择外源水杨酸和茉莉酸对烟蚜影响最为明显的两个浓度,即1mM水杨酸和2mM茉莉酸甲酯诱导烟草进行对烟蚜影响的时间效应实验,结果表明两种外源诱导物喷施后2d对烟蚜略有影响,5d时影响最为明显,处理8d时,影响几乎消除。对烟蚜影响的趋势与浓度实验中趋势相同。
     4、B型烟粉虱前侵染的烟草植株对随后取食的B型烟粉虱和烟蚜体内解毒代谢酶、保护酶及消化酶活性有不同的影响,说明生理适应性的差异是B型烟粉虱对烟蚜竞争优势的重要原因之一
     (1)取食前侵染的烟草植株系统白脉叶片后,B型烟粉虱成虫羧酸酯酶活性从取食12h开始显著升高,且一直持续至72h,其中取食12h时差异最明显,是对照的1.71倍。谷胱甘肽S转移酶活性在取食的48和72h时明显升高,取食48h时差异最明显,是对照的2.34倍。烟蚜成蚜羧酸酯酶活性在整个取食时间内均被显著抑制,24h时差异最明显,是对照的0.78倍。谷胱甘肽S转移酶活性在取食的12、48和72h明显降低,在差异最明显的12h时,处理试虫酶活是对照的0.74倍。前侵染的烟草植株白脉叶片对随后取食的两种试虫乙酰胆碱酯酶活性没有显著影响。两种试虫若虫取食系统白脉叶片与成虫的相关酶活规律相似。两种试虫成虫羧酸酯酶和谷胱甘肽-S-转移酶Km和Vmax值亦有不同程度的变化,说明了酶活性的变化不仅限于量变而且可能发生了质变。
     (2)B型烟粉虱取食其前侵染的烟草植株系统白脉叶片后,其体内超氧化物歧化酶(SOD)和多酚氧化酶(PPO)的活性均显著增加,过氧化物酶(POD)活性在取食12和24h后变化不明显,但在取食6,48和72h后也显著增加,B型烟粉虱体内的这3种酶活性的最高值较对照最高分别增加达1.62,2.71和2.57倍。而烟蚜在多数取食时间段内,体内PPO和SOD的活性仅略有增加,但在取食12h后SOD的活性受到明显的抑制。POD活性除在取食24h后显著高于对照外,在取食其他时间后均受到显著的抑制。
     (3)B型烟粉虱取食其前侵染的烟草植株系统白脉叶片不同时间后,其体内蛋白酶和淀粉酶活性均显著增加,最大值出现在24和48h,分别是对照的1.54倍和1.33倍;烟蚜取食烟草植株系统白脉叶片6h后,其体内蛋白酶和淀粉酶活性与对照相比没有明显差异,但随着取食时间的延长,这两种酶活性被显著抑制,其最低值分别为对照的0.39和0.72倍。
Bemisia tabaci (Gennadius) B biotype spread rapidly when it invades in China. It has been a key pest of various vegetables, cotton and tobacco and so on. We found that B. tabaci was predomination in competing with M. persicae. We chose B. tabaci--tobacco-M. persicae as research system, studied the effect of tobacco's defense response induced by B. tabaci on development and reproduction of M. persicae and B. tabaci itself. We also investigated defense signial pathway on tobacco induced byB. tabaci to explor the action of it in defensing M. persicae. We explored the difference of physiological adaptability of the two insects to defense response of tobacco induced by B. tabaci. This research had important academic meaning for showing competitive replacement mechanism of B.tabaci to M. persicae, and implementing sustainable control effectively. Major results as follows:
     1 There was disadvantaged influence of tobacco damaged by B. tabaci on development and fecundity of M. persicae, but no influence on B. tabaci itself. On systemic white-vein leaves, livability of M. persicae nymphae was 35.4% and 29.9% when feeding 72 and 96h, the control was 94.3% and 91.5%. Livability of adult of M. persicae was 42.9% when feeding 12h on systemic white-vein leaves. Fecundity of adult of M. persicae was significantly fall. Accumulative number of eggs per female was 25.6 when feeding 12h on systemic white-vein leaves, control is 32.5. Meanwhile, there was nearly no disadvantaged influence on livability of M. persicae nymphae on local leaves of induced tobacco plants. There was no disadvantaged influence on livability、fecundity and development of B. tabaci itself on systemic and local leaves of induced tobacco plants.
     2 Nymphae of B. tabaci can induce strong SA signical pathway, but not induce significant JA signical pathway after feeding on tobacco plants.
     (1) The activity of PAL andβ-1,3-glucanase which are two key enzyme in SA signical pathway were significantly rise. On systemic white-vein leaves, The maximal activity of PAL andβ-1,3-glucanase was as 2.23 and 1.65 times as control on 15d and 10d,respectively. On local leaves,the maximum activity of PAL was as 2.25 times as control on 10d.However the activity ofβ-1,3-glucanase was no significant difference. The activity of LOX which is the key enzyme of JA signial pathway was no significant difference on local leaves,and significantly repressed on systemic white-vwin leaves.
     (2)The gene expression amout of PAL、PR1 and PR5 in SA signial pathway was significantly rise on systemic and local leaves of induced plants. The gene expression amout of AOS gene in JA signial pathway is a little rise in the two leaves, but the gene expression amout of LOX and COI in JA signial pathway was no significant difference.
     (3)Content of SA in induced tobacco plants by B. tabaci was significantly rise. On systemic white-vein leaves, content of SA was significantly rise on 10 and 15d, and gradually fall later. Content of SA was as 29.71 times as control plants on 10 days. Meanwhile, on local leaves, content of SA was as 20.94 times as control on 10 days,but no significant difference on later times. Content of SA was nearly no difference in induced plants.
     3 Application of exogenous SA can induce defence reponses of tobacco plants to M. persicae. It indicated that SA signal pathway had important effect to M. persicae on tobacco plants induced by B. tabaci.
     (1) Application of exogenous SA on tobacco had disadvantaged influence on livability and development of M. persicae. Degree of the influence on M. persicae of the three concentration was 1mM>2mM>0.5mM. Application of exogenous SA on tobacco plants nearly had no effect on survivol and developmental period of B. tabaci. Application of exogenous JAon tobacco can expedite the development of M. persicae. Degree of the effect on M. persicae of the three concentration was 1mM>2mM>0.5mM. Application of exogenous JA on tobacco had a slight effects on B. tabaci.0.5mM of JA slightly slower the development of B. tabaci nymphae,2mM of JA can expedite the development of it, 1mM of JA had no significant effect on it. Application of exogenous JA on tobacco had no effect on livability of B. tabaci and M. persicae.The systemic leaves had the same trend, but degree of effect was lower than the local leaves.
     (2) Application of exogenous1mM SA and 2mMeJA on tobacco to research the influence on B. tabaci and M. persicae of time effect. It indicated that the influence was the most significant on 5 days, the influence was slight on 2 days, and was no influence on 8 days.
     4 There was different influence on activities of detoxification metabolize enzymes、protective enzymes and digest enzymes between B. tabaci and M. persicae.
     (1) The activity of Carboxylesterase of B. tabaci was significantly increase from 12h to 72h. The maximal activity was as 1.71 times as control on 12h. The activity of Glutathione S-transferase of B. tabaci was significantly increase on 48 and 72 times. The maximal activity was as 2.34 times as control on 48h. The activity of Carboxylesterase of M. persicae was significantly decrease with the time of feeding. The minimal activity was as 0.78 times as control on 24h. The activity of Glutathione S-transferase of M. persicae was significantly decrease on 12、48 and 72h. The minimal activity was as 0.74 times as control on 12h.There was no influence on acetylcholine esterase of the two insects.The nympha of the two insects has the same result.Km and Vmax of the two enzyme of the two insects changed inordinately.It showed that the activities of the two enzymes qualitative changed.
     (2) The activities of PPO and SOD in B. tabaci significantly increased after feeding on the preinfested tobacco plants for 6,12,24,48 and 72 h, and the POD activity in B. tabaci also significantly increased after feeding on the preinfested tobacco plants for 6,48 and 72 h, respectively.The maximum activities of SOD, PPO and POD in B. tabaci on the preinfested tobacco plants were 1.62,2.71 and 2.57 times higher than those in the control, respectively. In contrast, the activities of PPO and SOD in M. persicae increased a little in most time-span after feeding on the preinfested tobacco plants, while the SOD activity was obviously suppressed after feeding on the preinfested tobacco plants for 12 h. POD activity in M. persicae was significantly inhibited except after feeding on the preinfested tobacco plants for 24 h
     (3) The activities of protease and amylase in B. tabaci significantly increased in all time-span after feeding on the preinfested tobacco plants, the maximum activities were 1.54 and 1.33 times that in the control, respectively. Activities of protease and amylase in M. persicae did not change after feeding on the preinfested tobacco plants for 6 h(P>0.05); however, the activities were inhibited with the extending of feeding time, the lowest activities in M. persicae feeding on the preinfested tobacco plants was 0.39 and 0.72 times that in the control, respectively.
引文
柴田承二编.1978.生物活性天然物质.杨本文译.北京:人民卫生出版社,552.
    陈建明,俞晓平等.2003.水稻品种对白背飞虱的耐虫性反应及稻株营养成分的变化.应用生态学报,14(12):2246~2250.
    褚栋,张友军等.2005.烟粉虱不同地理种群的mtDNACOI基因序列分析及其系统发育.中国农业科学,38(1):76~85.
    冯远娇,王建武等.2009.外源茉莉酸处理地下部对玉米化学防御反应影响的时间和浓度效应.应用生态学报,20(8):1883~1890.
    高希武,郑炳宗等.1996.小菜蛾羧酸酯酶性质的研究.南京农业大学学报,19(增刊):122~126
    高希武.1992.寄主植物对棉蚜羧酸酯酶活性的影响.昆虫学报,35(3):267~272.
    郭线茹,罗梅浩等.1995.烟蚜危害对烟草生理及生长发育的影响.昆虫学报,10(2):95~99.
    贾贞,宋占午等.2004.山楂叶螨危害对海棠叶片POD的影响.西北植物学报,24(11):2136~2139.
    李进步,方丽平等.2008.杨荣志棉花抗蚜性与苯丙氨酸解氨酶活性的关系.昆虫知识,45(3):422~425.
    李军,赵惠燕等.2007.两种麦蚜取食诱导小麦抗性品种后对后来取食蚜生物学特性的影响.昆虫学报,50(2):197~201.
    李云寿,罗万春等.1996.不同寄主植物对小菜蛾艾氏剂环氧化酶和乙酰胆碱酯酶活性的影响.植物保护学报,23(2):181~184.
    李云寿,罗万春等.1996.不同寄主植物对小菜蛾羧酸酯酶活性的影响.山东农业大学学报,27(2):147-151.
    李周直,沈惠娟等.1994.几种昆虫体内保护酶系统活力的研究.昆虫学报,37(4):399~403.
    刘金燕.2008.B型烟粉虱与温室粉虱解毒酶系在寄主转换中的动态变化.西南大学硕士学位论文.
    刘新,张蜀秋.2000.在伤信号传导中茉莉酸与水杨酸的关系.植物学通报,17:133~136.
    刘少武,纪明山.2008.辣椒碱对小菜蛾体内乙酰胆碱酯酶和羧酸酯酶的影响.昆虫学报,28(4):8~9.
    娄永根,程家安.1997.植物的诱导抗虫性.昆虫学报,40(3):320~331.
    吕仲贤,俞晓平等.1997.褐飞虱致害性变异过程及其体内酶的变化.昆虫学报,40(增刊):122~127.
    牟少飞,梁沛等.2006.槲皮素对B型烟粉虱羧酸酯酶和谷胱甘肽-S-转移酶活性的影响,43(4):491~495,
    钦峻德.1987.昆虫与寄主植物的关系--论昆虫与植物相互作用及其演化.北京:科学出版社,30~58.
    孙亚萍.2008.烟粉虱危害对番茄品质及生理生化影响.扬州大学硕士学位论文.
    谭维嘉,赵焕香.1990.取食不同寄主植物的棉铃虫对溴氰菊酯敏感性的变化.昆虫学报,33(2):155~160
    王建军,戴志一等.2000.寄主植物对棉铃虫体内解毒酶活性的影响.江苏农业研究,21(2):58~61.
    王开运,姜兴印等.2001.取食不同寄主植物对棉蚜后代抗药性的影响.昆虫学报,44(4):469~475.
    王楠,张志春等.2008.腐胺对小菜蛾幼虫生长及保护酶活力的影响.昆虫知识,45(4):573~576.
    王荣富,赵国荣等.2001.两种稻飞虱的取食为害对稻株氨基酸含量的影响.安徽农业大学学报,28(1):133~138.
    汪霞,吕延华等.2008.稻纵卷叶螟为害对水稻防御化合物及信号分子含量的影响.浙江大学学报(农业与生命科学版),34(5):532~539.
    王燕,戈峰等.2001.马尾松诱导化学物质变化的时空动态.生态学报,21(8):1256~1261.
    徐红星,吕仲贤等.2008.褐飞虱在适应抗性水稻品种“IR26”过程中的氨基酸含量变化.中国生态农业学报,16(4):925-928.
    薛应龙,欧阳光察.1998.植物抗病的物质代谢基础.北京:科学出版社,770~783.
    杨小生,万里翔等.2008.宋果灵对乙酰胆碱酯酶活性的抑制作用.安徽农业科学,36(9):3499~3505.
    姚洪渭,叶恭银等.2002.寄主植物影响害虫药剂敏感性的研究进展.昆虫学报,45(2):253~264.
    严盈,刘万学等.2008.B型型烟粉虱与温室白粉虱不同虫态的碱性磷酸酶性质比较.昆虫学报,51(1):1~8.
    殷海娣,黄翠虹等.2006.昆虫唾液成分在昆虫与植物关系中的作用.昆虫学报,49(5):843~849.
    尤民生,侯有朋等.2000.植物诱导防御的空间和时间效应.武夷科学,16:195~201.
    于飞,曾鑫年等.2004.蛋白酶抑制剂在害虫防治中的研究与应用.植物保护,30(3):13~17.
    张帆.2009.棉花防御与烟粉虱反防御的交互作用.新疆农业大学硕士学位论文.
    张桂芬,雷芳等.2008.寄主植物转换对B型烟粉虱和温室粉虱淀粉酶及蛋白酶活性的影响.生物多样性,16(4):313~320.
    张继红,董钧锋等.2008.棉酚和烟碱对棉铃虫的生长和细胞色素P450单加氧酶活性的影响.昆虫知识,38(4):276~278.
    赵丽艳.2006.麦长管蚜取食诱导小麦防御反应的生理生化及分子机制.中国农业科学院硕士学位论文.
    史益敏.1999.β-1,3-葡聚糖酶活性的测定.现代植物生理学实验指南.北京:科学出版社.
    汤章城,陈因.1999.现代生理学实验指导.北京:科学出版社.
    Agrawal AA, Valn F, et al.2002.Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite:adaptive plasticity? The American Naturalist, 159(5):553~565
    Alvarez ME.2000. salicylic acid in the machinery of hypersensitive cell deat h and disease resistance. Plant Molecular Biology,44 (3):429~442.
    Aparna TL, Jonas SS, et al.1999. Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomologia Experimentalis et Applicata,91: 403~412.
    Baikb K, Czuchjowska Z, et al.1994. Comparison of polyphenol oxidase activities inwheats and flours fromAustralian and U. S. cultivars. Journal of Cereal Science,19:291~296.
    Bedford ID, Briddon RW, et al.1994. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology,125: 311~325.
    Bernays EA, Chapman RF.1994. Host- Plant Selection by Phytophagous Insects. New York, USA:Chapman & Hall,312.
    Bradford MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72:248~254.
    Brattsten LB.1988. Potential role of plant allelochemicals in the develop ment of insecticide resistance.In:Barbosa P, Letourneau D K eds. Novel Aspects of Instect Plant Interactions. New York Wilev:313~348.
    Cabrera HM, Argandona VH, et al.1994. Metabolic changes in barley seedlings at different aphid infestation levels. Phytochemical.,35:317~319.
    Caillaud CM. Niemeyer HM.1996. Possible involvement of the phloem sealing system in the acceptance of a plant as host by an aphid. Experientia,52:927~931.
    Chen JL, Ni HX, et al.2003. Effects ofmajor secondary chemical ofwheat p lants on enzyme activity in Sitobion avenae. Acta Entomology.Sinica.,46(2):144~149.
    Cho SK, Jung KW, et al.2005. Analysis of differentially expressed transcripts from planthopper-infested wild rice (Oryza minuta). Plant.Cell.Reports,24:59~67.
    Christopher JL.1989. Signal and Transduction Mechanisms for Actication of Plant defense against Microbial Attack. Cell,56:215~223.
    Constabel PC.1999..A Survey of Herbivore Inducible Defensive Proteins and Phytochemical. Biochemistry, Ecology, and Agriculture,137~166.
    Costa HS, Johnson MW, et al.1993. Sweetpotato whitefly (Homoptera, Aleyrodidae): analysis of biotypes and distribution in Hawaii. Environment. Entomology,22:16~20.
    CunninghamJP, West SA.2001. Host selection in phytophagous insects:a new explanation for learning in adults. Oikos,95(3):537~543
    Dangl J.1998. Plants just say no to pathogens. Nature,394:525~527.
    David.1999. Plant-Insect interactions:The tomato defense response following Feeding by phloem-feeding whiteflies. Ph.D Dissertation
    Delaney TP, Uknes S, et al.1994. A central role of salicylic acid in plant disease resistance. Science,266:1247-1250.
    Denno RE, Roderrick MA, et al.1996. Habitat persistence underlies the intraspecific dispersal strategies of planthoppers. Ecological Monographs,66:389~408.
    Denno RF, McClure MS, et al.1995. Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annal Review of Entomology,40:297~331.
    Denno RF, Peterson MA, et al.2000. Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology,81:1814~1827.
    Ding SY, Li HY, et al.2001. Effects of two kinds of transgenic poplar on protective enzymes system in the midgut of larvae of American white moth. Journal of Forest Research, 12(2):119~122.
    Dowd PF, Smith CM, et al.1983. The adaptability of this insect pest is shown by its ability to develop resistance to insecticides. Journal of Economic Entomology,76:700~703.
    Elgorashi EE, Stafford GI, et al.2004. Acetylcholinesterase enzyme inhibitory effects of Amaryllidaceae alkaloids. Planta.Medica,70:260~262
    Ellis C, Karafyllidis I, et al.2002. Constitutive activation of Jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Molecular Plant-Microbe Interactions, 15:1025~1030.
    Engelberth J, Koch T, et al.2001. On channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between Jasmonate and Salicylate signaling in lima bean. Plant Physiology,125:369~377.
    Fanchon D, Francise V, et al.2005. Systemic response to aphid infestation by Myzus persicae in the phloem of Apium graveolens Plant Molecular Biology,57:517~540.
    Felton GW, Korth KL, et al.1999. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology,9:317~320.
    Fidantsef AL, Stout MJ, et al.1999. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor Ⅱ, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54:97~114.
    Florian S.2001. Enzymes of the biosynthesis of Octadecanoid-derived signaling molecules. Journal of Experimental Botany,52:11~23.
    Frick S, Kutchan TM.1999. Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. Plant Journal,17:329~339
    Gaffney T, Friedrich L, et al.1993. Requirement of Salicylic for t he induction of systemic acquired resistance. Science,261:754~756.
    Gen-ichiro A.2000. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature,406:512~515.
    Gols R, Roosjen M, et al.2003. Induction of direct and indirect plant responses by Jasmonic acid,low spider mite densities, or a combination of Jasmonic acid teratment and spider mite infestation.L. Chemical Ecology,29(12):2651~2666.
    Green TR, Ryan CA.1972. Wound induced proteinase inhibitors in plant leaves. Science,175: 776~777.
    Hama HA.1988. Spatial acuity of honeybee vision and its spectral properties. Applied Entomology and Zoology,23:109~112
    Harms K.1995. Expression of a flax allene oxide sunthase cDNA leads to increased endogenous Jasmonic acid levels in trangenic potato plants but no acorresponding activation of JA-Responding genes. Plant Cell,7:1645~1654.
    Haukioja E.1990. Induction of defenses in trees. Ann.Rev.Entomol.,36:25~42.
    He L, Tan SL, et al.2003. Study on resistance selection and activity of detoxification enzyme in Tetranychus cinnabarinus (Boiduval).Chinese. Journal of Pest Science,5(4):23~29.
    Helsen VM.1993. The resistance of lettuce(Lactuca Sativa L.) to Nasonovia ribisnigri: Bionomics of Nasonovia ribisnigri on near isogenic lettuce. Entomology Experiment Applied,66:53~58.
    Hunter MD.1992. Interactions within herbivore communities mediated by the host plant:the keystone herbivore concept. Effects of resource distribution on animal-plant Interactions. Plant Cell,15:809~834.
    Inbar M, Doostdar H, et al.1999b. Effects of sessile whitefly nymphs (Homoptera: Aleyrodidae) on leaf-chewing larvae (Lepidoptera:Noctuidae). Environment Entomology, 28(3):353~357.
    Jennifer S.1999. Thaler Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature,399:686~688.
    Jongsma MA, Bakker PL.1995. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proceedings of the National Academy of Sciences,92:8041~8045.
    Jongsma MA, Bolter C.1997. The adaptation of insect to plant protease inhibitors. Insect Physiology,43:885~896.
    Kaloshian I, Kinsey MG.2000. Mi-mediated resistance against the potato aphid Macrosiphum euphorbiae (Hemiptera:Aphididae) limits sieve element ingestion. Environment Entomology,29:690~695.
    Kempema LA, Cui X, et al.2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology,143:849~865.
    Klingler J, Powell G, et al.1998. Phloem specific aphid resistance in Cucumis melo line AR 5, effects on feeding behaviour and performance of Aphis gossy pii. Entomology Experiment Applied,86(1):79~88.
    Kogan M, Paxton J.1983. Natural inducers of plant resistance to insects. In:Hedin P A ed. Plant resistance to insects. Washington, D C:American Chemistry Society,153~172.
    Li L, Steffens JC.2002. Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta,215:239~247.
    Lindroth RL.1989. Host plant alteration of detoxification enzyme in Papilio glaucus. Entomology Experiment Applied,50:29~35.
    Liu SS, De Barro PJ, et al.2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science,318:1769~1772.
    Liu TX, Oetting RD, et al.1994. Evidence of interspecific competition between Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) (Homoptera:Aleyrodidae) on some greenhouse-grown plants. Entomology Science,29:55~65.
    Lo SCC, Nicholson RL.1998. Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls:implications for a compensatory role in the defense response. Plant Physiology,116:979~989.
    Malamy J, Carr JP, et al.1990. Salicylic acid:a likely endogenous signal in resistance reponse of tobacco to viral infection. Science,250(4985):1002~1004.
    Maleck K, Dietrid RA.1999. Defense on multiple fronts:how do plants cope with diverse enemies? Trends in Plant Science,4:215~219.
    Margit L, Wilhelm B, et al.2005. Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytologist,167:597~606.
    Mark DH.2000. Mixed signals and cross-talk:interaction between plants, insect herbivores and plant pathogens. Agricultural and Forest Entomology,2:155~160.
    Martin Heil.2002. Induced Systemic resistance against pathogens in the context of induced plant defences. Annals Botany,89:503~512.
    Masaya M, Suzuki Y.2003. Two rice planthoppers, Sogatella furcifera and Nilaparvata lugens: effects on dispersal capability and performance. Ecology Entomology,28:174~182.
    Matsumura M, Yoshito S.2003. Two rice planthoppers, Sogatella furcifera and Nilaparvata lugens:effects on dispersal capability and performance. Ecology Entomology,28: 174~182.
    Matsumura M.2001. The current status of occurrence and forecasting system of rice planthoppers in Sapan.Asia-Pacific. Entomology,4:195~199.
    Mauricio R, Rausher MD, et al.1997. Variation in the defense strategies of plant:are resistance or tolerance mutually exclusive? Ecology,78:1301~1311.
    Mayer RT, Inbar M, et al.2002. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch.Insect.Biochememistry Physiology, 51(4):151~169.
    Mcconn M.1997. Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences,94:6473~6477.
    McKenzie CL, Shatters RGJ, et al.2002. Effect of geminivirus infection and Bemisia tabaci infection on accumulation of pathogenesis related proteins in tomato. Archives of Insect Biochemistry Physiology,49(4):203~214.
    Metraux JP, Signer H, et al.1990. Increase in Salicylic acid at the onset of systemic acquired resistance in cucumber. Science,250(4985):1004~1066.
    Michael J.1998. Stout et al. Specificity of induced resistance in the tomato Lycopericon esculentum. Oecologia,113:74~81.
    Miles PW.1972. The Saliva of Hemiptera. Adv. Insect Physiology,9:183~2551.
    Mistric, Clark.et al.1979. Green peach aphid injury to fluecured tobacco leaves. Tobacco Science,23:23~24.
    Moran PJ, Thompson GA.2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiology,125:1074~1085.
    Moran PJ, Cheng YF, et al.2002. Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Archives of Insect Biochemistry Physiology,51: 182~203.
    Mukanganyama S, Figueroa CC, et al.2003. Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera:aphididae). Journal of Insect Physiology, 49(3):223~229,
    Mulin CA, Croft BA.1983. Cytochrome P-450-dependent monooxygenase activity in the velvetbean caterpillar, Anticarsia gemmatalis Hubner. Environmental Entomology,12: 1278~1281.
    Musser RO, Hum-Musser SM, et al.2002. Herbivory:caterpillar saliva beats plant defences. Nature,416(6881):599~600.
    Orhan I, Sener B, et al.2004. Acetylcholinesterase and butyryl cholinesterase inhibitory activity of some Turkish medicinal plants. Journal of Ethnopharmacol.,91:57~60.
    Ortego F, Ruiz M, et al.1998. Effect of DIMBOA on growth and digestive physiology of Sesamia nonagrioides (Lepidoptera:Noctuidae) larvae. Journal of Insect Physiology,44(2): 95~101.
    Pascual S, Callejas C.2004. Intra-and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera:Aleyrodidae) from Spain. Bulletin Entomology Research,94: 369~375.
    Patrick JM, Gary AT.2001. Molecular Responses to Aphid Feeding in Arabidopsis in Relation to Plant Defense Pathways. Plant Physiology,125:1074~1085.
    Penninckx I, Eggermont K, et al.1996. Pathogen induced systemic activation of a plant defensin gene in Arabidopsis follows a Salicylic acid indenpent pat hway. Plant Cell,8: 2309~2323.
    Perring TM, Cooper AD, et al.1993. Identification of a whitefly species by genomic and behavioral studies. Science,259:74~77.
    Peter CC.2000. Polyphenol Oxidase from Hybrid Poplar. Clouing and Expression in Response to Wounding and Herbivory. Plant Physiology,124:285~295.
    Plinio TC, Alberto FR, et al.2003. Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. Journal of Insect Physiology, 49(1):11~24.
    Qubbaj T, Reineke A, et al.2005. Molecular interactions between rosy apple aphids, Dysaphis plantaginea, and resistant and susceptible cultivars of its primary host Malus domestica. Entomology Experiment Applied,115:145~152.
    Quintero C, Cardona C, et al.1998. First report of biotype B of Bemisia tabaci (Homoptera: Aleyrodidae) in Colombia.Rev. Colombiana Entomology,12:23~28.
    Raskin I.1992. Salicylic acid, a new plant hormone. Plant.Physiol.,99:799~803.
    Reitz SR, Trumble JT.2002. Competitive displacement among insects and arachnids. Annal Review of Entomology,47:435~465.
    Riskallah M R.1986. Host plant induction of microsomal monooxygenase activity in relation to diazinon metabolism and toxicity in larvae of the tobacco budworm Heliothis virescens (F.). Pesticide Biochemistry and Physiology,25:233~247.
    Roche P, Alston FH, et al.1997. RELP and RAPD markers linked to the rosy leaf curling aphid resistance gene(sdl) in apple. Theoretical and Applied Genetics,94:528~533.
    Rubia-Janchez E, Suzuki Y, et al.1999. The potential for compensation of the effects of the brown planthopper Nilaparvata lugens Stal.(Homoptera:Delphacidae) feeding on rice. Crop.Protection,18:39~45.
    Russo VM.1997. Interaction of Colletotrichum orbiculare with thrips and aphid feeding on watermelon seedlings. Crop Protection,16(6):581~584.
    Saito T.1993. Insecticide resistance of the cotton aphid, Aphis gossypii Glover. Applied of Entomology and Zoology,28:263~265.
    Sasabea M, Wenb Z, et al.2004. Molecular analysis of CYP321A1, a novel cytochrome P450 involved in metabolism of plant allelochemicals (furanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea. Gene,338:163~175.
    Sebastien D, Laurence B, et al.2007. Local and systemic responses induced by aphids in Solanum tuberosum plants. Netherlands Entomological Society,1~7.
    Self LS, Guthrie FE, et al.1994. Metabolism of nicotine by tobacco-feeding insects. Nature, 204:300~301.
    Shulaev V, Leon J, et al.1995. Is Salicylic acid a translocated signal of systemic acquired resistance in tobacco. Plant Cell,7:1691~1692.
    Stotz HU, Kroymann J, et al.1999. Plant-insect interactions.Curr.Opin. Plant Biology,2: 268~272.
    Stout MJ, Fidantsef A, et al.1999. Signal interactions in pathogen and insect attack:systemic plant mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology,54:115~130.
    Sung-Jin P, Huang YH, et al.2006. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta,223:932~947.
    Tallamy DW, Mullin CA, et al.1999. An alternate route to insect pharmacophagy:the loose recep tor hypothesis. Journal of Chemistry Ecology,25:1987~1997.
    Tallamy DW.1985. Squash beetle feeding behavior:an adap tation against induced cucurbit defence. Ecology,66:1574~1579.
    Tang AH, Tu CPD.1995. Pentobarbital2induced change in Drosophila glutath ione S2t ransferaseD21mRNA stability. Journal of Biology Chemistry,23:13819~13825.
    Tso TC.1990. Production, Physiology and Biochemistry of Tobacco Plant. Beltsville:Ideals Inc,306~352.
    Tsueda H, Tsuchida K.1998. Differences in spatial distribution and life history Paramete of two sympatric whiteflies, the green house whitefly and the silverleaf whitefiy under green house and laboratory conditions. Applied Entomology and zoology,33:379~383.
    van de Ven WTG, LeVesque CS, et al.2000. Local and systemic changes in Squash Gene Expression in Response to Silverleaf Whitefly Feeding. Plant Cell,12:1409~1423.
    Van ZPA, Agrawal AA.2004a. Community-wide impacts of herbivore-induced plant responses in milkweed (Asclepias syriaca). Ecology,85:2630~2637.
    Veenstra KH, Pashley DP, et al.1995. Host-plant adaptation in fall armywonn host strains comparison of food consumption, utilization, and detoxication enzyme activities. Annal of Entomology Society of America,88(1):80~91.
    Visser JH.1982. Differential sensory perceptions of plant compounds by insects.HEDIN P A.Plant Resistance to Insects. Washington D C:American Chemistry Society,215~230.
    Viswanathan DV, Narwani AJT, et al.2005. Specificity in induced plant responses shapes patterns of herbivore occurrence on Solanum dulcamara. Ecology,86:886~896.
    Voelckel CW, Weisser W, et al.2004. An analysis of plant-aphid interactions by different microarray hybridization strategies. Mological Ecology,13:3187~3195.
    Voelckel WG, von GA, et al.2004. Treatment of hemorrhagic shock.New therapy options.Der. Anaesthesist,53(12):1151~1167.
    Walling LL.2000. The myriad plant responses to herbivores. Plant Growth Regulaton,19: 195~216.
    Watanabe T, Kitagawa H.2000. Photosynthesis and translocation of assimilates in rice plants following phloem feeding by the planthopper Nilaparvata lugens (Homoptera: Delphacidae). Journal of Economology Entomology,93:1192~1198.
    West C.1985. Factors underlying the late seasonal appearance of the lepidopterous leaf-mining guild on oak. Ecology Entomology,10:111~120.
    Wet LR, Botha CEJ.2007. Resistance or tolerance:An examination of aphid (Sitobion yakini) phloem feeding on Betta and Betta-Dn wheat (Triticum aestivum). South African Journal of Bottan,73:35-39.
    WilhelminaVV, David P, et al.2002. Activation of novel signalling pathways by phloem-feeding whiteflies. IOBC,25(6):33~40.
    Wink M, Theile V.2002. Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera:Sphingidae). Chemoecology,12:29~46.
    Wold EN, Marquis RJ.1997. Induced defense in white oak:effect on herbivores and consequences for theplant. Ecology,78(5):1356~1369.
    Wool D, Hales DF.1996. Previous infestation affects recolonization of cotton by Aphis gossypii:induced resistance or plant damage? Phytoparasitica,24:39~48.
    Xie JY, He FQ, et al.2002. Influence of host p lants on the acetylcholinesterase activity of cotton aphid. Acta Phytophylacica Sinica,29(4):241~245.
    Xu Z.2006. Phloem Feeding regulates the plant defense pathways responding to both aphid infestation and pathogen infection. Biotechnology and Sustainable Agriculture, 215~219.
    YU S J.1986. Induction of microsomal oxidases by host plants in the fall armyworm, S podoptera f rugiperda. Pesticide Biochemistry and Physiology,17:59~67.
    Yvan R.2003. Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Science,164:441~450.
    Zarate SI, Kempema LA, et al.2007. Silverleaf whitefly induces salicylic acid defenses and suppresses effectual Jasmonic acid defenses. Plant Physiology, (143):866~875.
    Zeng FR, Cohen AC.2000. Partial characterization of α-amylase in the Salivary glands of Lygushesperus and L. lineolaris. Comparison Biochemistry Physiology,126B:9~16.
    Zhang F, Zhu L, et al.2004. Differential gene expression in response to brown planthopper feeding in rice. Plant Physiology,161:53~62.
    Zhang SZ, Zhang F, et al.2008. Enhancement of Phenylalanine Ammonia, polyphenoloxidase and peroxidase in cucumber seedlings by Bemisia tabaci(Gennadius) (Hemiptera: Aleyrodidae) Infestation. Agriculture Science in China,7(1):82~87.
    Zhu-salzman K, Koiwa H, et al.2003. Cowpea Bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mological Biology,12:135~145.
    Zhu-salzman, Salzman RA, et al.2004. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant.Physiology,134:420~431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700