微纳米弹性微球启动剩余油及提高采收率机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米弹性微球是一种新型的深部调驱剂,其在地层多孔介质中提高采收率机理的研究还不十分清楚。研究微球在油层中液流转向能力及提高采收率机理,对促进该技术的应用具有重要意义。本文从分析研究岩石孔隙结构特征出发,运用毛管压力曲线和平行毛管束模型及二维变截面微管束模型,计算了油藏岩石孔喉直径大小及分布,为液流转向的微球直径大小设计提供了理论依据;研究分析了油藏微细毛管中剩余油形成机理,计算了实际油藏中任意点处剩余油存在的最大毛管半径;利用张量分析法,建立了聚合物微球溶液通过岩石孔喉时产生压降数学模型,分析研究了影响微球产生压降大小的因素;研究分析了微球产生总附加压力迫使液流转向、启动驱出更小毛细管中剩余油以及提高采收率机理。
     研究结果表明,油藏岩石孔喉具有纳、微米级尺度,要求弹性微球能够在油层岩石中运移、封堵喉道致水绕流、通过弹性变形后通过喉道并且在下一喉道处再次封堵,这样的弹性微球应该是与地层相匹配的纳、微米微球;在不同毛管中毛管力的大小不同,是形成剩余油的根本原因;油藏中离井越远压力梯度越小,能驱动出原油的毛管半径越大,则存有剩余油的最大毛管半径也随之增大,剩余油饱和度也变大;弹性微球在通过岩石孔隙喉道时,在其入口收缩阶段、通过孔喉阶段和突破喉道阶段均产生压降,其中入口收缩阶段微球溶液所产生的压降值最大,占总压降的60%左右;随着孔喉比的增加以及剪切速率、表观粘度、孔隙因子的增大,压降值均增大;弹性微球直径对产生的附加压力有重要影响,微球直径越大,孔喉越小,产生附加压力越大;弹性微球在油层中,优先进入大的流动通道并在喉道处进行封堵,产生一附加压力,驱替压力与此附加压力的合力使液流方向发生转向,启动之前无法启动较小毛管中的剩余油。
Micro-nano of elastic microsphere is a new deep profile agent, which mechanism of enhancing oil recovery in the layer porous media has not been very clear. Research on the flow steering ability and EOR mechanism of elastic microsphere in the reservoir plays a significant role in promoting the application of the technique. Based on the analysis of pore structure of reservoir rock, the size and distribution of rock pore throat were calculated by applying the capillary pressure curve and parallel capillary bundles model and two-dimensional variable cross-section micro-bundle model, which provided a theoretical basis for the size design of flow steering microsphere. Besides, the formation mechanism of residual oil in the micro-capillary was analyzed and the largest capillary radius of the remaining oil at any point in the actual reservoir was calculated. Using the tensor analysis method, the mathematical model of supplementary pressure produced by microsphere when it passed through pore throat was established and the factors which influenced the additional pressure were analyzed. Moreover, how the additional pressure produced by microspheres generated fluid shift, started driving the remaining oil from the smaller capillary and enhanced oil recovery were studied.
     The result showed that the pore throat of reservoir rock had a nano-micron grade scale. That required matching nano-mcron microspheres which could migrate in rocks, block up pore throat to make water flow around, and pass through the pore throat by the elastic deformation and then block up the next pore throat. The root cause of remaining oil formation was the different capillary force in different capillary. The farther from the well in reservoirs, the smaller the pressure gradient, the larger in the capillary radius which could drive the crude oil, the larger the maximun capillary radius of storaging remaining oil and the greater the the residual oil saturation. When the elastic microspheres through a pore throat and generate additional pressure, including three stages are the contraction phase of the entrance, through the pore throat stage and breakthrough pore throat stage. In which the contraction phase of the entrance elastic microspheres generate the largest additional pressure that accounted for 60% of the total additional pressure. With the increase of pore throat ratio, shear rate, apparent viscosity, porosity factor, the additional pressure are increased. Elastic microsphere’s diameter has an important effect on additional pressure, the larger the microsphere’s diameter, the smaller the pore throat, the larger the additional pressure. Elastic microsphere in reservoir entry into the larger flow channel firstly and block the throat, produce additional pressure, displacement pressure and the additional pressure can make the fluid to change flow direction, start the remaining oil in smaller pipe that unable to start before.
引文
[1]刘宝珺,谢俊,张金亮.我国剩余油技术研究现状与进展[J].西北地质,2004,37(4):1~6.
    [2] Smith J E.Quantitive Evaluation of Polyacrylamide Crosslinked Gels for Use in Enhanced Oil Recovery[C].Presented at the International ACS Symposium,Anaheim,California,September,1986:9~12.
    [3]冈秦麟.高含水期油田改善水驱效果新技术(上)[M].北京:石油工业出版社,1999:87~93.
    [4]张霞林,周晓君.聚合物弹性微球乳液调驱实验研究[J].石油钻采工艺,2008:30(5):89~92.
    [5]崔新栋,董丽新.活性微球堵剂的研究与应用[J].海洋石油.2007,27(2):83~87.
    [6] Baojun Bai, Yuzhang liu, and Liangxiong Li.2007,Preformed Particle Gel for Conformance Control: Transport Mechanism Through Porous Media [J]. Presented at Reservoir Evaluation &Engineering. April, SPE,176~184.
    [7] Baojun Bai, Yuzhang liu, and Liangxiong Li. 2004.Performed Particle Gel for Conformance Control: Factors Affecting its Properties and Applications.Paper SPE 89389 presented at the SPE/DOC Symposium on Improved Oil Recovery, Tulsa,17-21 April. DOI:10.2118/89389-MS.
    [8]李宇乡,唐孝芬,刘双成.我国油田化学堵水调剖剂的开发与应用现状[J].油田化学,1995,12(1):88—94.
    [9]熊春明,唐孝芬.国内外堵水调剖技术最新进展及发展趋势[J].石油勘探与开发,2007,34(1):83~88.
    [10]白宝君,李宇乡,刘翔鄂.国内外化学堵水调剖技术综述[J].断块油气田,1998,5(1):1~5.
    [11]顾锡奎,杜芳艳,王小泉.化学深部调驱技术现状与进展[J].石油化工应用,2009,28(3):4~8.
    [12] Seright R S. Use of preformed gels for conformance control in fractured systems[J].SPE 35351,1997,12(1):59~65.
    [13]陈铁龙,周晓俊,赵秀娟,等.弱凝胶在多孔介质中的微观驱替机理[J].石油学报,2005,26(5):74~77.
    [14] Mack J C. In-depth collidal dispersion gels Improve oil recovery efficiency[R].Okla:SPE/DOE 27780 The 1994 Improved oil recovery symposium,tulsa,Apr 17~20,1994:527~539.
    [15]李宇乡,刘玉章,白宝君,等.体膨型颗粒堵水调剖技术研究[J].石油钻采工艺,1999,21(3):65~68.
    [16]吴应川,白宝君,赵化廷,等.影响预交联凝胶颗粒性能的因素分析[J].油气地质与采收率,2005,12(4):55~57.
    [17]白宝君,刘伟,李良雄,等.影响预交联凝胶颗粒性能特点的内因分析[J].石油勘探与开发,2002,29(2):103~105.
    [18]唐孝芬,刘玉章,常泽亮,等.适宜高温高盐地层的无机涂层调剖剂室内研究[J].石油勘探与开发,2004,31(6):92~94.
    [19]雷光伦,郑家朋.孔喉尺度聚合物微球的合成及全程调剖驱油新技术研究[J].中国石油大学学报(自然科学版),2007,31(1):87~90.
    [20]张增丽,雷光伦,刘兆年,等.聚合物微球调驱研究[J].新疆石油地质,2007,28(6):749~751.
    [21]蒋焱,徐登霆,陈健斌,等.微生物单井处理技术及其现场应用效果分析[J].石油勘探与开发,2005,32(2):104~106.
    [22]汪卫东,刘茂诚,程海鹰,等.微生物堵调研究进展[J].油气地质与采收率,2007,14(1):86~90.
    [23]高学忠,魏呐,宋荦,等.利用微生物调驱技术提高原油采收率[J].石油学报,1999,20(5):54~57.
    [24]纪海玲.微生物调剖技术的初步试验研究[J].特种油气藏,2003,10(5):88~89.
    [25] Seright R S,Liang J. A survey of field applications of gel treatments for water shutoff[R].Argentina: SPE 26991 The 1994 SPE III Latin American & Caribbean Petroleum Engineering Conference,Buenos Aires,April 27~29,1994:221~231.
    [26]王佩华.泡沫堵水调剖技术综述[J].钻采工艺,2000,23(2):60~61.
    [27]陈杰,刘向君,成竹,等.利用电阻率测井资料研究砂岩孔隙结构特征[J].西南石油学院学报,2005,27(6):5-7.
    [28]孙黎娟.砂岩孔隙空间结构特征研究的新方法[J].大庆石油地质与开发,2002,21(1):29:32.
    [29]方少仙,侯方浩.石油天然气储层地质学[M].东营:石油大学出版社, 1998.
    [30]秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2003.9.
    [31]张立娟,岳湘安.粘弹型和幂律型驱油剂的等效渗透率[J].石油学报,2007: 87-92.
    [32]谷建伟,翟世奎等油田高含水期基于微观渗流机理的宏观岩心水驱油数值模拟研究[J]中国海洋大学学报36(4):540-544:
    [33]王德民,程杰成等,粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报21.545-51.
    [34]曹仁义,程林松,郝柄英,等.粘弹性聚合物溶液孔喉模型流变性动力分析[J].高分子材料科学与工程.2008.24(3):15:18.
    [35]李雅华、李明远、林梅钦.交联聚合物微球分散体系的流变性[J].油气地质与采收率.2008, 5 15(3).
    [36] Carreau P T, Choplin L, Clermont J R. Ploym. Eng. Sci., 1985, 25: 669~676.
    [37]白宝君.预交联凝胶颗粒深部调驱应用基础研究[A].中国地质大学(北京).2003(3).
    [38]李克华,王春雨,赵福林.颗粒堵剂粒径与地层孔径的匹配关系研究[J].断块油气田. 2007.7(5):24-25.
    [39]张立娟,岳湘安,刘中春,等.聚合物溶液在孔隙介质中的渗流机理[J],石油大学学报,2005,,25(1):51~56.
    [40]王涛,肖建洪,孙焕泉,等.聚合物微球的粒径影响因素及封堵特性[J].油气地质与采收率.2006,4(26).
    [41]武楗棠,张政威,姜淑霞,等.微观非均质性对微观规模剩余油分布的影响[J].断块油气田. 2005,12(3):10-13.
    [42] Hoffman R L. Factors affecting the viscosity of unmoral and multimodal colloidal dispersions[J]. Journal of Rheology ,1998.42(1):111-123.
    [43] Brady J.F, Bossis G. The rheology of concentrated suspension of sphere shear floe by numerical simulation [J]. Fluid Mechanics, 1985,155:105-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700