20(S)-人参皂苷Rg3对糖尿病大鼠心脏的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     糖尿病是世界上主要的健康问题之一,糖尿病的根本危害在于其各种并发症,主要有大血管病变,糖尿病肾病及视网膜病变,神经病变和糖尿病足,尤以心血管系统最为严重。流行病学研究发现糖尿病人群心血管病患病率比非糖尿病人群高2~4倍,心肌梗死的患病率高10倍,而且患有慢性心力衰竭和猝死的发生率明显升高。糖尿病心肌病(DCM)是指糖尿病慢性并发症中排除了高血压、冠心病及其他已知疾病所致的心肌损伤而独立存在的特征性心肌病。DCM发生的病理改变有多种因素参与,其中包括高糖血症,脂肪酸代谢紊乱,钙离子的稳定失调,RAAS系统激活,NADPH氧化系统紊乱和线粒体代谢障碍,氧化应激的增加,糖基化终产物(AGEs)增多等。
     近年来研究表明,氧化应激反应及下游信号通路在糖尿病心肌病的发病机制中起着重要的作用,氧化应激反应介导的RAGEs受体蛋白引起促细胞生长因子的增加,使细胞外基质成分和基因表达发生改变,引起心肌细胞肥大,心脏微血管病变和间质纤维化,影响心脏的收缩舒张功能,因此抑制氧化应激表达水平对防治糖尿病心肌病有着重要的意义。
     人参皂苷是人参的主要生物活性成分,目前发现有30多种皂苷单体,其中20(S)-人参皂苷Rg3(20(S)-ginsenoside Rg3,20(S)-Rg3)被认为是具有多种药理作用的化合物。其作用主要包括调控血糖、改善微循环、抗肿瘤、抑制内皮细胞凋亡等。近年来随着对20(S)-Rg3研究的不断深入,发现在缺血性脑损伤和内皮细胞中有较强的抗氧化活性,对糖尿病引起的肾脏损伤亦有保护作用,但20(S)-Rg3对糖尿病心肌病是否有保护作用及其相关机制目前尚未明确,由此展开本实验。
     研究目的:
     1.20(S)-Rg3能否降低糖尿病心脏损伤重要因素之一氧化应激反应。
     2.从氧化应激/AGEs-RAGEs/NF-κB介导的纤维化信号通路角度探讨20(S)-Rg3对糖尿病心肌病的保护作用。
     3.寻找到20(S)-Rg3治疗糖尿病心肌病大鼠尿液中药物代谢的标记产物,为进一步探讨其治疗机制奠定分子基础。
     研究方法:
     通过建立糖尿病大鼠模型,观察药物治疗前后体重、心脏重量/体重及生化指标变化及心肌超微结构改变,检测氧化应激相关蛋白MDA、SOD、GSH及CAT活性水平,Masson染色观察心肌纤维化程度,应用免疫印迹方法检测RAGE、NF-κB、TGF-β1和CTGF四个信号蛋白的表达及RT-PCR方法测RAGE、NF-κB mRNA水平。应用代谢组学方法通过液相质谱检测找到20(S)-Rg3治疗糖尿病心肌病尿液中发生变化的标记物质。
     研究结果:
     1.20(S)-Rg3三个治疗组均降低糖尿病大鼠血清中血糖、血脂、心肌酶水平,改善心肌超微结构的损伤,且存在剂量依赖性,高剂量组改善最明显。
     2.20(S)-Rg3三个治疗组均能提高糖尿病心脏组织中抗氧化系统中SOD、GSH和CAT活性,降低氧化损伤标志物MDA水平、并且具有剂量依赖性,高剂量组抗氧水平最显著。
     3.20(S)-Rg3三个剂量组均可改善糖尿病心肌组织中胶原的过度沉积、减低I、III型胶原蛋白的水平,高剂量组效果最显著。
     4.20(S)-Rg3可降低糖尿病心肌组织中RAGE、NF-ΚB、TGF-β1、CTGF的蛋白表达及RAGE、NF-ΚB的mRNA表达,并且具有剂量依赖性,高剂量组降低明显。
     5.应用尿液代谢组学方法找出20(S)-Rg3治疗糖尿病心肌病的三种标记物,分别是3-甲基鸟嘌呤、L-肉毒碱和肌肽。
     结论:
     1.20(S)-Rg3改善糖尿病心肌病大鼠代谢紊乱及心肌细胞超微结构损害。
     2.20(S)-Rg3可通过降低血清和组织中氧化应激水平发挥保护糖尿病心脏作用。
     3.20(S)-Rg3可逆转心肌间质纤维化,机制可能与抑制氧化应激/AGEs-RAGE/NF-κB信号通路有关。
     4.尿液代谢组学研究20(S)-Rg3治疗糖尿病心肌病机制与能量代谢和氧化应激作用相关。
     创新点:
     1.本研究应用20(S)-Rg3干预STZ诱导糖尿病大鼠,从蛋白、基因水平进行研究,结果显示20(S)-Rg3通过阻断氧化应激介导的AGEs-RAGE/NF-κB纤维化通路,通过抑制促生长因子的表达减低I和Ⅲ胶原蛋白在心肌的含量,对糖尿病大鼠心肌起到保护作用。
     2.本研究通过尿液代谢组学方法找到20(S)-Rg3治疗糖尿病心肌病药物代谢的标志物,为进一步研究药物的治疗机制奠定分子基础。
     3.20(S)-Rg3为天然的草本植物提取物,本研究为预防和治疗糖尿病心肌损害的新药研发提供了重要的理论参考依据。
     综上所述,本研究显示20(S)-Rg3可通过抑制糖尿病心肌组织中氧化应激介导的AGEs-RAGE/NF-κB信号通路抵抗糖尿病引起的心肌损伤的作用,并通过尿液组学研究进一步发现其保护与能量代谢和氧化应激作用相关,20(S)-Rg3有可能成为新的心脏保护药物,有望应用于糖尿病心肌损伤或其它心脏疾病的治疗。
Background:
     Diabetes is one of the world's major health problems, diabetes fundamentalhazards in its various complications, mainly macrovascular disease, diabeticnephropathy and retinopathy, neuropathy and diabetic foot, especially in thecardiovascular system is the most serious. Epidemiological studies have found that thediabetic population of patients with cardiovascular disease rates2to4times higherthan the non-diabetic population,10times higher prevalence of myocardial infarction,and suffers from chronic heart failure and significantly increased the incidence ofsudden death. Diabetic cardiomyopathy (DCM) is to exclude myocardial injurycaused by high blood pressure, coronary heart disease and other known diseases existindependently of the characteristics of cardiomyopathy in the chronic complicationsof diabetes. DCM occurrence of pathological changes of a variety of factors involvedinclude: hyperglycemia, fatty acid metabolism disorders, disorders of calcium ionstability, activation of the RAAS system, NADPH oxidation system disorders andmitochondrial metabolism, increased oxidative stress, glycosylation end products(AGEs) increase.
     In recent years, studies have shown that oxidative stress and the downstreamsignaling pathway plays an important role in the pathogenesis of diabeticcardiomyopathy, RAGEs receptor protein mediated oxidative stress caused promotecell growth factor increases, so that the extracellular matrix composition and geneexpression changes, causing cardiac myocyte hypertrophy, cardiac microvasculardisease and interstitial fibrosis, affecting systolic and diastolic function of the heart,thus inhibiting the expression levels of oxidative stress has an important significance to the prevention and treatment of diabetic cardiomyopathy.
     Ginseng saponin is the main biologically active components of ginseng, found30kinds of saponin monomer, of which20(S)-ginsenoside Rg3(20(S)-ginsenosideRg3,20(S)-Rg3) is considered to be a multi-The colors of the pharmacologicaleffects of the compound. Its main function,including the regulation of blood sugar,improve microcirculation, anti-tumor, inhibition of endothelial cell apoptosis. Inrecent years, with the deepening of the20(S)-Rg3study found that there is a strongantioxidant activity in ischemic brain injury and endothelial cells, kidney damagecaused by diabetes mellitus also have protective effects, but the20(S)-Rg3on diabeticcardiomyopathy has a protective effect and its mechanism is not yet clear, thus givingrise to this experiment.
     Objective:
     1.20(S)-Rg3ability to reduce one of the important factors of diabetic heartdamage oxidative stress.
     2. Fibrosis from the oxidation stress/AGEs-RAGEs/NF-κB, mediated signalingpathways angle to explore the protective effect of20(S)-Rg3on diabeticcardiomyopathy.
     3. Seeking to lay the molecular basis of the labeled product of20(S)-Rg3treatment of diabetic cardiomyopathy in rat urine drug metabolism, in order to furtherexplore its therapeutic mechanism
     Methods:
     Through the establishment of diabetic rats were observed before and aftertreatment weight, heart weight/body weight and changes in biochemical markers ofmyocardial ultrastructural changes, detection of oxidative stress-related proteins MDA,SOD, GSH and CAT activity level, Masson staining myocardial fibrosis application toWestern blot detection Rage, four signals in the NF-kappaB, TGF-beta1and CTGFprotein expression by RT-PCR measurement of RAGE and NF-kappaB mRNA level.Application of metabolomics methods by liquid mass spectrometric detection foundthat20(S)-Rg3treatment change the labeling substance in the urine of diabetic cardiomyopathy.
     Results:
     1.20(S)-Rg3three treatment groups decreased level of diabetic rats serumglucose, lipids, enzymes, improve myocardial ultrastructural damage, and there is adose-dependent, high-dose group improved the most obvious.
     2.20(S)-Rg3three treatment groups could improve the antioxidant system indiabetic heart tissue SOD, GSH and CAT activity, MDA levels reduce the markers ofoxidative damage, and a dose-dependent oxidation level of the high-dose group themost significant.
     3.20(S)-the Rg3three dose groups can improve the excessive deposition ofcollagen in diabetic myocardial tissue, reduce the I and type III collagen level, theeffect of high-dose group significantly.
     4.20(S)-Rg3can reduce diabetic myocardial tissue RAGE, NF-kappaB,TGF-beta1, CTGF protein expression of RAGE, NF-kappaB mRNA expression, and adose-dependent, high-dose group reduced significantly.
     5. Application urine metabolomics approach to identify three of the20(S)-Rg3treatment of diabetic cardiomyopathy markers, namely3-methylguanine, L-carnitineand carnosine.
     Conclusions:
     1.20(S)-Rg3to improve the diabetic cardiomyopathy the rat metabolic disordersand myocardial ultrastructure damage.
     2.20(S)-Rg3may play a protective role of diabetes heart by reducing oxidativestress in serum and tissues.
     3.20(S)-Rg3can reverse the myocardial interstitial fibrosis, the mechanism maybe related to the inhibition of oxidative stress/AGEs-RAGE/NF-κB signalingpathway.
     Urine metabolomics studies20(S)-Rg3treatment related to the the diabeticcardiomyopathy mechanism of the energy metabolism and oxidative stress. Innovation:
     1. In this study,20(S)-Rg3intervention STZ-induced diabetic rats, protein, genelevel study, results showed that20(S)-Rg3by blocking oxidative stress-mediatedAGEs-RAGE/NF-κB fibrosis pathway through inhibition of pro reduce the expressionof growth factors I and III collagen content in myocardial, myocardium of diabeticrats play a protective role.
     2.In this study, urine metabolomics methods to find the20(S)-Rg3treatment ofdiabetic cardiomyopathy drug metabolism markers laid molecular basis for the furtherstudy of the drug treatment mechanism.
     3.20(S)-Rg3as a natural herb extracts, this study for the research anddevelopment of new drugs for the prevention and treatment of diabetic myocardialdamage provides an important theoretical basis.
     In summary, this study shows that20(S)-Rg3can by inhibiting oxidativestress-mediated diabetes myocardial tissue AGEs-RAGE/NF-kappaB signalingpathway resistant to diabetes-induced myocardial injury and learn through urine groupThe study further found that protection and energy metabolism and oxidative stress20(S)-Rg3may become the new heart drug protection, may be used in the treatment ofdiabetes myocardial injury or other heart disease.
引文
[1] King H, Aubert RE, Herman WH. Global burden of diabetes,1995-2025:prevalence, numerical estimates, and projections. Diabetes Care.1998.21(9):1414-31.
    [2] Hayat SA, Patel B, Khattar RS, Malik RA. Diabetic cardiomyopathy:mechanisms, diagnosis and treatment. Clin Sci (Lond).2004.107(6):539-57.
    [3] Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. Newtype of cardiomyopathy associated with diabetic glomerulosclerosis. Am JCardiol.1972.30(6):595-602.
    [4] Duehlmeier R, Hacker A, Widdel-Bigdely A, von EW, Sallmann HP. Insulinstimulates GLUT4translocation in the semitendinosus muscle of Shetlandponies. Vet J.2010.184(2):176-81.
    [5] Thai MV, Guruswamy S, Cao KT, Pessin JE, Olson AL. Myocyte enhancerfactor2(MEF2)-binding site is required for GLUT4gene expression intransgenic mice. Regulation of MEF2DNA binding activity in insulin-deficientdiabetes. J Biol Chem.1998.273(23):14285-92.
    [6] Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H. Downregulationof myocardial myocyte enhancer factor2C and myocyte enhancer factor2C-regulated gene expression in diabetic patients with nonischemic heart failure.Circulation.2002.106(4):407-11.
    [7] Wright JJ, Kim J, Buchanan J, et al.. Mechanisms for increased myocardial fattyacid utilization following short-term high-fat feeding. Cardiovasc Res.2009.82(2):351-60.
    [8] Buchanan J, Mazumder PK, Hu P, et al.. Reduced cardiac efficiency and alteredsubstrate metabolism precedes the onset of hyperglycemia and contractiledysfunction in two mouse models of insulin resistance and obesity.Endocrinology.2005.146(12):5341-9.
    [9] Regan TJ, Lyons MM, Ahmed SS, et al.. Evidence for cardiomyopathy infamilial diabetes mellitus. J Clin Invest.1977.60(4):884-99.
    [10] Carley AN, Severson DL. What are the biochemical mechanisms responsible forenhanced fatty acid utilization by perfused hearts from type2diabetic db/dbmice. Cardiovasc Drugs Ther.2008.22(2):83-9.
    [11] Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W.Decreased cardiolipin synthesis corresponds with cytochrome c release inpalmitate-induced cardiomyocyte apoptosis. J Biol Chem.2001.276(41):38061-7.
    [12] Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE. Disruption ofendoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res.2006.47(12):2726-37.
    [13] Asghar O, Al-Sunni A, Khavandi K, et al.. Diabetic cardiomyopathy. Clin Sci(Lond).2009.116(10):741-60.
    [14] Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans.2007.35(Pt5):1147-50.
    [15] Kaul N, Siveski-Iliskovic N, Hill M, Slezak J, Singal PK. Free radicals and theheart. J Pharmacol Toxicol Methods.1993.30(2):55-67.
    [16] Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerativediseases. Science (80-).1992.256(5057):628-32.
    [17] Cheetham C, Collis J, O'Driscoll G, Stanton K, Taylor R, Green D. Losartan, anangiotensin type1receptor antagonist, improves endothelial function innon-insulin-dependent diabetes. J Am Coll Cardiol.2000.36(5):1461-6.
    [18]丁红秀,高荫榆,晁红娟,夏冬华.毛竹叶多糖体内抗氧化作用研究.食品科学.2008.(05):427-430.
    [19] Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC.Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal.2009.11(11):2685-700.
    [20] Davi G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. AntioxidRedox Signal.2005.7(1-2):256-68.
    [21] Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascularcomplications. Free Radic Biol Med.2006.40(2):183-92.
    [22] Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Clin Chem LabMed.2003.41(9):1144-9.
    [23] Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role ofhyperglycemia and oxidative stress. Toxicol Appl Pharmacol.2006.212(2):167-78.
    [24] Aronson D. Hyperglycemia and the pathobiology of diabetic complications. AdvCardiol.2008.45:1-16.
    [25] Seddon M, Looi YH, Shah AM. Oxidative stress and redox signalling in cardiachypertrophy and heart failure. Heart.2007.93(8):903-7.
    [26] Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascularsuperoxide production in human diabetes mellitus: role of NAD(P)H oxidaseand endothelial nitric oxide synthase. Circulation.2002.105(14):1656-62.
    [27] Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use ofantioxidants in diabetes: linking basic science to clinical practice. CardiovascDiabetol.2005.4(1):5.
    [28] Dostal DE, Rothblum KN, Chernin MI, Cooper GR, Baker KM. Intracardiacdetection of angiotensinogen and renin: a localized renin-angiotensin system inneonatal rat heart. Am J Physiol.1992.263(4Pt1): C838-50.
    [29] Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J. AT1blockade preventsglucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1receptor and NADPH oxidase. Hypertension.2003.42(2):206-12.
    [30] Connelly KA, Kelly DJ, Zhang Y, et al. Functional, structural and molecularaspects of diastolic heart failure in the diabetic (mRen-2)27rat. Cardiovasc Res.2007.76(2):280-91.
    [31] Raimondi L, De Paoli P, Mannucci E, et al. Restoration of cardiomyocytefunctional properties by angiotensin II receptor blockade in diabetic rats.Diabetes.2004.53(7):1927-33.
    [32] Liu X, Suzuki H, Sethi R, Tappia PS, Takeda N, Dhalla NS. Blockade of therenin-angiotensin system attenuates sarcolemma and sarcoplasmic reticulumremodeling in chronic diabetes. Ann N Y Acad Sci.2006.1084:141-54.
    [33] Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessiveextracellular matrix turnover may contribute to survival benefit ofspironolactone therapy in patients with congestive heart failure: insights fromthe randomized aldactone evaluation study (RALES). Rales Investigators.Circulation.2000.102(22):2700-6.
    [34] Neumann S, Huse K, Semrau R, et al. Aldosterone and D-glucose stimulate theproliferation of human cardiac myofibroblasts in vitro. Hypertension.2002.39(3):756-60.
    [35] McEwan PE, Gray GA, Sherry L, Webb DJ, Kenyon CJ. Differential effects ofangiotensin II on cardiac cell proliferation and intramyocardial perivascularfibrosis in vivo. Circulation.1998.98(24):2765-73.
    [36] Goldhaber JI, Philipson KD. Cardiac sodium-calcium exchange and efficientexcitation-contraction coupling: implications for heart disease. Adv Exp MedBiol.2013.961:355-64.
    [37] Vetter R, Rehfeld U, Reissfelder C, et al. Transgenic overexpression of thesarcoplasmic reticulum Ca2+ATPase improves reticular Ca2+handling innormal and diabetic rat hearts. FASEB J.2002.16(12):1657-9.
    [38] Ma TS. Sarcoplasmic reticulum calcium ATPase overexpression induces cellularcalcium overload and cell death. Ann N Y Acad Sci.1998.853:325-8.
    [39] Ma TS. Sarcoplasmic reticulum calcium ATPase overexpression induces cellularcalcium overload and cell death. Ann N Y Acad Sci.1998.853:325-8.
    [40] Wautier JL, Schmidt AM. Protein glycation: a firm link to endothelial celldysfunction. Circ Res.2004.95(3):233-8.
    [41] Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation endproducts attenuates diabetes-induced myocardial structural changes. Circ Res.2003.92(7):785-92.
    [42] Makita Z, Vlassara H, Rayfield E, et al. Hemoglobin-AGE: a circulating markerof advanced glycosylation. Science (80-).1992.258(5082):651-3.
    [43] Hartog JW, Voors AA, Bakker SJ, Smit AJ, van VDJ. Advanced glycationend-products (AGEs) and heart failure: pathophysiology and clinicalimplications. Eur J Heart Fail.2007.9(12):1146-55.
    [44] Zieman SJ, Kass DA. Advanced glycation endproduct crosslinking in thecardiovascular system: potential therapeutic target for cardiovascular disease.Drugs.2004.64(5):459-70.
    [45] Niwa T, Miyazaki T, Katsuzaki T, Tatemichi N, Takei Y. Serum levels of3-deoxyglucosone and tissue contents of advanced glycation end products areincreased in streptozotocin-induced diabetic rats with nephropathy. Nephron.1996.74(3):580-5.
    [46] Montagnani M. Diabetic cardiomyopathy: how much does it depend on AGE. BrJ Pharmacol.2008.154(4):725-6.
    [47] Koyama Y, Takeishi Y, Arimoto T, et al. High serum level of pentosidine, anadvanced glycation end product (AGE), is a risk factor of patients with heartfailure. J Card Fail.2007.13(3):199-206.
    [48] Sugaya K, Fukagawa T, Matsumoto K, et al. Three genes in the human MHCclass III region near the junction with the class II: gene for receptor of advancedglycosylation end products, PBX2homeobox gene and a notch homolog,human counterpart of mouse mammary tumor gene int-3. Genomics.1994.23(2):408-19.
    [49] Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-betapeptide transport across the blood-brain barrier and accumulation in brain. NatMed.2003.9(7):907-13.
    [50] Kislinger T, Fu C, Huber B, et al. N(epsilon)-(carboxymethyl)lysine adducts ofproteins are ligands for receptor for advanced glycation end products thatactivate cell signaling pathways and modulate gene expression. J Biol Chem.1999.274(44):31740-9.
    [51] Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular receptorsfor advanced glycation end products. Implications for induction of oxidant stressand cellular dysfunction in the pathogenesis of vascular lesions. ArteriosclerThromb.1994.14(10):1521-8.
    [52] Riehl A, Bauer T, Brors B, et al. Identification of the Rage-dependent generegulatory network in a mouse model of skin inflammation. BMC Genomics.2010.11:537.
    [53] Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress bythe interaction of advanced glycation end products with their receptors/bindingproteins. J Biol Chem.1994.269(13):9889-97.
    [54] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress andstress-activated signaling pathways: a unifying hypothesis of type2diabetes.Endocr Rev.2002.23(5):599-622.
    [55] Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation endproducts (RAGE)-mediated neurite outgrowth and activation of NF-kappaBrequire the cytoplasmic domain of the receptor but different downstreamsignaling pathways. J Biol Chem.1999.274(28):19919-24.
    [56] Neumann A, Schinzel R, Palm D, Riederer P, Munch G. High molecular weighthyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaBactivation and cytokine expression. FEBS Lett.1999.453(3):283-7.
    [57] Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependentimpairment of cardiac-specific transcription factors in experimental diabetes.Endocrinology.2006.147(12):5967-74.
    [58] Carley AN, Severson DL. What are the biochemical mechanisms responsible forenhanced fatty acid utilization by perfused hearts from type2diabetic db/dbmice. Cardiovasc Drugs Ther.2008.22(2):83-9.
    [59] Bers DM. Cardiac excitation-contraction coupling. Nature.2002.415(6868):198-205.
    [60] Vetter R, Rehfeld U, Reissfelder C, et al. Transgenic overexpression of thesarcoplasmic reticulum Ca2+ATPase improves reticular Ca2+handling innormal and diabetic rat hearts. FASEB J.2002.16(12):1657-9.
    [61] Park L, Raman KG, Lee KJ, et al. Suppression of accelerated diabeticatherosclerosis by the soluble receptor for advanced glycation endproducts. NatMed.1998.4(9):1025-31.
    [62] Brownlee M. Biochemistry and molecular cell biology of diabetic complications.Nature.2001.414(6865):813-20.
    [63] Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor inchronic inflammatory diseases. N Engl J Med.1997.336(15):1066-71.
    [64] Lu M, Kuroki M, Amano S, et al. Advanced glycation end products increaseretinal vascular endothelial growth factor expression. J Clin Invest.1998.101(6):1219-24.
    [65] Nakamura S, Makita Z, Ishikawa S, et al. Progression of nephropathy inspontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor ofadvanced glycation. Diabetes.1997.46(5):895-9.
    [66] Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanismsand circulating and urinary markers. Vasc Health Risk Manag.2008.4(3):575-96.
    [67] Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growthfactor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat Cell Biol.2002.4(8):599-604.
    [68] Brownlee M. Biochemistry and molecular cell biology of diabetic complications.Nature.2001.414(6865):813-20.
    [69] Geraldes P, King GL. Activation of protein kinase C isoforms and its impact ondiabetic complications. Circ Res.2010.106(8):1319-31.
    [70] Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferentialelevation of protein kinase C isoform beta II and diacylglycerol levels in theaorta and heart of diabetic rats: differential reversibility to glycemic control byislet cell transplantation. Proc Natl Acad Sci U S A.1992.89(22):11059-63.
    [71] Craven PA, Davidson CM, DeRubertis FR. Increase in diacylglycerol mass inisolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes.1990.39(6):667-74.
    [72] Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlationof diacylglycerol level and protein kinase C activity in rat retina to retinalcirculation. Am J Physiol.1993.265(5Pt1): E783-93.
    [73] Scivittaro V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activateprotein kinase C-beta(II) in neonatal mesangial cells. Am J Physiol RenalPhysiol.2000.278(4): F676-83.
    [74] Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells indiabetes. Mechanisms and potential links to the pathogenesis of diabeticglomerulopathy. Diabetes.1994.43(1):1-8.
    [75] Portilla D, Dai G, Peters JM, Gonzalez FJ, Crew MD, Proia AD.Etomoxir-induced PPARalpha-modulated enzymes protect during acute renalfailure. Am J Physiol Renal Physiol.2000.278(4): F667-75.
    [76] Keogh RJ, Dunlop ME, Larkins RG. Effect of inhibition of aldose reductase onglucose flux, diacylglycerol formation, protein kinase C, and phospholipase A2activation. Metabolism.1997.46(1):41-7.
    [77] Zhang Y, Matkovich SJ, Duan X, Diwan A, Kang MY,2nd DGW.Receptor-independent protein kinase C alpha (PKCalpha) signaling bycalpain-generated free catalytic domains induces HDAC5nuclear export andregulates cardiac transcription. J Biol Chem.2011.286(30):26943-51.
    [78] Wakasaki H, Koya D, Schoen FJ, et al. Targeted overexpression of proteinkinase C beta2isoform in myocardium causes cardiomyopathy. Proc Natl AcadSci U S A.1997.94(17):9320-5.
    [79] Topham MK, Prescott SM. Diacylglycerol kinases: regulation and signalingroles. Thromb Haemost.2002.88(6):912-8.
    [80] Way KJ, Isshiki K, Suzuma K, et al. Expression of connective tissue growthfactor is increased in injured myocardium associated with protein kinase Cbeta2activation and diabetes. Diabetes.2002.51(9):2709-18.
    [81] Xia Z, Kuo KH, Nagareddy PR, et al. N-acetylcysteine attenuates PKCbeta2overexpression and myocardial hypertrophy in streptozotocin-induced diabeticrats. Cardiovasc Res.2007.73(4):770-82.
    [82] Hambleton M, Hahn H, Pleger ST, et al. Pharmacological-and genetherapy-based inhibition of protein kinase Calpha/beta enhances cardiaccontractility and attenuates heart failure. Circulation.2006.114(6):574-82.
    [83] Arikawa E, Ma RC, Isshiki K, et al. Effects of insulin replacements, inhibitorsof angiotensin, and PKCbeta's actions to normalize cardiac gene expression andfuel metabolism in diabetic rats. Diabetes.2007.56(5):1410-20.
    [84] Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabeticcardiomyopathy: insights into pathogenesis, diagnostic challenges, andtherapeutic options. Am J Med.2008.121(9):748-57.
    [85] Galderisi M, Anderson KM, Wilson PW, Levy D. Echocardiographic evidencefor the existence of a distinct diabetic cardiomyopathy (the Framingham HeartStudy). Am J Cardiol.1991.68(1):85-9.
    [86] Devereux RB, Roman MJ, Paranicas M, et al.. Impact of diabetes on cardiacstructure and function: the strong heart study. Circulation.2000.101(19):2271-6.
    [87] Eguchi K, Boden-Albala B, Jin Z, et al.. Association between diabetes mellitusand left ventricular hypertrophy in a multiethnic population. Am J Cardiol.2008.101(12):1787-91.
    [88] Rerkpattanapipat P, D'Agostino RB Jr, Link KM, et al.. Location of arterialstiffening differs in those with impaired fasting glucose versus diabetes:implications for left ventricular hypertrophy from the Multi-Ethnic Study ofAtherosclerosis. Diabetes.2009.58(4):946-53.
    [89] Woodiwiss AJ, Libhaber CD, Majane OH, Libhaber E, Maseko M, Norton GR.Obesity promotes left ventricular concentric rather than eccentric geometricremodeling and hypertrophy independent of blood pressure. Am J Hypertens.2008.21(10):1144-51.
    [90] Kim M, Oh JK, Sakata S, et al.. Role of resistin in cardiac contractility andhypertrophy. J Mol Cell Cardiol.2008.45(2):270-80.
    [91] Karason K, Sjostrom L, Wallentin I, Peltonen M. Impact of blood pressure andinsulin on the relationship between body fat and left ventricular structure. EurHeart J.2003.24(16):1500-5.
    [92] Cook SA, Varela-Carver A, Mongillo M, et al.. Abnormal myocardial insulinsignalling in type2diabetes and left-ventricular dysfunction. Eur Heart J.2010.31(1):100-11.
    [93] Belke DD, Betuing S, Tuttle MJ, et al.. Insulin signaling coordinately regulatescardiac size, metabolism, and contractile protein isoform expression. J ClinInvest.2002.109(5):629-39.
    [94] Frustaci A, Kajstura J, Chimenti C, et al.. Myocardial cell death in humandiabetes. Circ Res.2000.87(12):1123-32.
    [95] Chowdhry MF, Vohra HA, Galinanes M. Diabetes increases apoptosis andnecrosis in both ischemic and nonischemic human myocardium: role of caspasesand poly-adenosine diphosphate-ribose polymerase. J Thorac Cardiovasc Surg.2007.134(1):124-31,131.e1-3.
    [96] Shen E, Li Y, Li Y, et al.. Rac1is required for cardiomyocyte apoptosis duringhyperglycemia. Diabetes.2009.58(10):2386-95.
    [97] Shimizu M, Umeda K, Sugihara N, et al.. Collagen remodelling in myocardia ofpatients with diabetes. J Clin Pathol.1993.46(1):32-6.
    [98] Gonzalez-Vilchez F, Ayuela J, Ares M, Pi J, Castillo L, Martin-Duran R.Oxidative stress and fibrosis in incipient myocardial dysfunction in type2diabetic patients. Int J Cardiol.2005.101(1):53-8.
    [99] Ihm SH, Youn HJ, Shin DI, et al.. Serum carboxy-terminal propeptide of type Iprocollagen (PIP) is a marker of diastolic dysfunction in patients with early type2diabetes mellitus. Int J Cardiol.2007.122(3): e36-8.
    [100] Mizushige K, Yao L, Noma T, et al.. Alteration in left ventricular diastolic fillingand accumulation of myocardial collagen at insulin-resistant prediabetic stage ofa type II diabetic rat model. Circulation.2000.101(8):899-907.
    [101] Li C, Cao L, Zeng Q. Astragalus prevents diabetic rats from developingcardiomyopathy by downregulating angiotensin II type2receptors' expression. JHuazhong Univ Sci Technolog Med Sci.2004.24(4):379-84.
    [102] He Z, Way KJ, Arikawa E, et al.. Differential regulation of angiotensinII-induced expression of connective tissue growth factor by protein kinase Cisoforms in the myocardium. J Biol Chem.2005.280(16):15719-26.
    [103] Wang X, McLennan SV, Allen TJ, Tsoutsman T, Semsarian C, Twigg SM.Adverse effects of high glucose and free fatty acid on cardiomyocytes aremediated by connective tissue growth factor. Am J Physiol Cell Physiol.2009.297(6): C1490-500.
    [104] Mizushige K, Yao L, Noma T, et al.. Alteration in left ventricular diastolic fillingand accumulation of myocardial collagen at insulin-resistant prediabetic stage ofa type II diabetic rat model. Circulation.2000.101(8):899-907.
    [105] Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanismsand circulating and urinary markers. Vasc Health Risk Manag.2008.4(3):575-96.
    [106] Way KJ, Isshiki K, Suzuma K, et al.. Expression of connective tissue growthfactor is increased in injured myocardium associated with protein kinase C beta2activation and diabetes. Diabetes.2002.51(9):2709-18.
    [107] Yu CM, Lin H, Yang H, Kong SL, Zhang Q, Lee SW. Progression of systolicabnormalities in patients with "isolated" diastolic heart failure and diastolicdysfunction. Circulation.2002.105(10):1195-201.
    [108] Shivalkar B, Dhondt D, Goovaerts I, et al.. Flow mediated dilatation and cardiacfunction in type1diabetes mellitus. Am J Cardiol.2006.97(1):77-82.
    [109] Ozasa N, Furukawa Y, Morimoto T, Tadamura E, Kita T, Kimura T. Relationamong left ventricular mass, insulin resistance, and hemodynamic parameters intype2diabetes. Hypertens Res.2008.31(3):425-32.
    [110] Christoffersen C, Bollano E, Lindegaard ML, et al.. Cardiac lipid accumulationassociated with diastolic dysfunction in obese mice. Endocrinology.2003.144(8):3483-90.
    [111] Van den Bergh A, Vanderper A, Vangheluwe P, et al.. Dyslipidaemia in type IIdiabetic mice does not aggravate contractile impairment but increasesventricular stiffness. Cardiovasc Res.2008.77(2):371-9.
    [112] Dong F, Zhang X, Yang X, et al.. Impaired cardiac contractile function inventricular myocytes from leptin-deficient ob/ob obese mice. J Endocrinol.2006.188(1):25-36.
    [113] Stolen TO, Hoydal MA, Kemi OJ, et al.. Interval training normalizescardiomyocyte function, diastolic Ca2+control, and SR Ca2+releasesynchronicity in a mouse model of diabetic cardiomyopathy. Circ Res.2009.105(6):527-36.
    [114] Fang ZY, Schull-Meade R, Leano R, Mottram PM, Prins JB, Marwick TH.Screening for heart disease in diabetic subjects. Am Heart J.2005.149(2):349-54.
    [115] Yu CM, Chau E, Sanderson JE, et al.. Tissue Doppler echocardiographicevidence of reverse remodeling and improved synchronicity by simultaneouslydelaying regional contraction after biventricular pacing therapy in heart failure.Circulation.2002.105(4):438-45.
    [116] Yue P, Arai T, Terashima M, et al.. Magnetic resonance imaging of progressivecardiomyopathic changes in the db/db mouse. Am J Physiol Heart Circ Physiol.2007.292(5): H2106-18.
    [117] Van den Bergh A, Flameng W, Herijgers P. Type II diabetic mice exhibitcontractile dysfunction but maintain cardiac output by favourable loadingconditions. Eur J Heart Fail.2006.8(8):777-83.
    [118] Radovits T, Korkmaz S, Loganathan S, et al.. Comparative investigation of theleft ventricular pressure-volume relationship in rat models of type1and type2diabetes mellitus. Am J Physiol Heart Circ Physiol.2009.297(1): H125-33.
    [119] Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis ModelMech.2009.2(9-10):454-66.
    [120] Joshi D, Gupta R, Dubey A, et al.. TRC4186, a novel AGE-breaker, improvesdiabetic cardiomyopathy and nephropathy in Ob-ZSF1model of type2diabetes.J Cardiovasc Pharmacol.2009.54(1):72-81.
    [121] Lamounier-Zepter V, Look C, Alvarez J, et al.. Adipocyte fatty acid-bindingprotein suppresses cardiomyocyte contraction: a new link between obesity andheart disease. Circ Res.2009.105(4):326-34.
    [122] Boudina S, Bugger H, Sena S, et al.. Contribution of impaired myocardialinsulin signaling to mitochondrial dysfunction and oxidative stress in the heart.Circulation.2009.119(9):1272-83.
    [123] Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev.2004.9(3):259-74.
    [124] Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects ofginsenoside Rg1and Rb1and its mechanism of action. Acta Pharmacol Sin.2005.26(2):143-9.
    [125] Barnes PM, Powell-Griner E, McFann K, Nahin RL. Complementary andalternative medicine use among adults: United States,2002. Adv Data.2004.(343):1-19.
    [126] Borchers AT, Keen CL, Stern JS, Gershwin ME. Inflammation and NativeAmerican medicine: the role of botanicals. Am J Clin Nutr.2000.72(2):339-47.
    [127] Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen CJ. Molecularmechanisms and clinical applications of ginseng root for cardiovascular disease.Med Sci Monit.2004.10(8): RA187-92.
    [128] Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA. Recentpatterns of medication use in the ambulatory adult population of the UnitedStates: the Slone survey. JAMA.2002.287(3):337-44.
    [129] Pharand C, Ackman ML, Jackevicius CA, Paradiso-Hardy FL, Pearson GJ. Useof OTC and herbal products in patients with cardiovascular disease. AnnPharmacother.2003.37(6):899-904.
    [130] Wood MJ, Stewart RL, Merry H, Johnstone DE, Cox JL. Use of complementaryand alternative medical therapies in patients with cardiovascular disease. AmHeart J.2003.145(5):806-12.
    [131] Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecularmechanisms and medical applications. Curr Vasc Pharmacol.2009.7(3):293-302.
    [132] Buettner C, Yeh GY, Phillips RS, Mittleman MA, Kaptchuk TJ. Systematicreview of the effects of ginseng on cardiovascular risk factors. AnnPharmacother.2006.40(1):83-95.
    [133] Hofseth LJ, Wargovich MJ. Inflammation, cancer, and targets of ginseng. J Nutr.2007.137(1Suppl):183S-185S.
    [134]王强,莫雪梅,杨小英,何劲松.人参皂甙治疗心血管疾病的现代研究进展.心血管病学进展.2006.(03):325-327.
    [135] Bai CX, Sunami A, Namiki T, Sawanobori T, Furukawa T. Electrophysiologicaleffects of ginseng and ginsenoside Re in guinea pig ventricular myocytes. Eur JPharmacol.2003.476(1-2):35-44.
    [136] Bai CX, Takahashi K, Masumiya H, Sawanobori T, Furukawa T. Nitricoxide-dependent modulation of the delayed rectifier K+current and the L-typeCa2+current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pigcardiomyocytes. Br J Pharmacol.2004.142(3):567-75.
    [137] Wohlfart B. Analysis of mechanical alternans in rabbit papillary muscle. ActaPhysiol Scand.1982.115(4):405-14.
    [138] Konta T, Ikeda K, Yamaki M, et al.. Significance of discordant ST alternans inventricular fibrillation. Circulation.1990.82(6):2185-9.
    [139] Berger RD. Repolarization alternans: toward a unifying theory of reentrantarrhythmia induction. Circ Res.2000.87(12):1083-4.
    [140] Hiromoto K, Shimizu H, Furukawa Y, et al.. Discordant repolarizationalternans-induced atrial fibrillation is suppressed by verapamil. Circ J.2005.69(11):1368-73.
    [141] Shimizu W, Antzelevitch C. Cellular and ionic basis for T-wave alternans underlong-QT conditions. Circulation.1999.99(11):1499-507.
    [142] Blatter LA, Kockskamper J, Sheehan KA, Zima AV, Huser J, Lipsius SL. Localcalcium gradients during excitation-contraction coupling and alternans in atrialmyocytes. J Physiol.2003.546(Pt1):19-31.
    [143] Wang YG, Zima AV, Ji X, Pabbidi R, Blatter LA, Lipsius SL. Ginsenoside Resuppresses electromechanical alternans in cat and human cardiomyocytes. Am JPhysiol Heart Circ Physiol.2008.295(2): H851-9.
    [144] Chen CX, Zhang HY.[Protective effect of ginsenoside Re onisoproterenol-induced triggered ventricular arrhythmia in rabbits]. ZhongguoDang Dai Er Ke Za Zhi.2009.11(5):384-8.
    [145] Rao PR, Viswanath RK. Cardioprotective activity of silymarin inischemia-reperfusion-induced myocardial infarction in albino rats. Exp ClinCardiol.2007.12(4):179-87.
    [146] Bolli R. Superoxide dismutase10years later: a drug in search of a use. J AmColl Cardiol.1991.18(1):231-3.
    [147] Gross GJ, Farber NE, Hardman HF, Warltier DC. Beneficial actions ofsuperoxide dismutase and catalase in stunned myocardium of dogs. Am JPhysiol.1986.250(3Pt2): H372-7.
    [148] Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radicalgeneration following reperfusion of ischemic myocardium. Proc Natl Acad SciU S A.1987.84(5):1404-7.
    [149] Xie YW, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH. Role ofendothelium-derived nitric oxide in the modulation of canine myocardialmitochondrial respiration in vitro. Implications for the development of heartfailure. Circ Res.1996.79(3):381-7.
    [150] Taniguchi M, Wilson C, Hunter CA, Pehowich DJ, Clanachan AS, LopaschukGD. Dichloroacetate improves cardiac efficiency after ischemia independent ofchanges in mitochondrial proton leak. Am J Physiol Heart Circ Physiol.2001.280(4): H1762-9.
    [151] Kim TH, Lee SM. The effects of ginseng total saponin, panaxadiol andpanaxatriol on ischemia/reperfusion injury in isolated rat heart. Food ChemToxicol.2010.48(6):1516-20.
    [152] Wang Z, Li M, Wu WK, Tan HM, Geng DF. Ginsenoside Rb1preconditioningprotects against myocardial infarction after regional ischemia and reperfusion byactivation of phosphatidylinositol-3-kinase signal transduction. CardiovascDrugs Ther.2008.22(6):443-52.
    [153] Guan L, Li W, Liu Z. Effect of ginsenoside-Rb1on cardiomyocyte apoptosisafter ischemia and reperfusion in rats. J Huazhong Univ Sci Technolog Med Sci.2002.22(3):212-5.
    [154] Liu Z, Li Z, Liu X. Effect of ginsenoside Re on cardiomyocyte apoptosis andexpression of Bcl-2/Bax gene after ischemia and reperfusion in rats. J HuazhongUniv Sci Technolog Med Sci.2002.22(4):305-9.
    [155]白长喜,方文龙.人参皂甙Re对大鼠心肌缺血-再灌注损伤时心肌和血浆前列腺素E_2水平的影响.延边医学院学报.1993.(01):17-19.
    [156]朱广瑾,张莹,段岩平,王凌燕.人参皂甙对大鼠心肌缺血再灌注时纤溶活性变化的影响.基础医学与临床.1994.(06).
    [157]李元建,陈修.人参皂甙及其组分对心肌细胞缺氧、再给氧和心肌缺血再灌注损伤的保护作用.药学学报.1987.(01):1-5.
    [158]李敬远,曾因明.人参皂甙抗离体大鼠心肌缺血再灌注损伤的作用.徐州医学院学报.2004.(05):404-407.
    [159] Wu Y, Xia ZY, Dou J, et al.. Protective effect of ginsenoside Rb1againstmyocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats.Mol Biol Rep.2010.
    [160]杜海洲,宋金燕,王天津,曹咏梅.国际上用于女性疾病的新药和疫苗开发研究进展.中国新药杂志.2008.(21):1823-1830.
    [161] Crabtree GR. Generic signals and specific outcomes: signaling through Ca2+,calcineurin, and NF-AT. Cell.1999.96(5):611-4.
    [162] Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated proteinphosphatase, calcineurin. J Biol Chem.1998.273(22):13367-70.
    [163] Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation oftranscription factors induced by Ca2+response amplitude and duration. Nature.1997.386(6627):855-8.
    [164]Molkentin JD. Calcineurin and beyond: cardiac hypertrophic signaling. Circ Res.2000.87(9):731-8.
    [165] Molkentin JD, Lu JR, Antos CL, et al.. A calcineurin-dependent transcriptionalpathway for cardiac hypertrophy. Cell.1998.93(2):215-28.
    [166] Jiang QS, Huang XN, Yang GZ, Jiang XY, Zhou QX. Inhibitory effect ofginsenoside Rb1on calcineurin signal pathway in cardiomyocyte hypertrophyinduced by prostaglandin F2alpha. Acta Pharmacol Sin.2007.28(8):1149-54.
    [167] Cingolani HE, Ennis IL. Sodium-hydrogen exchanger, cardiac overload, andmyocardial hypertrophy. Circulation.2007.115(9):1090-100.
    [168] Karmazyn M, Kilic A, Javadov S. The role of NHE-1in myocardial hypertrophyand remodelling. J Mol Cell Cardiol.2008.44(4):647-53.
    [169] Pieske B, Houser SR.[Na+]i handling in the failing human heart. CardiovascRes.2003.57(4):874-86.
    [170] Guo J, Gan XT, Haist JV, et al.. Ginseng inhibits cardiomyocyte hypertrophyand heart failure via NHE-1inhibition and attenuation of calcineurin activation.Circ Heart Fail.2011.4(1):79-88.
    [171] Fiedler B, Lohmann SM, Smolenski A, et al.. Inhibition of calcineurin-NFAThypertrophy signaling by cGMP-dependent protein kinase type I in cardiacmyocytes. Proc Natl Acad Sci U S A.2002.99(17):11363-8.
    [172] Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide,atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effectsof norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest.1998.101(4):812-8.
    [173] Schroder F, Klein G, Fiedler B, et al.. Single L-type Ca(2+) channel regulationby cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG Itransgenic mice. Cardiovasc Res.2003.60(2):268-77.
    [174] Qin N, Gong QH, Wei LW, Wu Q, Huang XN. Total ginsenosides inhibit theright ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull.2008.31(8):1530-5.
    [175] De Windt LJ, Lim HW, Haq S, Force T, Molkentin JD. Calcineurin promotesprotein kinase C and c-Jun NH2-terminal kinase activation in the heart.Cross-talk between cardiac hypertrophic signaling pathways. J Biol Chem.2000.275(18):13571-9.
    [176] Meyer S, Kohler NG, Joly A. Cyclosporine A is an uncompetitive inhibitor ofproteasome activity and prevents NF-kappaB activation. FEBS Lett.1997.413(2):354-8.
    [177] Sugimoto T, Stewart S, Guan KL. The calcium/calmodulin-dependent proteinphosphatase calcineurin is the major Elk-1phosphatase. J Biol Chem.1997.272(47):29415-8.
    [178] Tian J, Karin M. Stimulation of Elk1transcriptional activity bymitogen-activated protein kinases is negatively regulated by protein phosphatase2B (calcineurin). J Biol Chem.1999.274(21):15173-80.
    [179] Wu H, Naya FJ, McKinsey TA, et al.. MEF2responds to multiplecalcium-regulated signals in the control of skeletal muscle fiber type. EMBO J.2000.19(9):1963-73.
    [180] Mao Z, Wiedmann M. Calcineurin enhances MEF2DNA binding activity incalcium-dependent survival of cerebellar granule neurons. J Biol Chem.1999.274(43):31102-7.
    [181] Fukuchi M, Sakuragawa S, Tabuchi A, Tsuda M. Calcium signal-mediatedexpression of the vasoactive intestinal polypeptide gene and its smallcontribution to activity-dependent survival of mouse cerebellar granule cells. JNeurosci Res.2004.77(1):26-34.
    [182] Richardson P, McKenna W, Bristow M, et al.. Report of the1995World HealthOrganization/International Society and Federation of Cardiology Task Force onthe Definition and Classification of cardiomyopathies. Circulation.1996.93(5):841-2.
    [183] Maron BJ, Towbin JA, Thiene G, et al.. Contemporary definitions andclassification of the cardiomyopathies: an American Heart Association ScientificStatement from the Council on Clinical Cardiology, Heart Failure andTransplantation Committee; Quality of Care and Outcomes Research andFunctional Genomics and Translational Biology Interdisciplinary WorkingGroups; and Council on Epidemiology and Prevention. Circulation.2006.113(14):1807-16.
    [184] Juan F, Wei D, Xiongzhi Q, et al.. The changes of the cardiac structure andfunction in cTnTR141W transgenic mice. Int J Cardiol.2008.128(1):83-90.
    [185] Zhao H, Lv D, Zhang W, et al.. Ginsenoside-Rb1attenuates dilatedcardiomyopathy in cTnT(R141W) transgenic mouse. J Pharmacol Sci.2010.112(2):214-22.
    [186] Scott GI, Colligan PB, Ren BH, Ren J. Ginsenosides Rb1and Re decreasecardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br JPharmacol.2001.134(6):1159-65.
    [187] Jin ZQ. The action of ginsenoside Re on inotropy and chronotropy of isolatedatria prepared from guinea pigs. Planta Med.1996.62(4):314-6.
    [188] Sharma RK, Kalra J. Ginsenosides are potent and selective inhibitors of somecalmodulin-dependent phosphodiesterase isozymes. Biochemistry.1993.32(19):4975-8.
    [189] Yu C, Fu F, Yu X, Han B, Zhu M. Cardioprotective effect of ocotillol, a derivateof pseudoginsenoside F11, on myocardial injury induced by isoproterenol in rats.Arzneimittelforschung.2007.57(9):568-72.
    [190] Wang T, Yu X, Qu S, Xu H, Han B, Sui D. Effect of ginsenoside Rb3onmyocardial injury and heart function impairment induced by isoproterenol inrats. Eur J Pharmacol.2010.636(1-3):121-5.
    [191] Xie JT, Shao ZH, Vanden HTL, et al.. Antioxidant effects of ginsenoside Re incardiomyocytes. Eur J Pharmacol.2006.532(3):201-7.
    [192] Kong HL, Wang JP, Li ZQ, Zhao SM, Dong J, Zhang WW. Anti-hypoxic effectof ginsenoside Rbl on neonatal rat cardiomyocytes is mediated through thespecific activation of glucose transporter-4ex vivo. Acta Pharmacol Sin.2009.30(4):396-403.
    [193] Adams JW, Pagel AL, Means CK, Oksenberg D, Armstrong RC, Brown JH.Cardiomyocyte apoptosis induced by Galphaq signaling is mediated bypermeability transition pore formation and activation of the mitochondrial deathpathway. Circ Res.2000.87(12):1180-7.
    [194] Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Role ofglycogen synthase kinase-3beta in cardioprotection. Circ Res.2009.104(11):1240-52.
    [195] Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M. Inhibition ofGSK3beta by postconditioning is required to prevent opening of themitochondrial permeability transition pore during reperfusion. Circulation.2008.117(21):2761-8.
    [196] Kong HL, Li ZQ, Zhao YJ, et al.. Ginsenoside Rb1protects cardiomyocytesagainst CoCl2-induced apoptosis in neonatal rats by inhibiting mitochondriapermeability transition pore opening. Acta Pharmacol Sin.2010.31(6):687-95.
    [197] Zhu D, Wu L, Li CR, et al.. Ginsenoside Rg1protects rat cardiomyocyte fromhypoxia/reoxygenation oxidative injury via antioxidant and intracellular calciumhomeostasis. J Cell Biochem.2009.108(1):117-24.
    [198]赵宗江,张学凯,张新雪,崔秀明,杨美娟. Rg1、Rb1对糖尿病肾病大鼠肾脏保护作用及其对肾组织TGF-β_1mRNA与蛋白表达的影响.北京中医药大学学报.2008.(06):373-377+433.
    [199]张丽娜,谢席胜,左川,樊均明.人参皂甙Rg1对糖尿病肾病大鼠TNF-α、MCP-1表达的影响.四川大学学报(医学版).2009.(03):466-471.
    [200]孙宏权,周占宇.人参皂甙Rg3对糖尿病大鼠视网膜VEGF和TNF-α表达的影响(英文).国际眼科杂志.2010.(10):1855-1857.
    [201] Donahoe SM, Stewart GC, McCabe CH, et al. Diabetes and mortality followingacute coronary syndromes. JAMA.2007.298(7):765-75.
    [202] Min JK, Kim JH, Cho YL, et al..20(S)-Ginsenoside Rg3prevents endothelialcell apoptosis via inhibition of a mitochondrial caspase pathway. BiochemBiophys Res Commun.2006.349(3):987-94.
    [203]田京伟,傅风华,杨建雄.20(S)-人参皂苷Rg_3对脑缺血大鼠脑线粒体损伤的保护作用.中国药理学通报.2006.(02):216-220.
    [204] Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damagein rats. Eur J Pharmacol.2008.591(1-3):266-72.
    [205] Tian J, Fu F, Geng M, et al.. Neuroprotective effect of20(S)-ginsenoside Rg3oncerebral ischemia in rats. Neurosci Lett.2005.374(2):92-7.
    [206] Kang KS, Kim HY, Yamabe N, Yokozawa T. Stereospecificity in hydroxylradical scavenging activities of four ginsenosides produced by heat processing.Bioorg Med Chem Lett.2006.16(19):5028-31.
    [207] Kang KS, Yokozawa T, Yamabe N, Kim HY, Park JH. ESR study on thestructure and hydroxyl radical-scavenging activity relationships of ginsenosidesisolated from Panax ginseng C A Meyer. Biol Pharm Bull.2007.30(5):917-21.
    [208] Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. JAgric Food Chem.2005.53(6):1841-56.
    [209]王祥,李长运,曾秋棠,曹林生.大鼠2型糖尿病心肌病模型的建立方法.中国病理生理杂志.2006.(09):1868-1870.
    [210]Kim M, Ahn BY, Lee JS, et al.. The ginsenoside Rg3has a stimulatory effect oninsulin signaling in L6myotubes. Biochem Biophys Res Commun.2009.389(1):70-3.
    [211]Nishio Y, Kanazawa A, Nagai Y, Inagaki H, Kashiwagi A. Regulation and roleof the mitochondrial transcription factor in the diabetic rat heart. Ann N Y AcadSci.2004.1011:78-85.
    [212]Defraigne JO.[A central pathological mechanism explaining diabeticcomplications?]. Rev Med Liege.2005.60(5-6):472-8.
    [213]Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans.2007.35(Pt5):1147-50.
    [214]Khullar M, Al-Shudiefat AA, Ludke A, Binepal G, Singal PK. Oxidative stress: akey contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol.2010.88(3):233-40.
    [215]Cai L, Wang Y, Zhou G, et al. Attenuation by metallothionein of early cardiaccell death via suppression of mitochondrial oxidative stress results in aprevention of diabetic cardiomyopathy. J Am Coll Cardiol.2006.48(8):1688-97.
    [216]Cai L. Suppression of nitrative damage by metallothionein in diabetic heartcontributes to the prevention of cardiomyopathy. Free Radic Biol Med.2006.41(6):851-61.
    [217]Weisbrot-Lefkowitz M, Reuhl K, Perry B, Chan PH, Inouye M,Mirochnitchenko O. Overexpression of human glutathione peroxidase protectstransgenic mice againstfocal cerebral ischemia/reperfusion damage. Brain ResMol Brain Res.1998.53(1-2):333-8.
    [218]Aksakal E, Akaras N, Kurt M, et al. The role of oxidative stress in diabeticcardiomyopathy: an experimental study. Eur Rev Med Pharmacol Sci.2011.15(11):1241-6.
    [219]Aliciguzel Y, Ozen I, Aslan M, Karayalcin U. Activities of xanthineoxidoreductase and antioxidant enzymes in different tissues of diabetic rats. JLab Clin Med.2003.142(3):172-7.
    [220]Okutan H, Ozcelik N, Yilmaz HR, Uz E. Effects of caffeic acid phenethyl esteron lipid peroxidation and antioxidantenzymes in diabetic rat heart. ClinBiochem.2005.38(2):191-6.
    [221]Kawamura N, Ookawara T, Suzuki K, Konishi K, Mino M, Taniguchi N.Increased glycated Cu,Zn-superoxide dismutase levels in erythrocytes ofpatients with insulin-dependent diabetis mellitus. J Clin Endocrinol Metab.1992.74(6):1352-4.
    [222]Catherwood MA, Powell LA, Anderson P, McMaster D, Sharpe PC, Trimble ER.Glucose-induced oxidative stress in mesangial cells. Kidney Int.2002.61(2):599-608.
    [223]Yue KK, Chung WS, Leung AW, Cheng CH. Redox changes precede theoccurrence of oxidative stress in eyes and aorta, butnot in kidneys of diabeticrats. Life Sci.2003.73(20):2557-70.
    [224]Candido R, Forbes JM, Thomas MC, et al. A breaker of advanced glycation endproducts attenuates diabetes-induced myocardial structural changes. Circ Res.2003.92(7):785-92.
    [225]Fischer M, Baessler A, Hense HW, et al.. Prevalence of left ventricular diastolicdysfunction in the community. Results from a Doppler echocardiographic-basedsurvey of a population sample. Eur Heart J.2003.24(4):320-8.
    [226]Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting ofdiabetic cardiomyopathy. J Am Coll Cardiol.2006.47(4):693-700.
    [227]Bell DS. Diabetic cardiomyopathy. A unique entity or a complication ofcoronary artery disease. Diabetes Care.1995.18(5):708-14.
    [228]Olivetti G, Melissari M, Balbi T, Quaini F, Sonnenblick EH, Anversa P. Myocytenuclear and possible cellular hyperplasia contribute to ventricular remodeling inthe hypertrophic senescent heart in humans. J Am Coll Cardiol.1994.24(1):140-9.
    [229]Vlassara H, Brownlee M, Cerami A. High-affinity-receptor-mediated uptake anddegradation of glucose-modified proteins: a potential mechanism for theremoval of senescent macromolecules. Proc Natl Acad Sci U S A.1985.82(17):5588-92.
    [230]Schmidt AM, Yan SD, Stern DM. The dark side of glucose. Nat Med.1995.1(10):1002-4.
    [231]Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation:biochemical, biologic, and clinical implications for diabetes and aging. LabInvest.1994.70(2):138-51.
    [232]Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR, Baynes JW.Glycation, glycoxidation, and cross-linking of collagen by glucose. Kinetics,mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes.1994.43(5):676-83.
    [233]Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as aprogression factor amplifying immune and inflammatory responses. J ClinInvest.2001.108(7):949-55.
    [234]Hudson BI, Wendt T, Bucciarelli LG, et al. Diabetic vascular disease: it's all theRAGE. Antioxid Redox Signal.2005.7(11-12):1588-600.
    [235]Yamagishi S.[Role of advanced glycation end products (AGE) and solublereceptor for AGE (sRAGE) in vascular complications in diabetes]. NihonRinsho.2012.70Suppl5:243-7.
    [236]Bierhaus A, Illmer T, Kasper M, et al. Advanced glycation end product(AGE)-mediated induction of tissue factor in cultured endothelial cells isdependent on RAGE. Circulation.1997.96(7):2262-71.
    [237]Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interactionwith AGE-receptors in vascular disease and diabetes mellitus. I. The AGEconcept. Cardiovasc Res.1998.37(3):586-600.
    [238]Schmidt AM, Stern DM. RAGE: a new target for the prevention and treatmentof the vascular and inflammatory complications of diabetes. Trends EndocrinolMetab.2000.11(9):368-75.
    [239]Yan SD, Stern D, Schmidt AM. What's the RAGE? The receptor for advancedglycation end products (RAGE) and the dark side of glucose. Eur J Clin Invest.1997.27(3):179-81.
    [240]Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation endproducts (RAGE)-mediated neurite outgrowth and activation of NF-kappaBrequire the cytoplasmic domain of the receptor but different downstreamsignaling pathways. J Biol Chem.1999.274(28):19919-24.
    [241]Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulinenhancer sequences. Cell.1986.46(5):705-16.
    [242]Neumann A, Schinzel R, Palm D, Riederer P, Munch G. High molecular weighthyaluronic acid inhibits advanced glycation endproduct-induced NF-kappaBactivation and cytokine expression. FEBS Lett.1999.453(3):283-7.
    [243]Basta G, Schmidt AM, De Caterina R. Advanced glycation end products andvascular inflammation: implications for accelerated atherosclerosis in diabetes.Cardiovasc Res.2004.63(4):582-92.
    [244]Haslbeck KM, Schleicher E, Bierhaus A, et al. The AGE/RAGE/NF-(kappa)Bpathway may contribute to the pathogenesis of polyneuropathy in impairedglucose tolerance (IGT). Exp Clin Endocrinol Diabetes.2005.113(5):288-91.
    [245]Ihm SH, Chang K, Kim HY, et al. Peroxisome proliferator-activatedreceptor-gamma activation attenuates cardiac fibrosis in type2diabetic rats: theeffect of rosiglitazone on myocardial expression of receptor for advancedglycation end products and of connective tissue growth factor. Basic Res Cardiol.2010.105(3):399-407.
    [246]Aragno M, Mastrocola R, Alloatti G, et al. Oxidative stress triggers cardiacfibrosis in the heart of diabetic rats. Endocrinology.2008.149(1):380-8.
    [247]Westermann D, Van Linthout S, Dhayat S, et al. Tumor necrosis factor-alphaantagonism protects from myocardial inflammation and fibrosis inexperimental diabetic cardiomyopathy. Basic Res Cardiol.2007.102(6):500-7.
    [248]Ye G, Metreveli NS, Donthi RV, et al. Catalase protects cardiomyocyte functionin models of type1and type2diabetes. Diabetes.2004.53(5):1336-43.
    [249]Ban CR, Twigg SM. Fibrosis in diabetes complications: pathogenic mechanismsand circulating and urinary markers. Vasc Health Risk Manag.2008.4(3):575-96.
    [250]Cooper ME. Interaction of metabolic and haemodynamic factors in mediatingexperimental diabetic nephropathy. Diabetologia.2001.44(11):1957-72.
    [251]Way KJ, Isshiki K, Suzuma K, et al. Expression of connective tissue growthfactor is increased in injured myocardium associated with protein kinase Cbeta2activation and diabetes. Diabetes.2002.51(9):2709-18.
    [252]Sharma K, Ziyadeh FN. Renal hypertrophy is associated with upregulation ofTGF-beta1gene expression in diabetic BB rat and NOD mouse. Am J Physiol.1994.267(6Pt2): F1094-01.
    [253]Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterizationof protein kinase C beta isoform activation on the gene expression oftransforming growth factor-beta, extracellular matrix components, andprostanoids in the glomeruli of diabetic rats. J Clin Invest.1997.100(1):115-26.
    [254]Matsui Y, Sadoshima J. Rapid upregulation of CTGF in cardiac myocytes byhypertrophic stimuli: implication for cardiac fibrosis and hypertrophy. J MolCell Cardiol.2004.37(2):477-81.
    [255]Moussad EE, Brigstock DR. Connective tissue growth factor: what's in a name.Mol Genet Metab.2000.71(1-2):276-92.
    [256]Brooks BA, Franjic B, Ban CR, et al. Diastolic dysfunction and abnormalities ofthe microcirculation in type2diabetes. Diabetes Obes Metab.2008.10(9):739-46.
    [257]Candido R, Jandeleit-Dahm KA, Cao Z, et al. Prevention of acceleratedatherosclerosis by angiotensin-converting enzyme inhibition in diabeticapolipoprotein E-deficient mice. Circulation.2002.106(2):246-53.
    [258]Shimizu M, Umeda K, Sugihara N, et al. Collagen remodelling in myocardia ofpatients with diabetes. J Clin Pathol.1993.46(1):32-6.
    [259]Asghar O, Al-Sunni A, Khavandi K, et al. Diabetic cardiomyopathy. Clin Sci(Lond).2009.116(10):741-60.
    [260]Li J, Schmidt AM. Characterization and functional analysis of the promoter ofRAGE, the receptor for advanced glycation end products. J Biol Chem.1997.272(26):16498-506.
    [261]Hong M, Jin Y, Mai YQ, et al. The decline of atrial natriuretic peptide (ANP)gene expression in older rats and the effects of ginsenoside on ANP geneexpression. Comp Biochem Physiol B.1992.101(1-2):35-9.
    [262]Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform forstudying drug toxicity and gene function. Nat Rev Drug Discov.2002.1(2):153-61.
    [263]Yin P, Mohemaiti P, Chen J, et al. Serum metabolic profiling of abnormal savdaby liquid chromatography/mass spectrometry. J Chromatogr B Analyt TechnolBiomed Life Sci.2008.871(2):322-7.
    [264]Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform forstudying drug toxicity and gene function. Nat Rev Drug Discov.2002.1(2):153-61.
    [265]Porcelli B, Muraca LF, Frosi B, et al. Fast-atom bombardment massspectrometry for mapping of endogenous methylated purine bases in urineextracts. Rapid Commun Mass Spectrom.1997.11(4):398-404.
    [266]Bennett RA, Pegg AE. Alkylation of DNA in rat tissues following administrationof streptozotocin. Cancer Res.1981.41(7):2786-90.
    [267]Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. AmJ Kidney Dis.2003.41(4Suppl4): S4-12.
    [268]Hipkiss AR. Would carnosine or a carnivorous diet help suppress aging andassociated pathologies. Ann N Y Acad Sci.2006.1067:369-74.
    [269]Guney Y, Turkcu UO, Hicsonmez A, et al. Carnosine may reduce lung injurycaused by radiation therapy. Med Hypotheses.2006.66(5):957-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700