多孔介质中CO_2-原油非平衡扩散理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将CO2作为驱油剂来提高原油采收率的方法已成为油藏重要的开发方式之一。特别对于低渗致密油藏,由于这类储层多孔介质具有比面大、吸附量大、孔道小、毛管压力大、丰度低、油质轻等特点,导致低渗、低产、注不进采不出,常规开发方式效益差或不能有效开发,国内外研究和实践表明注CO2是开发低渗致密油藏的有效方式之一。而且随着近年来全球气候的持续变暖,温室气体的排放日益受到人们的关注。很多国家都签订了以减少温室气体为宗旨的《京都议定书》,我国作为CO2排放量第二的国家,不管是从国际社会的责任,还是从我国实现可持续发展和创建和谐社会的角度来出发,都迫切需要解决CO2减排的问题。而CO2减排的主要途径就是地质埋存,将CO2作为驱油剂注入低渗致密油藏储层中,不仅可以解决低渗致密油藏动用难问题,而且还可以同时实现CO2的长期埋存,具有十分广泛的应用前景。CO2气源丰富,容易混相,驱油效率高,在油藏条件下研究CO2与原油接触时的非平衡扩散对确定储层注入CO2与原油吞吐、脉冲和超前注气关井时间、注气速度与扩散速度的匹配、油气过渡带描述、混相条件等都有重要的理论与现实意义,所以对CO2与原油在多孔介质中的非平衡扩散研究十分必要。
     本文从非平衡扩散入手,分别从理论和实验两方面进行多孔介质非平衡扩散研究。本研究由国家自然科学基金项目(“多孔介质中CO2-多组分原油非平衡扩散理论研究(21143011)”)资助。
     本文在大量的国内外文献调研的基础上,从理论和实验两个方面来研究多孔介质中的气体与原油的非平衡扩散。在借鉴国内外分子扩散研究的基础上,首先建立了测试多组分气体-原油在PVT筒中的分子扩散实验测试方法,并在不同的实验条件下进行了四组实验测试;其次建立了多组分气体-原油在多孔介质中的分子扩散实验测试方法和扩散理论模型,以及相应的多孔介质扩散系数理论计算方法,并在不同的温度条件下进行了两组实验测试。
     通过研究,本文取得的主要成果如下:
     (1)建立了多孔介质中多组分气体—原油扩散实验测试方法,测试了气体扩散过程中体系压力随时间的变化关系、体系达到平衡的时间以及平衡后油气组成;
     (2)建立了多孔介质中多组分气体-原油扩散系数理论计算方法,在该模型中引入了分形毛管压力
     (3)计算高温高压多孔介质中CO2-原油体系分子扩散系数;分析了体系温度以及原油组分对扩散系数的影响;
     (4)为了分析多孔介质对CO2-原油体系分子扩散系数的影响,分别进行了PVT筒中和全直径岩心中的扩散实验。研究结果表明,在相同的实验条件下,同一组分在多孔介质中的分子扩散系数比PVT筒中的小很多,这说明了多孔介质的存在对扩散系数有明显的影响。
     (5)分析了多孔介质中孔隙度和渗透率对模型的影响。
     本文的研究进一步完善了油气相态理论,为今后的研究提供了思路和方向。对于低渗致密油藏的注气开发具有重要的理论和现实意义。
CO2as an oil displacement agent for enhanced oil recovery method has become one of the important way of reservoir development. Especially for the low permeability tight reservoir, due to the porous medium of the reservoir has the large specific surface area, large adsorption capacity, small pore, large capillary pressure, low abundance and lightweight oil, which result in low permeability and production, and injection cannot be carried out or oil cannot be produced. The regular development way benefits poor or cannot effectively develop. Research and practice show that CO2injection is one of the effective ways to develop the low permeability tight reservoir at home and abroad.
     In recent years, the global climate continues to warm. The greenhouse gas emissions are paid more and more attention by people. Many countries have signed the Kyoto Protocol for the purpose of reducing greenhouse gas. China ranks second for the CO2emission. No matter from the responsibility of the international community, or from the viewpoint of sustainable development and creating a harmonious society in our country to set out, we are in urgent need to solve the problem of CO2emission reduction.
     The main way of CO2reduction is geological storage. CO2as an oil displacement agent is injected into the low permeability tight reservoir, which can not only solve difficult problems, but also can achieve long-term sequestration of COt at the same time. This process has the very broad application prospect. CO2has rich gas source, and it is easily miscible whit oil. CO2injection has high oil displacement efficiency. When CO2is in contact with crude oil under the reservoir condition, the non-equilibrium diffusion has important theoretical and practical significance to determine the shut-in time, match the air injection rate and the diffusion rate, describe transition zone of oil and gas and the miscible condition. The research on the non-equilibrium diffusion of CO2and oil in porous media is necessary.
     Non-equilibrium diffusion in porous medium is investigated through the theoretical and experimental methods. Also, this study is granted by the National Natural Science Foundation of China(theory research on non-equilibrium diffusion of CO2-multicomponent crude oil in porous media).
     Based on numerous literature researches at home and aboard, Non-equilibrium diffusion in porous medium is investigated through the theoretical and experimental methods. On the basis of study of the international and domestic molecular diffusion, firstly, establish the experimental test method of molecular diffusion between multi-components gases and actual crude oil in the PVT cell, and conduct four groups of testing experiments under different experimental conditions. Secondly, create the experimental test method and diffusion theory model of molecular diffusion between multi-component gases and actual crude oil in porous media, and the corresponding theoretical calculation method. The two sets of experimental testing are carried out under different temperature conditions.
     The main results achieved in this article are as follows:
     (1) Establish the experimental test method of molecular diffusion between multi-component gases and actual crude oil in porous media, and test the relationship between pressure and time in the diffusion process, oil-gas composition at final equilibrium state as well as the equilibrium time.
     (2) Establish the diffusion theory model and corresponding theoretical calculation method of molecular diffusion between multi-component gases and actual crude oil in porous media, consider1the fractal capillary pressure in this mode.
     (3) Calculate the molecular diffusion coefficient of CO2-oil system under high temperature and pressure in porous media, and analyze the influence of the system temperature and component of the crude oil on the molecular diffusion coefficient.
     (4) Compare the diffusion coefficient test of CO2-oil in PVT cell and in porous medium. And discuss the influence of porous medium on diffusion visually. Study indicated that porous medium hindered the molecular diffusion at some degree. And at the same temperature and pressure condition, diffusion coefficient of components of the same system at porous medium is smaller than that in PVT cell.
     (5) Analyze the influence of porosity and permeability on the molecular diffusion coefficient in porous media.
引文
[1]李上伦,张正卿,冉新权等.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001.11.
    [2]郑京.温室效应对环境的影响[J].山东环境.2003.(1):51-52.
    [3]范彩玲,高向阳,朱保安.温室效应及其防治对策[J].安徽农业科学,2006,34(20):5351-5352.
    [4]岳湘安,曾荣树.温室气体的地下埋存及在提高油气采收率中的资源化利用[C].北京;香山科学会议,2006.4.
    [5]Riazi,M.R. A new method for experimental measurement of diffusion coefficients in reservoir fluids[J]. SPEJ,1996,14(5):235-250.
    [6]Sachs,W. The diffusional transport of methane in water at reservoir conditions, a first attempt[J]t. Erdol Erdgas Kohole.1997,113(4):177-179.
    [7]Sachs.W. The diffusional transport of methane in Liquid water:method and result of experimental investigation at elevated pressure[J].SPEJ,1998,21(3):153-164.
    [8]Zhang,Y.P.Hyndman,C.L,Maini,B.B.Measuement of gas diffusivity in heavy oils[J].SPEJ, 2000,25(4):37-475.
    [9]Faruk Civan, Maurice L.Rasmussen. Improved measurement gas diffusivity for miscible gas flooding under non-equilibrium Vs. equilibrium condition[J]. SPE75135,2002:1-18.
    [10]Faruk Civan, Maurice L.Rasmussen. Analysis and interpretation of gas diffusion in quiescent reservoir,drilling, and completion fluids:equilibrium vs. non-equilibrium models[J]. SPE84072,2003:1-19.
    [11]Faruk Civan. Including non-equilibrium effects in models for rapid multiphase flow in wells[J]. SPE90583,2004:1-9.
    [12]Fuller, E.N. Schettler, P.D. A new method for prediction of binary gas-phase diffusion coefficients[J].Ind.Eng.Chem,1996,58(5):19-28.
    [13]孙守港,贾庆升,宋丹等.低渗透油藏注气提高采收率配套技术[J].油气地质与采收率,2002,9(2):28-30.
    [14]Dawson, Khoury.Self-diffusion measurements in methane by pulsed nuclear magnetic resonance[J].AIChE.J.1970,16(5):725-729.
    [15]Mathur.G.P. Chang,P. The self-diffusivity of substrance in the gaseous and liquid states[J].AIChe J.1965,11(3):613-618.
    [16]Denoyelle L.Bardon C. Diffusion of carbon dioxide into reservoir fluids[C]. paper was presented at the 1984 CIM Annual General Meeting, Ontaws.1984,4:15-19.
    [17]王利生.驱替气体在油藏流体中的对流扩散.石油勘探与开发.1996,23(6):62-65.
    [18]Reamer, H.H., Duffy, C.H., and Sage, B.H., Diffusion coefficients in hydrocarbon systems:methane-pentane in liquid phase[J]. Industrial Engineering Chemistry,1956,48: 275-288.
    [19]刘中民,郑禄彬,陈国权等.与浓度相关的扩散系数D_t的求取[J].中国科学.1995,25(7):704-709.
    [20]Saikat Mazumder. Johannes Bruining. Anomalous diffusion behavior of CO2 in the macromolecular network structure of coal and its significance for CO2 sequestration[C]. SPEJ,109506,2007.
    [21]Oballa, V.; Butler, R.M. An experimental-study of diffusion in the bitumen toluene system[J]. J. Can. Pet. Technol.1989,28 (2):63-90.
    [22]Lusis M A and Rateliff G A. Diffusion in binary liquid mixtures at infinite dilution[J].Can j Chem Eng,1968,46:38-42.
    [23]Hayduk W and Cheng S C.Review of Relation between diffusivity and solvent viscosity in dilute liquid solution[J].Chem Eng Sci,1971,26:635-641.
    [24]Hiss T G and Cussler E I. Diffusion. coefficients of n-hexane and naphthalene [J]. AIChE J,1973,19(3):667-671.
    [25]Moore J W and Willek R M.Diffusion coefficients of n-heptane and n-decane in some alkanes and alkanols[J].J Chem Eng Data,1974,19:136-139.
    [26]Funazukuri T, Hachisu, Wakao. Measurements of binary diffusion coefficients of C16-C24 unsaturated fatty acid methylesters in super-critical carbon dioxide[J]. Ind Eng Chem Res,1991,30(6):1319-1323.
    [27]Funazukuri T,Ishiwata,Wakao. Predictive correlation for binary diffusion coefficients in dense carbon dioxide [J].AIChE J,1992,38(11):1761-1768.
    [28]Phillip M. Sigmund. Prediction of Molecular Diffusion At Reservoir Condition. Part I-Measurement and Prediction of Binary Dense Gas Diffusion Coefficient[C]. JCPT 76-02-05,1976.
    [29]Hanaaen, J.E. and Stenberg, D. Experimental Diffusion Coefficients for Nitrogen at Reservoir Conditions [C]. PRI Report, Petroleum Research Centre, Rogaland Research Institute, Stavanger,1987:16.
    [30]Riazi. M.R.and Whitson, C.H. Estimation of Diffusion Coefficients of Nitrogen. Methane and Ethane in Reservoir Fluid from Experimental Measurements [C]. Report to Petrofina, S.A., Brussels,1988:36.
    [31]Dickson, K.B. and Johnson. J.P. Measurement of Nitrogen Diffusion into Ekofisk Chalk[C]. Phillips Petroleum Company, Drilling and Production Division, Bartiesville, OK, July,1988:34.
    [32]Upreti, S. R. Experimental measurement of gas diffusivity in bitumen:results for CO2, CH4, C2H6, and N2[C]. Thesis-The University of Calgary, Calgary,2002.
    [33]Sheikha, H., Pooladi-Darvish, M., Mehrotra, A. K. Development of graphical methods for estimating the diffusivity coefficient of gases in bitumen from pressure-decay data[J]. Energy & Fuels,2005,19:2041-2049.
    [34]Renner. T.A. Measurement and correlation of diffusion coefficients for oil and rich gas applications[J]. SPE Res. Engr.,1988,3:517-523.
    [35]Jamialahmadi, M., Emadi, M., Miiller Steinhagen, H. Diffusion coefficients of methane in liquid hydrocarbons at high pressure and temperature[J].J. Pet. Sci. Eng.,2006,53:47-60.
    [36]Wen and Kantzas. Estimation of Diffusion Coefficients in Bitumen Solvent Mixtures as Derived From Low Field NMR Spectra[J]. JCPT,2005,44(4).
    [37]D. Salama and A. Kantzas, Monitoring of Diffusion of Heavy Oils With Hydrocarbon Solvents in the Presence of Sand[C]. SPE/PS-CIM/CHOA 97855,2005.
    [38]Guerrero-A concha, U., Kantzas, A. Diffusion of hydrocarbon gases in heavy oil and bitumen[C]. Proceedings-SPE LACPEC.2009.
    [39]L.Song, A.Kantzas and J.Bryan, Experimental Measurement of Diffusion Coefficient of CO2 in Heavy Oil Using X-Ray Compiter-Assisted Tomography Uder Reservoir Conditions[C]. CSUG/SPE 137545,2010.
    [40]L.Song, A.Kantzas and J.Bryan, Investigation of CO2 Diffusivity in Heavy Oil Using X-Ray Compiter-Assisted Tomography Uder Reservoir Conditions[C]. SPE 138205,2010.
    [41]Chaodong Yang and Yongan GU.A new method for measuring solvent diffusivity in heavy oil by dynamic pendant drop shape analysis[C]. SPE 84202,2003.
    [42]R. Islas-Juarez, F. Samanego V., C. Perez-Rosales, et al. Experimental Study of Effective Diffusion in Porous Media[C]. SPE 92196,2004.
    [43]李东东,侯吉瑞,赵凤兰,王少朋,岳湘安.二氧化碳在原油中的分子扩散系数和溶解度研究[J].油田化学,2009,26(4).
    [44]ZHAO Fenglan, HUANG Shijun, HOU Jirui, Determination of Diffusion Coefficient and Percolation Model During CO2 Flooding[C].2010 International Symposium on Multi-field Coupling Theory of Rock and Soil Media and Its Applications,2010:11-12.
    [45]Datchawan Unatrakarn, Koorosh Asghari, Jose Condor. Experimental Studies of CO2 and CH4 Diffusion Coefficient in Bulk Oil and Porous Media[J]. Energy Procedia.,2011:2170-2177.
    [46]Oballa, V. and Butler, R. M. An experimental Study of Diffusion in the Bitumen-Toluene System[J], J. Can. Pet. Tech.,28(2):63.
    [47]Salama and A. Kantzas. Monitoring of Diffusion of Heavy Oils With Hydrocarbon Solvents in the Presence of Sand[C]. SPE/PS-CIM/CHOA 97855,2005.
    [48]H. Luo, S. Kryuchkov and A. Kantzas, The Effect of Volume Changes Due to Mixing on Diffusion Coefficient Determination in Heavy Oil and Hydrocarbon Solvent System[C]. SPE 110522,2007.
    [49]H. Luo and A. Kantzas. Investigation if Diffusion Coefficients of Heavy oil and Hydrocarbon Solvent Systems in porous Media[C]. SPE113995.2008.
    [50]Nguyen,T.A..Faroup-Ali.S.M. Role of diffusion and gravity segregation in oil recovery by immiscible carbon dioxide wag progress[J]. In:UNITER international conference on heavy crude and tar sand,1995,12:393-403.
    [51]Wang L.S, Lang Z X and Guo T M. Measurements and correlation of the diffusion coefficients of carbon dioxide in liquid hydrocarbons under Elevated pressure[J]. Fluid phase equilibrium,1996.117(2):364-372.
    [52]Ping Guo, Zhouhua Wang, Pingping Shen,and Jianfen Du. Molecular Diffusion Coefficients of the Multicomponent Gas-Crude Oil Systems under High Temperature and Pressure[J]. Ind. Eng. Chem. Res.,2009,48:9023-9027.
    [53]Upreti, S.R. and Mehrotra, A.K. Experimental measurement of gas diffusivity in bitumen-Results for carbon dioxide[J]. Ind. Eng. Chem. Res.2000,39(4):1080-1087.
    [54]Asok Kumar Tharanivasan, Chaodong Yang, Yongan Gu. Comparison of three different interface mass transfer models used in the experimental measurement of solvent diffusivity in heavy oil[J]. J. Pet. Sci. Eng.,2004,44:269-282.
    [55]Asok Kumar Tharanivasan, Chaodong Yang and Yongan Gu. Measurements of Molecular Diffusion Coefficients of Carbon Dioxide, Methane, and Propane in Heavy Oil ynder Reservoir Conditions [J]. Energy & Fuels,2006,20:2509-2517.
    [56]叶安平,沈晓英,郭平,气体-原油分子扩散系数实验研究进展[J].化学工程与技术,2013,3(2):49-57.
    [57]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [58]J.贝尔.多孔介质流体力学[M].北京:中国建筑工业出版社,1983.
    [59]李士伦,王鸣华,何江川.气田及凝析气田开发[M].北京:石油工业出版社,2002.
    [60]张伟,郭平,邓生辉.多孔介质中油气藏流体相态研究进展[J].断块油气田.2005,12(6):37-40.
    [61]阎庆来,何秋轩等.凝析油气在多孔介质中的相变特征[J].西安石油学院学报.1988,3(2):15-22.
    [62]朱维耀,黄延章.多孔介质对气-液相变过程的影响[J].石油勘探与开发,1988,15(1):51-55.
    [63]D.C.Poon M.Mccormarck H.F.Thimm. The Applicationof Fractal Geostatistics to Oil and Gas Property Evaluation and Reserve Estimates [J]. The Journal of Canadian Petroleum Technology,1993,32(10):24-27.
    [64]Katz, A.J. and Thompson,A.H. Fractal Sandstone Pores:Implications for Conductivity and Pore Formation[J]. Phys.Res.Lett,1985,54:1325-1328.
    [65]Wong,P.,Horward,J.,and Lin,J.S.Surface Roughening and the fractal Nature of Rocks[J]. Rev.Lett:1986,57:637-640.
    [66]Friesen,W.I. and Mikula,R.J. Fractal Dimensions of Coal Particles[J]. J. of Colloid and Interface Science,1987.11,120(1):263-271.
    [67]Hansen,J.P. and Skjeltorp, A.T.Fractal Pore Space and Rock Permeability Implications[J]. Phys.Res,1988,38(4):2635-2638.
    [68]Krohn,C.E. Fractal Measurements of Sandstones, Shales, and Carbonates [J]. J. of Colloid and Interface Science,1988,93(B4):3297-3305.
    [69]Lenormand,R.Gravity-Assisted Inert Gas Injection; Micromodel Experiments and Model Based on Fractal Roughness[C].The European and Gas Conference. Altavilla Milica. Palermo, Sicily,1990.10:9-12.
    [70]Angulo.R.F. and Gonzalez,H.Fractal Dimensions from Mercury Intrusion Capillary Tests[C], SPE 23695,presented at the 2nd Latin American Petroleum Engineering Conf. of SPE held in Caracas, Venezuela,1992:8-11.
    [71]Shen.P. and Li, K. A New Method for Determining the Fractal Dimension of Pore Structure and Its Application[C]. Proceedings of the 10th Offshore South East Asia Conference,Singapore,1994:6-9.
    [72]Shen,P. and Li, K.Quantitive Description for the Heterogeneity of Pore Structure by Using Mercury Capillary Pressure Curves[C]. SPE.29996, Proceedings of International Meeting held in Beijing, China,1995:14-17.
    [73]Li,K. and Horne,R.N.Fractal Characterization of The Geyseys Rock[C]. presented as the GRC 2003annual meeting, October 12-15,2003, Morelia, Mexico; GRC Trans,2003.
    [74]M. C. Leverett. Humble Oil and Refining Co. Capillary Behavior in Porous Solids[J]. Transactions of the AIME,12.1941,142(1):152-169.
    [75]Hassler, L. J. and Brunner.E.Measurement of Capillary Pressure in Small Core Sample[J]. Transactions of the AIME,1945,160:114-123.
    [76]Hoffman,R.N.A Technique for the Determination of Capillary Pressure Curves Using a Constant Accelerated Centrifuge [J]. SPEJ,1963,3(3):227-235.
    [77]Sidney Wong, Geotechnical Resources, Ltd.; Douglas Ruth, Department Of Mechanical Engineering, University Of Manitoba. Calculation Of Capillary-pressure Curves From Data Obtained By The Centrifuge Method[J]. Society of Petrophysicists and Well-Log Analysts, 1991,32(5):9-10.
    [78]Jan-Erlk Nordtv.dt, SPE, and Krlstof.r Kolltv.It, SPE, U. of Bergen.Capillary Pressure Curves From Centrifuge Data by Use of Spline Functions[C]. SPE Reservoir Engineering, 1991,10:497-501.
    [79]R.G.Bentsen. J. Anli. Using Parameter Estimation Techniques To Convert Centrifuge Data Into a Capillary-Pressure Curve[J]. Society of Petroleum Engineers Journal,1977,2: 57-64.
    [80]Zhigang Chen, Huiqing Liu, and Jun Yao, U. of Petroleum China. New Capillary Pressure Models for Parameter Estimation To Interpret Centrifuge Data[C]. Western Regional Meeting held in Bakersfield. California, March 30-April 1,1992.
    [81]Brooks.R.H. Corey, A.T. Hydraulic Properties of Porous Media[C].Colorado State University, Hydro Paper No.5,1964.
    [82]Kewen Li. Theoretical Development of the Brooks-Corey Capillary Pressure Model from Fractal Modeling of PorousMedia[C].2004 SPE/DOE Fourteen Symposium on Improved Oil Recovery, Tulsa, Oklahoma,U.S. A.17-24 April 2004.
    [83]Kewen Li. Characterization of Rock Heterogeneity Using Fractal Geometry[C]. SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting held in Bakerfield, California, U.S.A.,16-18 March 2004
    [84]何琰,张引来,吴念胜.用分形几何法预测毛管压力曲线[J].新疆石油地质,2004,25(6):647-649.
    [85]员美娟.多孔介质中流体的若干流动特性研究[D].华中科技大学,博士学位论文,2008.
    [86]Comiti J, Renaud M. A new model for determining mean structure parameters offixed beds from pressure drop measurements:application to beds packed withparallepipedal particles[J]. Chem. Engin. Sci.,1989,44:1539-1545.
    [87]Pech D. Etude de la permeabilite des lits compressibles constitutes de copeauxdebois partiellement destructures[C]. These de 3eme cycle, INP Grenoble, France,1984.
    [88]Koponen A, Kataja M, Timonen J. Tortuous flow in porous media[J]. Phys. Rev. E,1996, 54(1):406-410.
    [89]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [90]J.贝尔.多孔介质流体力学[M].北京:中国建筑工业出版社,1983.
    [91]朱杰.多孔介质内的相变传热传质过程研究[D].大连理工大学,硕士学位论文,2006.
    [92]S.Whitaker. Diffusion and dispersion in porous media[J].AICHE.J.1967,13:420-427.
    [93]J.C. Slattery, Flow of viscoelastic fluids through porous media[J]. AICHE. J.1967, 13:1066-1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700