五甲基槲皮素抗大鼠自体移植静脉内膜增生和AngⅡ所致心室重构的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多酚类化合物是中药和药食两用植物的重要有效成分,广泛存在于众多植物中,在日常蔬菜、水果及饮料中含量丰富。多酚类化合物如白藜芦醇、槲皮素等的药理作用非常广泛,如降血压、抗氧化、抗脂质过氧化、抗缺血再灌注损伤、抗肿瘤等,因此受到医药界的高度关注。但天然的多酚类化合物由于含有多个羟基而容易被氧化,不利于提取、制备和保存。另外其生物利用度低,半衰期短、效价低等缺点也防碍了对其的开发和利用。多甲氧基黄酮是黄酮的甲基衍生物,具有明显的药代动力学特点和药效动力学优势。但天然多甲氧基黄酮的提取工艺至今尚无重大突破,得量有限,价格昂贵,使得深入研发难以进行。我们对槲皮素进行了甲基化改造,获得高纯度低价位的五甲基槲皮素(Pentamethylquercetin,PMQ),克服了药源的瓶颈,使我们得以深入研究PMQ的药理学特性。
     本实验组之前研究发现PMQ能对抗乳鼠心肌细胞的氧化损伤;能内皮依赖性和内皮非依赖性的舒张离体血管;能对抗离体和在体的心肌缺血再灌注损伤;能抑制乳鼠心脏成纤维细胞的增值。这些发现提示PMQ对心血管系统的作用值得进一步研究。考虑到临床上行冠状动脉旁路移植术(CABG)的冠心病患者仍面临着心肌重构和静脉移植桥管新生内膜再狭窄的问题,目前仍没有有效的治疗手段,本实验尝试探索PMQ对这类疾病是否能有所益处。故本实验的目的是研究PMQ对AngⅡ诱导的心肌肥大、间质纤维化的作用及对血管平滑肌细胞增值和自体移植静脉内膜增生的影响,并探讨其可能的机制。另外,在实验中改进了成年大鼠心肌细胞分离和培养的方法及大鼠颈部自体静脉移植的连续缝合方法。
     第一部分五甲基槲皮素减轻AngⅡ所致大鼠心肌肥厚和细胞凋亡
     目的:研究五甲基槲皮素(PMQ)对血管紧张素Ⅱ(AngⅡ)致大鼠心肌肥厚和凋亡的作用。方法:30只SD大鼠随机分为5组,试验持续21天。(1)空白组:每晨生理盐水灌胃;(2)PMQ组:每晨PMQ50mg/kg灌胃;(3)AngⅡ组:于第15天开始皮下注射AngⅡ(288μg/kg·d);(4):PMQ+AngⅡ组:PMQ和AngⅡ处理同前;(5)溶剂+AngⅡ组:每晨溶剂灌胃,AngⅡ处理同前。于第22天处死大鼠,测量心脏指数、左心指数,real time-pcr检测BNP mRNA的表达,TUNNEL法测心肌凋亡,免疫组化测Bax、Bcl-2表达。结果:AngⅡ能明显引起高血压、心肌肥厚(提高心脏指数、左心指数及BNPmRNA的表达),诱导心肌细胞凋亡及上调凋亡相关蛋白Bax表达、提高Bax/Bcl-2。PMQ能明显抑制AngⅡ引起的上述改变。结论:PMQ能对抗AngⅡ引起的高血压、心肌肥厚及凋亡。
     第二部分五甲基槲皮素减轻AngⅡ所致大鼠心肌间质纤维化
     目的:研究PMQ对AngⅡ所诱导的大鼠心肌间质纤维化的作用。方法:SD大鼠30只随机分为5组,试验持续21天。(1)空白组:每晨生理盐水灌胃;(2)PMQ组:每晨PMQ(50mg/kg)灌胃;(3)AngⅡ组:于第15天开始皮下注射AngⅡ(288μg/kg·d);(4):PMQ+AngⅡ组:PMQ和AngⅡ处理同前;(5)溶剂+AngⅡ组:每晨溶剂灌胃,AngⅡ处理同前。第22天处死大鼠,测量心肌羟脯氨酸含量,real time-pcr检测collagenⅠ及collagenⅢmRNA的表达,免疫组化测collagenⅠ、collagenⅢ容积分数(CVF)及其比值CVFⅠ/CVFⅢ。结果:AngⅡ能明显提高大鼠心肌羟脯氨酸含量,上调collagenⅠ、collagenⅢ的mRNA表达,增加collagenⅠ、Ⅲ容积分数及CVFⅠ/CVFⅢ比值。PMQ能显著抑制AngⅡ引起的上述改变。结论:PMQ能对抗AngⅡ引起的心肌间质纤维化。
     第三部分五甲基槲皮素抑制AngⅡ诱导的大鼠心肌NADPH氧化酶mRNA表达上调
     目的:研究PMQ对AngⅡ所诱导的大鼠心肌重构的作用机制。方法:SD大鼠30只随机分为5组,试验持续21天。(1)空白组:每晨生理盐水灌胃;(2)PMQ组:每晨PMQ(50mg/kg)灌胃;(3)AngⅡ组:于第15天开始皮下注射AngⅡ(288μg/kg·d);(4):PMQ+AngⅡ组:PMQ和AngⅡ处理同前;(5)溶剂+AngⅡ组:每晨溶剂灌胃,AngⅡ处理同前。第22天处死大鼠,测量心肌SOD活力、MDA含量,real time-pcr检测NADPH oxidase亚单位Nox2和p47~(phox) mRNA的表达。结果:AngⅡ能明显提高大鼠心肌NADPH oxidase亚单位Nox2和p47~(phox)的mRNA表达,并降低心肌SOD活力、增加MDA含量。PMQ能显著抑制AngⅡ引起的上述改变。结论:PMQ能对抗AngⅡ引起的心肌重构可能与其抗氧化及下调NADPH oxidase mRNA表达有关。
     第四部分五甲基槲皮素抑制AngⅡ诱导的血管平滑肌增殖和NADPH氧化酶mRNA表达上调
     目的:研究PMQ对AngⅡ诱导血管平滑肌(VSMC)增殖的作用及其机制。方法:AngⅡ(0.1μmol/L,24h)刺激血管平滑肌细胞增殖,同时分别给予0.1、0.3、1、3、10、30μmol/L的PMQ干预,用MTT法测细胞活力,用DCFH-DA测ROS,用real-time PCR测NADPH oxidase亚单位Nox1,p47~(phox),p22~(phox)的mRNA表达。结果:PMQ 0.3μmol/L开始可以显著抑制VSMC的活力并减少ROS的产生,3μmol/L作用最强,10μmol/L、30μmol/L作用减弱。PMQ同时显著抑制Nox1,p47~(phox),p22~(phox)表达。结论:PMQ能显著抑制AngⅡ诱导的VSMC增殖,此作用可能与其抗氧化及抑制NADPH氧化酶有关。
     第五部分五甲基槲皮素抗大鼠颈部自体静脉移植物内膜增生
     目的:研究PMQ对大鼠自体移植静脉内膜增生的作用。方法:建立大鼠颈部自体静脉移植模型,随机分为模型对照组和给药组。对照组每晨溶剂灌胃,给药组每晨按PMQ 12.5mg/kg、25mg/kg、50mg/kg三个剂量分别灌胃。于28天后取材测新生内膜和中膜的厚度及面积比。结果:与对照相比,三个剂量组的PMQ均能显著减小内膜和中膜的厚度及面积比,其中50mg/kg组的效果较其他两个剂量弱。结论:PMQ有抑制自体静脉移植物新生内膜增生的作用。
     附录1多用途成年大鼠心室肌细胞分离方法
     目的:建立稳定的可同时用于细胞培养和膜片钳实验的成年大鼠心室肌细胞分离方法。方法:应用Langendorff灌流,生物酶(胶原酶Ⅱ加BSA)消化法分离耐钙心肌细胞。分别用左右心室肌做细胞培养和全细胞膜片钳研究。结呆:左室心肌细胞数3.7±0.6×10~6,存活率96.0±2.1%,杆状细胞得率84.8±2.7%,横纹清晰。膜片钳实验时容易封接破膜,记录到典型的I_(Ca.L)。结论:本方法简单、节约、重复性好,改善了杆状细胞得率、细胞质量,左右心室肌细胞分别能很好的用于培养和膜片钳实验。
     附录2大鼠颈部自体静脉移植模型的两种吻合方法
     目的:比较间断吻合和连续吻合法建立静脉桥狭窄动物模型的优劣。方法:SD大鼠20只,分间断吻合和连续吻合组,取颈外静脉与颈总动脉行端端吻合。术后4周取下静脉桥,观察桥管通畅性,分析新生内膜与中膜的厚度、面积比。结果:连续组与间断组相比手术时间更短,出血更少,但桥管通畅率低,两组内膜增生程度没有显著差异。结论:连续吻合用时短,出血少,对术者要求更高,更易形成吻合口狭窄。两者造模效果一样。
Polyphenol compounds are very important active ingredient in plants for Chinesemedicine and medical food; they are plenty in many plants, vegetables, fruits and drinks.Polyphenolic compounds, like resveratrol (RES) and quercetin (QUE), have extensivepharmacological effects, such as blood pressure lowing, anti-oxidation, anti-lipidperoxidation, anti-repeffusion injury and anti-tumor and so on; which are highly concernedin the medicine kingdom. However, natural polyphenol compounds could be oxidatedeasily because of their many hydroxyls, thus impact the extraction, manufacture and storing.Their low bioavailability, short half-life and low effect-price rate obstacle the exploitationand utilization as well. Polymethoxylflavonoids are methylation derivatives frompolyphenolflavonoid, which have obvious pharmacokinetics characteristics andpharmacodynamics advantage. Because of no big progress on the extraction process,polymethoxylflavonoids are limited sourced, expensive, and hard to be researched.Therefore, we methylized quercetin and obtained high-purified and inexpensivePentamethylquercetin (PMQ), which overcame the bottleneck of PMQ source and made thein-depth pharmacological study of PMQ a reality.
     In the earlier studies, we found that PMQ reduced the oxidation injury of H_2O_2 onisolated neonatal rat myocardial cells; extenuated ischemia reperfusion injury in vivo and invitro heart; suppressed proliferation of cultured cardiac fibroblast induced by aldosterone;relaxed isolated vascular rings by endothelium-dependent and endothelium-independentmechanisms. All these suggest that the advantages of PMQ on cardiovascular systemdeserve to be investigated. The patients with coronary heart disease after accepted coronaryartery bypass grafting operation faced two fundamental problems: chronic ventricalremodeling and vein graft restenosis caused by neointima. We wondered if PMQ had anyeffect on this kind of disease. In this study, we investigated the effects of PMQ on cardiachypertrophy and fibrosis induced by AngⅡ; the influences of PMQ on proliferation ofvascular smooth muscle cell induced by AngⅡ; the impacts on intimal hyperplasia model of autologous vein graft in rat and the mechanisms. In addition, we improved the methodsof isolation of adult rat cardiomyocytes for culture and experiment, of patch clamp andanastomosis to institute vein graft model.
     PartⅠ3,3',4',5,7-Pentamethylquercetin reduces cardiachypertrophy and apoptosis in AngiotensinⅡ-infused rats
     Objective The hypothesis that pentamethylquercetin (PMQ) reduces cardiac hypertrophyand myocyte apoptosis was tested in AngiotensinⅡ(AngⅡ)-infused rats. Methods: Thirtyrats were randomly assigned to the 5 groups with 6 rats in each group: (1) control group:Saline gavage was performed daily for 21 days; (2) PMQ group: PMQ (50mg/kg) gavagewas performed daily for 21 days; (3) AngⅡgroup: AngⅡ(288μg/kg·d) was daily injectedsubcutaneously from the 15th day; (4) PMQ+ AngⅡgroup: PMQ gavage and AngⅡinjection were performed as the same as above; and (5) solvent+ AngⅡgroup: Vehiclegavage was performed daily for 21 days, AngⅡinjection was performed as the same asabove. Blood pressure was monitored daily utilizing tail-cuff. After the rats wereeuthanized at 22st day, the heart weight index (HW/BW) and the left ventricular weightindex (LVW/BW) were calculated, and the expression of BNP mRNA was determined byreal time-PCR. Myocyte apoptosis was measured by TUNEL assay and the expression ofBax and Bcl-2 were determined by immunohistochemistry. Results: PMQ reduces bloodpressure and cardiac hypertrophy induced by AngⅡby decreasing the heart weight index,the left ventricular weight index and the expression of BNP mRNA; inhibits myocyteapoptosis by reducing the expression of Bax, Bax/Bcl-2. Conclusion: PMQ reducescardiac hypertrophy and myocyte apoptosis in AngⅡinduced hypertension rats. Theresults suggest that PMQ may represent an attractive therapeutic approach to treat CHF.
     PartⅡ3,3',4',5,7-Pentamethylquercetin reduces cardiacfibrosis in AngiotensinⅡ-infused rats
     Objective: To investigate the effect of PMQ on AngⅡinduced cardiac fibrosis. Methods:Thirty rats were randomly assigned to the 5 groups, 6 each: (1) control group: Saline wasadministrated daily via gavage for 21 days; (2) PMQ group: PMQ (50mg/kg) wasadministrated daily via gavage for 21 days; (3) AngⅡgroup: AngⅡ(288μg/kg·d) wasinjected subcutaneously daily from the 15th day; (4) PMQ+ AngⅡgroup: PMQ and AngⅡwere administrated as above; and (5) solvent+ AngⅡgroup: Solvent and AngⅡwereadministrated as above. After the rats were euthanized on the 22nd day, the myocardialhydroxyproline content was measured, and the expression of collagenⅠand collagenⅢmRNA were determined by real time-PCR. Collagen volume fraction (CVF)ⅠandⅢwere detected by immunohistochemistry, and CVFⅠ/CVFⅢwas calculated. Results:PMQ reduced cardiac fibrosis in AngⅡinduced hypertension rats by decreasing themyocardial hydroxyproline content, downregulating the expression of collagen I andcollagenⅢmRNA, and decreasing CVFⅠ, CVFⅠ/CVFⅢ. Conclusion: PMQ couldreduce cardiac fibrosis.
     PartⅢ3,3',4',5,7-Pentamethylquercetin downregulatesexpression of NADPH oxidase mRNA inAngiotensinⅡ-infused rats
     Objective: To investigate the mechanism of anti-ventricular remodelingof PMQ on AngⅡ-infused rats. Methods: Thirty rats were randomly assigned to the 5 groups, 6 each: (1) control group: Saline was administrated daily via gavage for 21 days; (2) PMQ group:PMQ (50mg/kg) was administrated daily via gavage for 21 days; (3) AngⅡgroup: AngⅡ(288μg/kg·d) was injected subcutaneously daily from the 15th day; (4) PMQ+ AngⅡgroup: PMQ and AngⅡwere administrated as above; and (5) solvent+ AngⅡgroup:Solvent and AngⅡwere administrated as above. After the rats were euthanized on the22nd day, the myocardial SOD activity and MDA content were measured, and theexpression of NADPH oxidase subunits Nox2 and p47~(phox) mRNA were determined by realtime-PCR. Results: PMQ exerted antioxidant function by increasing SOD activity anddecreasing MDA content and reducing the mRNA expression of NADPH oxidase subunitsNox2 and p47~(phox). Conclusion: PMQ could reduce cardiac remodeling, which may resultfrom antioxidant function
     PartⅣ3,3',4',5,7-Pentamethylquercetin suppresses theproliferation of VSMC and downregulates the mRNA expressionof NADPH oxidase induced by AngⅡ
     Objective: To investigate the effect of PMQ on AngⅡinduced proliferation of vascularsmooth muscle cells and its mechanism. Methods: The proliferation of vascular smoothmuscle cells were induced by AngⅡ(0.1μmol/L, 24h) while PMQ was administrated atdifferent dosages(0.1, 0.3, 1, 3, 10 and 30μmol/L). Cell viability was detected by MTT;ROS was measured by DCFH-DA; and the expressions of NADPH oxidase subunits Noxl,p47~(phox), and p22~(phox) mRNA were measured by real-time PCR. Results: PMQ suppressedthe cell viability and ROS of vascular smooth muscle cells induced by AngⅡ. PMQ startedto demonstrated therapeutic effects from 0.3μmol/L, got the peak at 3μmol/L, and theeffects weakened from 30μmol/L to 10μmol/L. PMQ also downregulated the mRNA expressions of NADPH oxidase subunit Nox1, p47~(phox) and p22~(phox) induced by AngⅡ.Conclusion: PMQ suppressed the proliferation of vascular smooth muscle cells induced byAngⅡ, which maybe result from the anti-oxidation activity and mRNA expressiondownregulation of NADPH oxidase.
     PartⅤ3,3',4',5,7-Pentamethylquercetin suppresses intimalhyperplasia of the vein graft
     Objective: To investigate the effect of PMQ on intimal hyperplasia of the vein grafts inrats. Methods: SD rats were randomly assigned to control group and PMQ group. Solventwas administrated daily in rats of control group via gavage, PMQ (12.5mg/kg, 25mg/kg,50mg/kg) was administrated daily in rats of PMQ group via gavage. The reversed jugularvein was implanted into the carotid artery. 4 weeks after operation, vein grafts wereharvested, and intimal hyperplasia of the vein grafts was assessed. Results: Compared withcontrol group, PMQ decreased intima/media area index and intima/media thickness index atthree dosages after implantation. The effects of 50mg/kg PMQ were weaker than PMQ at12.5mg/kg and 25mg/kg. Conclusion: PMQ could inhibit neointima hyperplasia of veingraft in rats.
     SupplementⅠIsolation of adult rat cardiomyocytesfor culture and experiment of patch clamp
     Objective: To improve current enzymatic methods to isolate a high yield of high-quality adult rat cardiomyocytes for both culture and experiment of patch clamp. Methods:Calcium tolerant cardiomyocytes were isolated with collagenaseⅡby langendorff perfusion,Left and right ventricle myocytes were used respectively for culture with or without FBSand patch clamp. The currents of L-type calcium channels were recorded by patch clamp inthe entire cell mode. Results: With this method, we routinely obtained a highyield(3.7±0.6×10~6/left ventricle) and high percentage(84.8±2.7%) of rod-shaped myocytes,most of which were clearly defined sarcomeric striations and quiescent state. A typicalcurrent of L-type calcium channel was recorded in the cardiomyocytes from right ventricle.Conclusion: this is a simple and reliable myocyte isolation method that greatly improvesthe yield, cell quality, and reproducibility of cardiomyocytes isolation and is suit to bothculture and patch clamp.
     SupplementⅡTwo types of anastomosisto institute vein graft model
     Objective: To compare two types of anastomosis in an animal model of intimal hyperplasiaof autologous vein graft in rats. Methods: SD rats were divided into two groups randomly.The external jugular veins were implanted into the external carotid of the same side withinterrupted suture and twice continuous suture respectively. Samples of tissues wereharvested at 4 weeks after operation. Situation of vein grafts were observed and tissuesections were analyzed by HE staining. Results: Compared with interrupted suture group,continuous suture had less time, less bleeding; but less graft patency. The intimalhyperplasia of two anastomosis methods had no obviously difference. Conclusion:Continuous suture has the advantages of costing less time and less bleeding, but it requiresmore skillful. It is no difference in the degree of intimal hyperplasia of autologous vein graft in rat.
引文
[1] Wassmann S, Laufs U, M(u|¨)ller K, et al. Cellular antioxidant effects of atorvastatin in vitro and invivo. Arterioscler Thromb Vasc Biol. 2002 Feb 1;22(2):300-5.
    [2] Rueckschloss U, Galle J, Holtz J, et al. Induction of NAD(P)H oxidase by oxidized lowdensity lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy. Circulation. 2001 Oct 9;104(15):1767-72.
    [3] Rajagopalan S, Harrison DG. Reversing endothelial dysfunction with ace inhibitors-a new trend. Circulation. 1996 Aug 1;94(3):240-3.
    [4] Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000 Mar 17;86(5):494-501. Review.
    [5] Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005 Mar; 115(3):500-8. Review.
    [6] Finkel T. Oxidant signals and oxidative stress. Curt Opin Cell Biol. 2003 Apt;15(2):247-54.
    [7] 吴立玲.缺血-再灌注损伤.金惠铭、王建枝主编.病理生理学.第6版。北京:北京大学出版社,2006.202-207
    [8] 俞一心,戈升荣,王桂珍等.槲皮素及其衍生物的药理作用及其进展.中药材,2003;26(12): 902-4
    [9] Hung L M, Chen J K, Huang S S, et al. Cardioprotective efect of resveratrol, a natural antioxidant derived from grapes. Cardiovasc Res. 2000 Aug 18;47(3):549-55.
    [10] Li W, Asada Y, Yoshikawa T, et al. Flavonoid constituents from Glycyrrhiza gl hairy root cultures, Phytochemistry. 2001 Oct;58(4):595-8.
    [11] Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, anatural product derived from grapes. Science. 1997 Jan 10;275(5297):218-20.
    [12] Manthey JA, Guthrie N. Antiproliferative Activities of Citrus Flavonoids against Six Human Cancer Cell Lines J Aqric Food Chem. 2002 Oct 9;50(21):5837-43.
    [13] Lin N, Sato T, Takayama Y, et al. Novel antiinflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol. 2003 Jun 15;65(12):2065-71.
    [14] Yoshimizu N, Otani Y, Saikawa Y, et al. Antitumor effects of nobiletin, a citrus flavonoid, on gastric cancer include: antiproliferative effects, induction of apoptosis and cell cycle deregulation. Aliment Pharmacol. Aliment Pharmacol Ther. 2004 Jul;20 Suppl 1:95-101.
    [15] Duarte J, Perez Vizcaino F, Utrilla P, Jimenez J, Tamargo J, Zarzuelo A. Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen Pharmacol. 1993 Jul; 24(4): 857-62.
    [16] Ueno I, Nakano N, Hirono I. Metabolic fate of [14C] quercetin in the ACI rat. Jpn J Exp Med. 1983 Feb;53(1):41-50.
    [17] Li S, Wang Z, Sang S, et al. Identification of nobiletin metabolites in mouse urine. Mol Nutr Food Res. 2006 Mar;50(3):291-9.
    [18] Wen X, Walle T. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos. 2006 Oct;34(10):1786-92. Epub 2006 Jul 25.
    [19] Li S, Lambros T, Wang Z, et al. Efficient and scalable method in isolation of polymethoxyflavones from orange peel extract by supercritical fluid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Feb 1;846(1-2):291-7. Epub 2006 Oct 10.
    [20] Li S, Lo CY, Ho CT. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem. 2006 Jun 14;54(12):4176-85.
    [21] Guthrie N, Kurowska EM, Manthey JA, et al. Compositions and methods of treating, reducing and preventing cardiovascular diseases and disorders with polymethoxyflavones. U.S. 2006, 6 pp., Cont.-in-part of U.S. Set. No. 167, 6334.
    [22] 何婷,硕士毕业论文:几种多酚类化合物及其多甲基衍生物对正常和氧化损伤的大鼠心肌和乳鼠心肌细胞的作用,2008
    [23]吴晗,硕士毕业论文:五甲基槲皮素对大鼠离体胸主动脉环的舒张作用及机制研究,2008
    [24]韩毅,硕士毕业论文:五甲基槲皮素对乳鼠心脏成纤维细胞的抑制作用及其大鼠药代动力学研究,2008
    [25]徐小惠,硕士毕业论文:五甲基槲皮素抗大鼠心肌缺血再灌注损伤作用及其血流动力学效应研究,2008
    [26]杨晓娟 硕士毕业论文:五甲基槲皮素对缺血-再灌注离体大鼠心脏的保护作用及机制研究,2008
    [1] Rice-Evans A, Packer L. Flavonoids in health and disease. New York:Marcel Dekker;1998.
    [2] 俞一心,戈升荣,王桂珍等.槲皮素及其衍生物的药理作用及其进展.中药材,2003;26(12): 902-4
    [3] Huxley RR, Neil HA. The relation between dietary flavonol intake and coronary heart disease mortality:a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2003 Aug;57(8):904-8.
    [4] Lin N, Sato T, Takayama Y, et al. Novel antiinflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol. 2003 Jun 15;65(12):2065-71.
    [5] Kawada N, Imai E, Karber A. A mouse model of angiotcnsin Ⅱ slow pressor response: role of oxidative stress. J Am Soc Nephrol, 2002 Dec, 13(12): 2860-2868.
    [6] Benkirane K, Viel EC, Amiri F. Peroxisome proliferator-activated receptor gamma regulates angiotensin Ⅱ-stimulated phosphatidylinositol 3-kinase and mitogen-activated protein kinase in blood vessels in vivo. Hypertension, 2006 Jan, 47(1):102-108. Epub 2005 Dec 12.
    [7] Remmen W J, Swedberg K. European society of cardiology. Comprehensive guidelines for the diagnosis and treatment of chronic heart failure. Task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. Eur J Heart Fail. 2002 Jan;4(1): 11-22.
    [8] Misao J, Hayakawa Y, Ohno M,et al. Expression of bcl-2 protein, an inhibitor of apoptosis,and bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation. 1996 Oct 1;94(7):1506-12.
    [9]张晓华,刘祖梅,何婷等.五甲基槲皮素对豚鼠心肌收缩力和电生理特性的影响.华中科技大学学报(医学版),2008,37(6):757-761.
    [10]Xia Wen, Thomas Walle. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos, 2006 Oct, 34(10):1786-1792.
    [11]吴晗,硕士毕业论文:五甲基槲皮素对大鼠离体胸主动脉环的舒张作用及机制研究,2008
    [1] Terao J, Kawai Y, Murota K. Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr. 2008;17 Suppl 1:291-3. Review.
    [2] Kawada N, Imai E, Karber A. A mouse model of angiotensin Ⅱ slow pressor response: role of oxidative stress. J Am Soc Nephrol, 2002 Dec, 13(12): 2860-2868.
    [3] Benkirane K, Viel EC, Amiri F. Peroxisome proliferator-activated receptor gamma regulates angiotensin Ⅱ-stimulated phosphatidylinositol 3-kinase and mitogen-activated protein kinase in blood vessels in vivo. Hypertension, 2006 Jan, 47(1):102-108. Epub 2005 Dec 12.
    [4] Huxley RR, Neil HA. The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr. 2003 Aug;57(8):904-8.
    [5] Xia Wen, Thomas Walle. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos. 2006 Oct;34(10):1786-92. Epub 2006 Jul 25.
    [6] Sirker A, Zhang M, Murdoch C, et al. Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol. 2007;27(6):649-60. Epub 2007 Sep 27.
    [7] Ouzounian M, Lee DS, Liu PP. Diastolic heart failure: mechanisms and controversies. Diastolic heart failure: mechanisms and controversies. Nat Clin Pract Cardiovasc Med. 2008 Jul;5(7):375-86. Epub 2008 Jun 10. Review.
    [8] 顾水明,魏盟,张昀昀等。普伐他汀对大鼠心肌梗死后心室重构和心功能的影响。中华老年医学杂志,2005,24(9):690-3
    [9] 韩毅,硕士毕业论文:五甲基槲皮素对乳鼠心脏成纤维细胞的抑制作用及其大鼠药代动力学研究,2008
    [1] Cave AC, Brewer AC, Narayanapanicker A, et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal. 2006 May-Jun;8(5-6):691-728.
    [2] 俞一心,戈升荣,王桂珍等.槲皮素及其衍生物的药理作用及其进展。中药材,2003,26(12): 902-4
    [3] Lin N, Sato T, Takayama Y, et al. Novel antiinflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem Pharmacol. 2003 Jun 15;65(12):2065-71.
    [4] 何婷,硕士毕业论文:几种多酚类化合物及其多甲基衍生物对正常和氧化损伤的大鼠心肌和乳鼠心肌细胞的作用,2008
    [5] Kawada N, Imai E, Karber A. A mouse model of angiotensin Ⅱ slow pressor response: role of oxidative stress. J Am Soc Nephrol, 2002 Dec, 13(12): 2860-2868.
    [6] Benkirane K, Viel EC, Amiri F. Peroxisome proliferator-activated receptor gamma regulates angiotensin Ⅱ-stimulated phosphatidylinositol 3-kinase and mitogen-activated protein kinase in blood vessels in vivo. Hypertension, 2006 Jan, 47(1):102-108. Epub 2005 Dec 12.
    [7] Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005 Mar; 115(3):500-8.
    [8] Finkel T. Oxidant signals and oxidative stress. Curt Opin Cell Biol. 2003 Apt;15(2):247-54.
    [9] Ritchie RH, Delbridge LM. Cardiac hypertrophy, substrate utilization and metabolic remodelling: cause or effect? Clin Exp Pharmacol Physiol. 2006 Jan-Feb;33(1-2):159-66.
    [10] Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000 Mar 17;86(5):494-501. Review.
    [11] Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol.2004 Mar;4(3):181-9. Review.
    [12] Heymes C, Bendall JK, Ratajczak P, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003 Jun 18;41(12):2164-71.
    [13] Maack C, Kartes T, Kilter H, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of racl-GTPase and represents a target for statin treatment. Circulation. 2003 Sep 30; 108(13): 1567-74. Epub 2003 Sep 8.
    [14] Byrne JA, Grieve DJ, Bendall JK, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res. 2003 Oct 31;93(9):802-5. Epub 2003 Oct 9.
    [15] Maytin M, Siwik DA, Ito M, et al. Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation. 2004 Mar 9;109(9):1168-71. Epub 2004 Feb 23.
    [16] Johar S, Cave AC, Narayanapanicker A, et al.. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J.2006 Jul;20(9):1546-8. Epub 2006 May 23.
    [17] Krijnen PAJ, Meischl C, Hack CE, et al. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction. J Clin Pathol. 2003 Mar;56(3): 194-9.
    [18] Looi YH, Grieve DJ, Siva A, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension. 2008 Feb;51(2):319-25.Epub 2008 Jan 7.
    [19] Sanchez M, Galisteo M, Vera R, et al. Quercetin downregulates NADPH oxidase,increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens, 2006 Jan, 24(l):75-84.
    [20].Sanchez M, Lodi F, Vera R, et al. Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin Ⅱ in rat aorta. J Nutr, 2007 Apt, 137(4):910-915.
    [21].Geiszt M. NADPH oxidases: new kids on the block. Cardiovasc Res, 2006 Jul 15,71(2):289-299.
    [1] Kyaw M, Yoshizumi M, Tsuchiya K, et al. Atheroprotective effects of antioxidants through inhibition of mitogen-activated protein kinases. Acta Pharmacol Sin. 2004 Aug;25(8):977-85. Review.
    [2] Masanori Yoshizumi, Koichiro Tsuchiya, Kazuyoshi Kirima, et al. Quercetin Inhibits Shc- and Phosphatidylinositol 3-Kinase-Mediated c-Jun N-Terminal Kinase Activation by Angiotensin Ⅱ in Cultured Rat Aortic Smooth Muscle Cells. Mol Pharmacol. 2001 Oct;60(4):656-65.
    [3] Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003 Dec;54(4):469-87.
    [4] Sch(a|¨)chinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunctionon adverse long-term outcome of coronary heart disease. Circulation. 2000 Apr 25;101(16): 1899-906.
    [5] Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004 Mar;4(3): 181-9. Review.
    [6] Yung LM, Leung FP, Yao X, et al. Reactive oxygen species in vascular wall. Cardiovasc Hematol Disord Drug Targets. 2006 Mar;6(1):1-119. Review.
    [7] Szocs K, Lassegue B, Sorescu D, Hilenski LL, Valppu L, Couse TL, et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vase Biol 2002;22:21-7.
    [8] Lass(?)gue B, Sorescu D, Sz(?)cs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redoxsensitive signaling pathways. Circ Res. 2001 May 11;88(9):888-94.
    [9] Suh Y-A, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase. Mox1. Nature. 1999 Sep 2;401(6748):79-82.
    [10] Jacobson GM, Dourron HM, Liu J, et al. Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res.2003 Apr 4;92(6):637-43. Epub 2003 Feb 27.
    [1] 吴晗,硕士毕业论文:五甲基槲皮素对大鼠离体胸主动脉环的舒张作用及机制研究,2008
    [2] Harrison, D.G. Cellular and molecular mechanisms of endothelial dysfunction. J Clin Invest. 1997 Nov 1;100(9):2153-7.
    [3] Tardif JC, Gregoire J, L'Allier PL. Prevention of restenosis with antioxidants: mechanisms and implications. Am J Cardiovasc Drugs. 2002;2(5):323-34.
    [4] Ginnan R, Guikema BJ, Halligan KE, et al. Regulation of smooth muscle by inducible nitric oxide synthase and NADPH oxidase in vascular proliferative diseases. Free Radic Biol Med. 2008 Apr 1;44(7):1232-45. Epub 2008 Jan 22.
    [1] Zhou YY, Wang SQ, Zhu WZ, et al. Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol. 2000 Jul;279(1):H429-36.
    [2] Hilal-Dandan R, Kanter JR, Brunton LL. Characterization of G-protein signaling in ventricular myocytes from the adult mouse heart: differences from the rat. J Mol Cell Cardiol. 2000 Jul;32(7): 1211-21.
    [3] Satoh H, Sperelakis N. Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen Pharmacol. 1998 Apr;30(4):451-63.
    [4] Thum T, Borlak J. Isolation and cultivation of Ca2+ tolerant cardiomyocytes from the adult rat: improvements and applications. Xenobiotica. 2000 Nov;30(11): 1063-77.
    [1] 连锋,朱洪生,郑家豪,等.冠状动脉旁路术后静脉桥狭窄模型的建立.上海实验动物学,2002;22:889-891.
    [2] Favaloro RG. Saphenous vein graft in the surgical treatment of coronary artery disease. Operative technique. J Thorac Cardiovasc Surg. 1969 Aug; 58(2):178-85.
    [3] Fitzgibbon GM, Kafka HP, Leach AJ, et al. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and. reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996 Sep; 28(3):616-26.
    [4] Kloppenburg GT, de Graaf R, Grauls GE, et al. Chlamydia pneumoniae aggravates vein graft intimal hyperplasia in a rat model. BMC Microbiol. 2007 Dec 6;7:111
    [1] Quinn MT, Gauss KA. Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol. 2004 Oct;76(4):760-81. Epub 2004 Jul 7.
    [2] Fan J, Frey RS, Malik AB. TLR4 signaling induced TLR2 expression in endotheliac cells via neutrophil NADPH oxidase. J Clin Invest._2003 Oct; 112(8):1234-43.
    [3] Poinas A, Gaillard J, Vignais P, et al. Exploration of the diaphorase activity of neutrophil NADPH oxidase. Eur J Biochem, 2002, Feb; 269(4): 1243-1252.
    [4] Cross AR, Segal AW. The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim Biophys Acta. 2004 Jun 28; 1657(1):1-22.
    [5] Finkel T. Signal transduction by reactive oxygen species in nonphagocytic cells. J Leukoc Biol. 1999 Mar; 65(3):337-40.
    [6] Frey RS, Rahman A, Kerr JC, et al. PKCzeta regulates TNF-alpha-induced activation of NADPH oxidase in endothelial cells. Circ Res. 2002 May 17;90(9):1012-1019.
    [7] Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 2003 Dec;54(4):469-87. Review.
    [8] Sch(a|¨)chinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000 Apr 25;101(16): 1899-906.
    [9] Harrison DG. Cellular and molecular mechanisms of endothelial dysfunction. J Clin Invest. 1997 Nov l;100(9):2153-7.
    [10] Matsuno K, Yamada H, Iwata K, et al. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation. 2005 Oct 25;112(17):2677-85.
    [11] Dikalova A, Clempus R, Lassegue B, et al. Noxl overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation. 2005 Oct 25;112(17):2668-76. Epub 2005 Oct 17.
    [12] Gavazzi G, Banfi B, Deffert C, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 2006 Jan 23;580(2):497-504. Epub 2005 Dec 22.
    [13] Rasmussen HH, Figtree G. "Don't flog the heart!" - development of specific drug therapies for heart failure. Crit Care Resusc. 2007 Dec;9(4):364-9.
    [14] Lijnen P, Petrov V, van Pelt J, et al. Inhibition of superoxide dismutase induces collagen production in cardiac fibroblasts. Am J Hypertens. 2008 Oct;21(10): 1129-36.Epub 2008 Aug 28.
    [15] Basset O, Deffert C, Foti M, et al. NADPH oxidase 1 deficiency alters caveolin phosphorylation and Angiotensin II receptor location in vascular smooth muscle. Antioxid Redox Signal. 2009 Mar 23. [Epub ahead of print]
    [16] Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol.2004 Mar;4(3):181-9.
    [17] Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase 4 mediates transforming growth factor-betal- induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res. 2005 Oct 28;97(9):900-7. Epub 2005 Sep 22.
    [18] Sorescu D, Weiss D, Lassegue B, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation. 2002 Mar 26;105(12): 1429-35.
    [19] Chen K, Kirber MT, Xiao H, et al. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol. 2008 Jun 30;181(7):1129-39. Epub 2008 Jun 23.
    [20] Xu H, Goettsch C, Xia N, et al. Differential roles of PKCalpha and PKCepsilon in controlling the gene expression of Nox4 in human endothelial cells. Free Radic Biol Med.2008 Apr 15;44(8):1656-67. Epub 2008 Feb 7.
    [21] Guzik TJ, Sadowski J, Kapelak B, et al. Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins. Arterioscler Thromb Vase Biol. 2004 Sep;24(9):1614-20. Epub 2004 Jul 15.
    [22] Pedruzzi E, Guichard C, Ollivier V, et al. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulurri stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol. 2004 Dec;24(24):10703-17.
    [23] Sturrock A, Cahill B, Norman K, et al. Transforming growth factor {beta}1 induces Nox 4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2006 Apr;290(4):L661-L673. Epub 2005 Oct 14.
    [24] Hu T, Ramachandrarao SP, Siva S, et al. Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells.Am J Physiol Renal Physiol. 2005 Oct;289(4):F816-25
    [25] Papaharalambus CA, Griendling KK. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med. 2007 Feb;17(2):48-54. Review.
    [26] Lass(?)gue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redoxsensitive signaling pathways. Circ Res. 2001 May 11;88(9):888-94.
    [27] Szocs K, Lass(?)gue B, Sorescu D, et al. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol. 2002 Jan;22(l):21-7.
    [28] Guzik TJ, Sadowski J, Guzik B, et al. Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol. 2006 Feb;26(2):333-9. Epub 2005 Nov 17.
    [29] Giordano FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. 2005 Mar;115(3):500-8.
    [30] Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003 Apr;15(2):247-54.
    [31] Nakamura K, Fushimi K, Kouchi H, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation. 1998 Aug 25;98(8):794-9.
    [32] Hirotani S, Otsu K, Nishida K, et al. Involvement of nuclear factor-kappaB and apoptosis signalregulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation. 2002 Jan 29;105(4):509-15.
    [33] Pimentel DR, Amin JK, Xiao L, et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res. 2001 Aug 31;89(5):453-60.
    [34] Irani K, Xia Y, Zweier JL, et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science. 1997 Mar 14;275(5306):1649-52.
    [35] Cheng TH, Cheng PY, Shih NL, et al. Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts. J Am Coll Cardiol. 2003 Nov 19;42(10):1845-54.
    [36] Heymes C, Bendall JK, Ratajczak P, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003 Jun 18;41(12):2164-71.
    [37] Maack C, Kartes T, Kilter H, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of rac1-GTPase and represents a target for statin treatment. Circulation. 2003 Sep 30; 108(13): 1567-74. Epub 2003 Sep 8.
    [38] Li JM, Gall NP, Grieve DJ, et al. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension. 2002 Oct;40(4):477-84.
    [39] Maytin M, Siwik DA, Ito M, et al. Pressure overload-induced myocardial hypertrophy
    99 in mice does not require gp91phox. Circulation. 2004 Mar 9;109(9):1168-71. Epub 2004
    Feb 23.
    [40] Byrne JA, Grieve DJ, Bendall JK, et al. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res. 2003 Oct 31;93(9):802-5. Epub 2003 Oct 9.
    [41] Touyz RM, Mercure C, He Y, Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase.Hypertension. 2005 Apr;45(4):530-7. Epub 2005 Mar 7.
    [42] Kuster GM, Siwik DA, Pimentel DR, et al. Role of reversible, thioredoxin-sensitive oxidative protein modifications in cardiac myocytes. Antioxid Redox Signal. 2006 Nov-Dec;8(ll-12):2153-9. Review.
    [43] Kuster GM, Pimentel DR, Adachi T, et al. Alpha-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1 -sensitive oxidative modification of thiols on Ras. Circulation. 2005 Mar 8;lll(9):1192-8. Epub 2005 Feb 21.
    [44] Xiao L, Pimental DR, Amin JK, et al. MEK1/2-ERK1/2 mediates al-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol J Mol Cell Cardiol. 2001 Apr;33(4):779-87.
    [45] Johar S, Cave AC, Narayanapanicker A, et al. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J.2006 Jul;20(9): 1546-8. Epub 2006 May 23.
    [46] Colston JT, de la Rosa SD, Strader JR, et al. H2O2 activates Nox4 through PLA2-dependent arachidonic acid production in adult cardiac fibroblasts. FEBS Lett. 2005 Apr 25;579(11):2533-40.
    [47] Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase 4 mediates transforming growth factor- {beta}l-induced differentiation of cardiac fibroblasts into myofibroblasts.Circ Res. 2005 Oct 28;97(9):900-7. Epub 2005 Sep 22.
    [48] Hill MF, Singal PK. Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol. 1996 Jan;148(l):291-300.
    [49] Kinugawa S, Tsutsui H, Hayashidani S, et al. Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res. 2000 Sep l;87(5):392-8.
    [50] Sia YT, Lapointe N, Parker TG, et al. Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation. 2002 May 28;105(21):2549-55.
    [51] Krijnen PAJ, Meischl C, Hack CE, et al. Increased Nox2 expression in human cardiomyocytes after acute yocardial infarction. J Clin Pathol. 2003 Mar;56(3):194-9.
    [52] Looi YH, Grieve DJ, Siva A, et al. Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling after myocardial infarction. Hypertension. 2008 Feb;51(2):319-25.Epub 2008 Jan 7.
    [53] Hoffmeyer MR, Jones SP, Ross CR, et al. Myocardial ischemia/reperfusion injury in NADPH xidase-deficient mice. Circ Res. 2000 Oct 27;87(9):812-7.
    [54] Wassmann S, Laufs U, Miiller K, et al. Cellular antioxidant effects of atorvastatin in vitro and invivo. Arterioscler Thromb Vasc Biol. 2002 Feb l;22(2):300-5.
    [55] Rey FE, Cifuentes ME, Kiarash A, et al. Novel competitive inhibitor of NAD(P)H oxidase assembly ttenuates vascular O(2)(-) and systolic blood pressure in mice. Circ Res.2001 Aug31;89(5):408-14.
    [56] Jacobson GM, Dourron HM, Liu J, et al. Novel NAD(P)H oxidase inhibitor suppresses ngioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res. 2003 Apr 4;92(6):637-43. Epub 2003 Feb 27.
    [57] Diatchuk V, Lotan O, Koshkin V, et al. Inhibition of NADPH oxidase activation by 4-(2- minoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem. 1997 May 16;272(20):13292-301.
    [58] Shi J, Ross CR, Leto TL, et al. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte ADPH oxidase activity by binding to Src homology 3 domains of p47 phox.Proc Natl Acad Sci USA. 1996 Jun ll;93(12):6014-8.
    [59] Ikeda Y, Young LH, Scalia R, et al. PR-39, a proline/arginine-rich antimicrobial peptide, exerts ardioprotective effects in myocardial ischemia-reperfusion. Cardiovasc Res.2001 Jan;49(l):69-77.
    [60] Stolk J, Hiltermann TJ, Dijkman JH, et al. Characteristics of the inhibition of NADPH oxidase activation n neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol. 1994 Jul;ll(l):95-102.
    [61] Ghosh M, Wang HD, McNeill JR. Role of oxidative stress and nitric oxide in regulation of spontaneous tone in aorta of DOCA-salt hypertensive rats. Br J Pharmacol.2004 Feb;141(4):562-73. Epub 2004 Jan 26.
    [62] Lapperre TS, Jimenez LA, Antonicelli F, et al. Apocynin increases glutathione synthesis and activates AP-1 in alveolar epithelial cells. FEBS Lett. 1999 Jan 25;443(2):235-9.
    [63] Mollnau H, Wendt M, Sz(?)cs K, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002 Mar 8;90(4):E58-65.
    [64] Beckman JA, Goldfine AB, Gordon MB, et al. Inhibition of Protein Kinase C beta prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans.Circ Res. 2002 Jan 11;90(l):107-ll.
    [65] Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008 Feb;31 Suppl 2:S170-80. Review.
    [66] Al-Awwadi NA, Araiz C, Bornet A, et al. Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in highfructose-fed rats J Agric Food Chem. 2005 Jan 12;53(l):151-7.
    [67] Tsuda M, Iwai M, Li JM, et al. Inhibitory effects of ATI receptor blocker, olmesartan,and estrogen on atherosclerosis via anti-oxidative stress. Hypertension. 2005 Apr;45(4):545-51. Epub 2005 Feb 21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700