瓜环—金属配合物超分子体系对BNPP水解催化性能考察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了N,N’-二(2-羟基苯甲基)乙二胺二水合Cu(Ⅱ)配合物(g),利用红外吸收光谱法、热重分析法、紫外吸收光谱法考察了六元瓜环与N,N’-二(2-羟基苯甲基)乙二胺二水合Cu(Ⅱ)配合物的相互作用及其对磷酸二酯(BNPP)的催化水解研究。研究结果表明:六元瓜环(Q[6])能与N,N’-二(2-羟基苯甲基)乙二胺二水合Cu(Ⅱ)配合物相互作用形成包结比为2:1的主客体包结物;BNPP以Q[6]~g为催化剂的水解的速率常数为2.34×10~(-4)S~(-1)是BNPP自身水解的速率常数1.12×10~(-11)S~(-1)的10~7倍,催化能力较强。
     选择[Co(N_3)(N_2)Cl][ZnCl_4]体系为客体(N_3=三元胺,N_2=二元胺),体系包括以下几种客体:[Co(2,3-tri)(cmen)Cl](g1)、[Co(3,3-tri)(cmen)Cl](g2)、[Co(2,3-tri)(amp)Cl](g3)、[Co(3,3-tri)(amp)Cl](g4)。利用紫外-可见光谱法和红外光谱法研究了Q[8]与这四种化合物相互作用的情况,并计算出了平衡常数;利用动力学研究了Q[8]与这四种化合物对BNPP的催化水解情况,并计算出水解速率和转化率。研究结果表明:Q[8]与g1、g2、g3、g4相互作用形成物质的量比为1:1的超分子结构,形成的包结稳定常数在10~4~10~7 L·mol~(-1)范围;Q[8]与上述客体有不同强弱的相互作用,Q[8]与客体的作用受客体中三元胺配体的影响,三元胺配体中碳链越长越易与Q[8]作用,Q[8]与客体的作用又受客体中二元胺配体中吡啶基的影响,含吡啶基的配体与Q[8]作用强度小;Q[8]~gn(n=1,2,3,4)催化BNPP水解的速率常数七数量级为10~(-6)是BNPP自身水解的速率常数1.12×10~(-11)S~(-1)的10~5倍,催化能力较强。
The complex, [Cu(N,N'-Bis (2-hydroxy-benzyl)(en))·2H_2O], has been synthesized and characterized, and the interaction of cucurbit[6]uril with the above complex guest (g) has been investigated by using ultraviolet spectrophotometry, infrared spectroscopy and thermogravimetry analysis . The experimental results revealed that the interaction of Q[6] and guest has been in the ratio of 2:1. Also the host-guest system of Q[6]-g can catalyze BNPP hydrolysis, and the hydrolysis kinetics in presence of Q[6]-g is far more fast than in absence of catalysts,its rate constant is 2.34×10~(-4) S~(-1)
     The interaction of cucurbit[8]uril host with [Co(N_3) (N_2)C1][ZnCl_4] guests such as [Co(2,3-tri)(cmen)Cl][ZnCl_4] (g1), [Co(3,3-tri) (cmen)Cl][ZnCl_4] (g2), [Co(2,3-tri)(amp)Cl][ZnCl_4] (g3), [Co(3,3-tri)(amp)Cl][ZnCl_4] (g4) have been investigated by ultraviolet absorption spectroscopy, infrared spectroscopy. The experimental results of molar ratio and job methods revealed that the interactions of Q[8] and guests have been in the ratio of 1:1 respectively, and the assiocation constant have been found in the range from 10~4 L·mol~(-1) to 10~7 L·mol~(-1). Stabilities of cucurbit[8]uril with [Co(N_3) (N_2)Cl][ZnCl_4] have been effected by the structures of the ligands of N_3 and N_2, more the number of carbon in N_3 is, assiocation constant is larger, however, the group of pyridine resulted in the weaker Stability. Moreover, the host-guest system of Q[8]-gn can catalyze BNPP hydrolysis, and the hydrolysis kinetics in presence of Q[8]-gn is far more fast than in absence of supramolecular catalyst.
引文
1.马培华,董俊,向双春,薛赛凤,祝黔江,陶朱,张建新.双探针客体与瓜环竞 争性自组装主客体配合物的研究.中国科学,2004,47(4):301-310.
    
    2.毛明毅,薛赛凤,陈铅,陶朱,祝黔江,罗绪强.Co(3,3-tri)(men)Cl][ZnCl4]、 Co(2,3-tri)(ernen)Cl][ZnCl4]两体系配合物的合成及两两经式异构体的晶体结构. 结构化学,2002,21(4):420-426.
    
    3. 田玉华,黄忠,胡艳,冠兴明,胡常伟,曾宪诚.2-氨基吡啶金属配合物对羧酸 酯水解的催化作用.催化学报.2005,26(3):223-228.
    
    4.刘育,康诗钊,超分子体系中的分子识别研究——XXXV.含吡啶基β—环湖精 衍生物的合成及其对氨基酸分子的手性识别.中国科学B辑,2001,31(3), 214-219.
    
    5.余孝其,赵华明,蓝仲薇.胶束催化及胶束模拟酶性能的研究.化学研究与应用. 1992,4(4):15-24.
    
    6.张桂玲,徐周庆,薛赛凤,祝黔江,陶朱.一类新型环型笼状化合物——瓜环:(Ⅱ) 酸度、ⅠA、ⅡA金属离子对瓜环溶解性的影响.无机化学学报,2003,19(6): 655-659.
    
    7.张元勤,熊俊如,刘凡,向清详.环四烯四胺-Ce(Ⅲ)金属配合物催化水解双(对 硝基苯酚)磷酸酯.化学研究与应用,2004,16(6):811-813.
    
    8.陈华梅,岳凡,封顺,王吉德,杨红伟,刘爱华,郁开北.[Zn(dien)_2]Cl_2.H_2O 的合成、晶体结构及其催化P-硝基苯酚醋酸酯的水解动力学研究.化学通报, 2005,3:214-218.
    
    9.杨守林,薛赛凤,祝黔江,陶朱,张建新,周欣.七、八元瓜环与N,N’-二金刚 烷基二铵盐酸盐的相互作用.有机化学,2005,25(4):427-431.
    
    10.罗绪强 薛赛凤 祝黔江 陶朱.一类新型环型笼状化合物—瓜环的合成分离新方 法研究.贵州大学学报(自然科学版),2003,20(2):184-186.
    
    11.赵云洁,申永强,薛赛凤.对称四甲基六元瓜环的合成及其与2,2’-联吡啶的主客 体作用.科学通报,2004,49(11):1111-1116.
    
    12.赵云洁,薛赛凤,张云黔,祝黔江,陶朱,张建新,魏赞斌,龙腊生.对称四甲 基六元瓜环与2-氨基甲基吡啶相互作用的研究.化学学报,2005,63(10):??913-918.
    
    13.陶朱,祝黔江,郑岳清,徐元植.[Co(2,3-tri)(amp)Cl][ZnCl_4]体系的合成及一经式异 构体的晶体结构合.无机化学学报,2000,16(3):485-492.
    
    14.唐英,李建章,蒋纬东,雷光东,曾伟,龚圣英.Schiff碱过度金属离子配合物催 化磷酸二酯水解.四川大学学报(自然科学版),2005,42(2):358-362.
    
    15.黄忠,程四清,谢家庆,蒋维东,曾宪诚.金属离子催化芳基吡啶甲酸酯水解动 力学研究.化学研究与应用,2000,12(16):605-609.
    
    16.聂丽,张元勤.三乙醇胺--Ce(Ⅲ)金属配合物催化水解双(对硝基苯酚)磷酸 酯研究.四川大学学报(自然科学版),2005,42(9):1219-1224.
    
    17.韩宝航,刘育.葫芦脲:分子识别与组装有机化学.2003,23(2):139-149.
    
    18.解永树,冠福平,林瑞森,刘清亮.三吡啶胺和四齿链酚胺配体与Cu(Ⅱ)配位 性质及其配合物催化酯水解研究.无机化学学报,2000,16(3):461-466.
    
    19.戴丽萍,陶朱,祝黔江,薛赛凤,张建新,周欣.瓜环与链状客体自组装包结配 合物结构模式的考察.化学学报,2004,62(24):2431-2440.
    
    20. Anderegg G., Helv. The stability of divalent 3d- and bivalent 4f-metal complexes with diazapolyoxa macrocyclic ligands. Chim. Acta., 1981,64: 1790-1795.
    
    21. Arnaud-Neu F. Solution chemistry of lanthanide macrocyclic com- plexes. Chem. Soc. Rev., 1994,23(4): 235-241.
    
    22. Behrend R., Meyer E., Rusche F. Ueber Condensatiosprodukte aus Glycoluril und Formaldehyd. Liebigs Ann.Chem.,1905,339: 1-37.
    
    23. Buschmann H. J., Cleve E., Sccchollyer E., Cucurbituril as a ligand for the complexation of cations in aqueous solutions. Inorg. Chim. Acta., 1992,193(1): 93-97
    
    24. Broxton T. J., Cox R. A. Micellar catalysis of organic reactions .part 33.~1 amide hydrolysis in neutral solution in the presence of a copper-containing micelle. Can .J.Chem., 1993,71: 670-673.
    
    25. Bashkin J. K., Jenkins L. A. Catalytic hydrolysis of 2',3'-cyclic adenosine-monop hosphate by aqua(2,2'-6',2"-thrpyriding) compper(Ⅱ)-breakdown of the analogy between activated phosphodiesters and RNA. Chem.Soc.Dalton.Trans.2., 1993, 22: 3631-3632.
    
    26. Bohmer V. Calixarenes macrocycles with (almost) unlimited possibilities. Angew. Chem.,Int. Ed. Engl, 1995, 34 (7): 713-745.
    27. Buschmann H. J., Wego A., Schollmeyer E., Dopp D. Synthesis of Cucurbituril-Spermine-. Monorotaxanes of the Amide-Type. Supermol. Chem., 2000, 11:225-231.
    28. Buschmann H. J., Cleve E., Jansen K., Scholleyer E., Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta., 2001,437 (1): 157~163.
    29. Buschmann H. J., Cleve E. ,Jansen K., Wego A., Schollmeyer E., Complex formation between cucurbit[n]urils and alkali, alkaline earth and ammonium ions in aqueous solution. J. Inclusion Phenom. Mol. Recognit., Chem., 2001,40(1-2): 117-120.
    30. Blanck R. J., Sleeman A. J., White T. J., Amold A. P., Day A. I. Cucurbit[7]uril and ocarborane self-assemble to form a molecular ball bearing. Nano Lett, 2002, 2(2): 147 -149.
    31. Coates J. H., Gentle G. J., Lincoln S. F. Influence of local hydrophobic environment on acid dissociation constants of coordinated water molecules. Nature (London), 1974, 249(21): 773-775.
    
    32. Chang C. A., Rowland M. E., Metal complex formation with 1,10-diaza -4,7, 13,16-tetraoxacyclooctadecane-N,N'-diacetic acid. An approach to potential lanthanide ion selective reagents. Inorg. Chem., 1983, 22(26): 3866-3869.
    33. Chin K. O. A., Morrow J. R. RNA Cleavage and Phosphate Diester Transesterification by Encapsulated Lanthanide Ions: Traversing the Lanthanide Series with Lanthanum(III), Europium(III), and Lutetium(III) Complexes of 1,4,7,10-Tetrakis(2-hydroxyalkyl)-1,4,7,10-tetraazacyclododecane.Inorg. Chem., 1994, 33(22): 5036-5041.
    34. Christopher S. Nobel prizes honour biologists' work on protein energy converters, Nature, 1997,389:771.
    35. Christoph A., Schalley, Protein-inspired materials: Synthetic concepts and potential applications. Angew. Chem. Int. Ed.,2002,41 (9): 1509-1513.
    36. Danil de NaMOR A. F.;Cleverley R. M.; Zapata-Ormachea M. L. Thermodynamic
    ??-s of calixarene chemistry. Chem. Rev., 1998,98(7): 2495-2525.
    
    37. Day A. I., Arnold A. P. Method for synthesis cucurbiturils. WO 0068232,2000,8.
    
    38. Day A I., Arnold A P., Blanch R. J., Snushall B. J. Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem., 2001,66(24): 8094-8100.
    
    39. Day A. I., Blanck R. J., Arnold A. P., Lorenzo S.; Lewis G. R., Dance I. A. cucurbituril-based gyroscane: a new supramolecular form. Angew. Chem., Int. Ed. 2002,41(2): 275-277.
    
    40. Day A. I., Arnold A. P., Blanch R. J. A method for synthesizing partially substituted cucurbit[n]uril. Molecules, 2003, 8(1): 74 -84.
    
    41. Freeman W. A., Mock W. L., Shih N. Y. Cucurbituril. J. Am. Chem. Soc., 1981, 103(24): 7367-7368.
    
    42. Flinn A., Hough G. C, Stoddart J. F. Decamethylcucubit[5]uril. Angew. Chem. Int .Ed. Engl.,1992,31:1475-477.
    
    43. Forsberg B., He Z., He Y., Cremer D. A new version of the multireference averaged coupled-pair functional (MR-ACPF-2). Int. J . Quant. Chem ,2000 ,76 : 306 -311
    
    44. Gutsche C.D., Mei G. Association Phenomena. 7. Mixed Chelate and Comicellar Catalysis of Acetyl Phosphate 'Olysis' Reactions. J. Am. Chem.Soc, 1985,107: 7964-7967.
    
    45. Gillard R. E., Raymo F. M., Stoddart J. F. Molecular meccano.26.controlling self-assembly. Chem. Eur., 1997, 3(12): 1933-1940.
    
    46. Hettich R., Schneider H. J. Cobalt(Ⅲ) Polyamine Complexes as Catalysts for the Hydrolysis of Phosphate Esters and of DNA. A Measurable 10 Million-Fold Rate Increase~1. J. Am. Chem. Soc, 1997,119(24): ,5638-5647.
    
    47. Jeon Y. M., Kim J., Whang D., Kim K. A molecular container assembly capable of controlling binding and release of its guest molecules. Reyersible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc, 1996, 118(40): 9790-9791.
    
    48. Johannes A. A. W. E., Alan E. R., Roeland J. M. N. Self-assembled Architectures from Glycoluril[J]. Ind.Eng.Chem.Res., 2000,39,3419-3428.
    
    49. Jon S. Y., Ko Y. H., Park S. H., Kim H. J., Kim K. A facile, stereoselective [2 + 2]??photoreaction mediated by cucurbit[8]uril. Chem. Commun., 2001,1938 -1939.
    
    50. Kim E. E., Wycroff H. W. Reaction mechanism of alkaline phosphatase based on crystal structure. Mol. Biol., 1991, 218(2): 449-464.
    
    51. Koike T., Kimura E. Roles of zinc(Ⅱ) ion in phosphatases. A model study with zinc(Ⅱ)-macrocyclic polyamine complexes. J. Am. Chem. Soc, 1991, 113: 8935-8941.
    
    52. Kimura E., Kodama Y., Koike T., Phosphodiester Hydrolysis by a New Zinc(I1) Macrocyclic Tetraamine Complex with an Alcohol Pendant: Elucidation of the Roles of Ser- 102 and Zinc(I1) in Alkaline Phosphatase. J. Am. Chem. Soc, 1995, 117: 8304-8311.
    
    53. Kimura E., Hashimoto H., Koike T. Hydrolysis of Lipophilic Esters Catalyzed by a Zinc(Ⅱ) Complex of a Long Alkyl-Pendant Macrocyclic Tetraamine in Micellar Solution. J. Am. Chem. Soc, 1996,118(45): 10963-10973.
    
    54. Komiyanma M.., Sumaoka J., Yonezawa K., Mastsumoto Y., Yashio M. Structure-reactivity relationship for the cobalt(Ⅲ) complex-catalysed hydrolysis of adenosine 3',5'-cyclic monophosphatel. Chem. Soc Perkin. Trans.2,1997,75-78.
    
    55. Kim J., Jung I. S., Kim S. Y. New Cucurbituril Homologues: Syntheses, Isolation, Characterization, and X-ray Crystal Structures of Cucurbit[n]uril (n =5,7, and 8). J. Am. Chem. Soc.,2000,122(3): 540-541.
    
    56. Kim S. Y, Jung I. S., Lee E., Kim J., Sakamoto S., Yamaguchi K., Kim K. Macrorycles within macrocyles: Cyclen, cyclam, and their transition metal complexes encapsulated in cucurbit[8]uril. Angew. Chem., Int. Ed., 2001,40(11): 2119-2121.
    
    57. Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc Rev., 2002, 31: 96- 107..
    
    58. Lan H.P., Gutsche CD. Synthesis of titanium molecular sieve ETS-10.and ETS-4. J. Am. Chem. Soc, 1978,100(12): 1857-1965.
    
    59. Lehn J. M., Perspectives in Coordination Chemistry. Willam A F New York: VHCA, 1992: 447-452.
    
    60. Lee E., Kim J., Heo J., Whang D., Kim K. A Two-Dimensional Polyrotaxane with Large Cavities and Channels: A Novel Approach to Metal-Organic Open-Franeworks by Using Supramolecular Building Blocks. Angew.Chem., Int. Ed., 2001, 40(2): 399-402.
    61. Morrow J. R., Buttrey L. A., Berback K. A., Transesterification of a phosphate diester by divalent and trivalent metal ions. Inorg. Chem., 1992, 31 (1): 16-20.
    62. Miyama S., Acanums H., Komiyama M., Monophosphates are also hydrolyzed by Ce(IV) ion. Chem.Soc.Perkin Trans.2.,1997,1685~1688.
    63. Molenveld P., Kapsabelis S., Engbersen J. F. J., Reinhodt D. N., Highly efficient phosphate diester transesterification by a Calix [4] arene-based dinuclear zinc (II) catalyst. J. AM. Chem. Soc, 1997,119: 2948-2949.
    64. Menger F.M.,Gan L.H.,Johnson E.,Darst D.H., Compounds containing an oligonucleotide sequence linked to an intercalating agent and to an activable chemical group, their synthesis and applications to artificial sequence-specific nucleases. J. Am.Chem.Soc., 1987,109: 2800-2803.
    65. Mock W. L., Irra T. A.,Wepsiec J. P., Manimaran T. L. Host-Guest Binding Capacity of Cucurbituril. J. Org. Chem., 1983,48(20): 3619-3620.
    66. Mock W. L., Shih N. Y. Dynamics of molecular recognition involving cucurbituril. J. Am. Chem. Soc, 1989,111(7): 2697.
    67. Mock W. L., Irra T. A., Wepsiec J. P., Adhya M. J. Catalysis by cucurbituril. The significance of bound-substrate destabilization for induced triazole formation. J. Org. Chem, 1989,54(22),: 5302-5308.
    68. Mock W. L., Pierpont J. J. A cucurbituril-based molecular switch. Chem. Soc., Chem. Commun. 1990,1509-1511.
    69. Nishio M., Umezawa Y., Hirota M., Takeuchi Y. The CH/π Interaction: Significance in molecular recognition. Tetrahedron, 1995, 51: 8665-8701.
    
    70. Pollack S. J., Atack J. R., Knowles M. R., McAllister G., Ragan C. I., Baker R., Fletcher S. R., Iversen L. L., Broughton H. B., Mechanism of Inositol Monophosphatase, the Putative Target of Lithium Therapy. Proc, Natl. Acad. Sci. U.S.A, 1994,91(13): 5766-5770.
    71. Ragunnathan K.G., Schneider H. J. Binuclear lanthanide complexes as catalysts for the hydrolysis of bis (P-nitrophenyl)-phosphate and double-stranded DNA. Angew. Chem. Int .Ed. Engl., 1996,35:1219.
    72. Rammo J., Schneider H. J. Ligand and Co-substrate Effects on the Hydrolysis of Phosphate Esters and of DNA with Lanthanoids. Liebigs Ann. Chem., 1996,1757-1767.
    73. Shelton V. M., Morrow J. R. Catalytic transesterification and hydrolysis of RND by Zinc(I1) complexes. Inorg. Chem., 1991, 30: 4295-4299.
    74. Schneider H. J., Rammo J., Moss R. A. Catalysis of the Hydrolysis of Phosphoric Acid Diesters by Lanthanide Ions and the Influence of Ligands, Angew. Chem. Int. Ed. Engl., 1993,32(12), 1716-1719.
    75. Sigel H.. Interactions of Metal Ions with Nucleotides and Nucleic Acids and then-Constituents. Chem. Soc. Rev., 1993,22: 255-267.
    76. Schneider H. J., Rammo J., Hettich R., Katalyseder Phosphorsaurediester-Hydrolyse durch Lanthanoid-Ionen under Einfluβ von Liganden. Angew. Chem., 1993, 105(12): 1773-1776.
    77. Scrimin P., Tecilla P., Tonellato U. Chiral lipophilic liganda. 1 .enantioselective cleavage of α-amino acid estera in metallomicellar aggregates. J. Org. Chem., 1994, 59: 4194-4201.
    78. Shionoya M., Ikeda T., Kimura E., Shira M. Novel "multipoint" molecular recognition of nucleobases by a new Zinc(II) complex of acridine-pendant cycen. J. Am. Chem. Soc., 1994,116(9): 3848-3859.
    
    79. Strater N., Klabunde K., Tucker P., Witzel H., krebs B. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science., 1995, 268: 1489-1492.
    
    80. Sokolov M. N., Virovets A. V., Dybtsev D. N., Gerasko O. A., Fedin V. P., Hernandez-Molina R., Clegg W., Sykes A. G. Metal Incorporation into and Dimerization of M_3E_4 Clusters (M=Mo, W; E=S, Se) in Supramolecular Assemblies with Cucurbituril: A Molecular Model of Intercalation. Angew.Chem., Int. Ed., 2000, 39(9): 1659-1661.
    81. Takahashi H., Tsuboyama S., Umezawa Y., Honda K., Nishio M. CH/π interactions as demonstrated in the crystal structure of host/guest compounds. A database study. Tetrahedron, 2000, 56: 6185-6191.
    82. Tatiana V. M., Maxim N. S., Dmitry Y. N., Natalia V. K., Olga A. G., Vladimir P. F. Jergensen complex within a molecular container: Selective encapsulation of trans-[Co(en)_2cl_2]~+ into cucurbit[8]uril and influence of inclusion on guest's properties. Inorg. Chem, 2006,45: 6950-6955.
    83. Takasaki B.K., Chin j. La(III)-Hydrogen Peroxide Cooperativity in Phosphate Diester Cleavage: A Mechanistic Study. J. Am. Chem. Soc., 1995,117(33): 8582-8585.
    84. Tietze L. F., Schieman K. N., Wegne C. R. Enantioselective Synthesis of Tertiary Homoallylic Alcohols via Diastereoselective Addition of Allylsilanes to Ketones, J. Am. Chem. Soc., 1995,117(21): 5851-5852.
    85. Weijnen J. G. J., Koudijs A., Engbersen J. F. J. Carboxylix and phosphate ester hydrolysis catalysed by bivalent zinc and copper metallosurfactants. Chem.Soc.Perkin.Trans., 1991, 2: 1121-1126.
    86. Whang D., Jeon Y. M., Heo J., Kim K. Self-assembly of a polyrotaxane containing a cyclic"bead" in every structural unit in the solid state: cucurbitrtuil molecules threaded on a one-dimensional coordination polymer. J. Am. Chem. Soc., 1996, 118(45): 11333-11334.
    87. Whang, D., Kim K. Polycatenated two-dimensional polyrotaxane .ee net. J. Am. Chem. Soc., 1997,119(2): 451-452.
    88. Whang D., Heo J., Kim C. A., Kim K. Helical polyrotaxane cucurbituril threaded ont a helical one-dimensional polymer. Chem. Commun., 1997, 2361-2362.
    89. Whang D., Park K. M., Heo J., Ashton P., Kim K. Molecular necklace: Quantitative self-assembly of a cyclic oligorotaxane from nine molecules. J. Am. Chem. Soc., 1998, 120(19): 4899-4900.
    
    90. Young M. J., Wahnon D., Hynes R. C., Chim J. Reacitivity of copper(I1) hydroxides and copper(I1) Alkoxides for cleaving an activated phosphate diester. J. Am. Chem. Soc., 1995,117: 9441-9447.
    91. Yang Y. C., Berg F. J., Szafraniec L. L., Beaudry W. T., Bunton C. A., Kumar A. Peroxyhydrolysis of Nerve Agent VX and Model Compounds and Related Nucleophilic Reactions. Chem. Soc. Perkin.Trans., 1997,2: 607-613..
    92. Zhang X. X., Krakowiak K. E., Xue G., Bradshaw J. S., Izatt R. M. the highly selective binding properties noted above for CB[6]. CB[7] forms a pseudorotaxane. Ind. Eng. Chem. Res., 2000, 39(10): 3516-3520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700